LLDB mainline
DumpDataExtractor.cpp
Go to the documentation of this file.
1//===-- DumpDataExtractor.cpp ---------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10
11#include "lldb/lldb-defines.h"
12#include "lldb/lldb-forward.h"
13
14#include "lldb/Core/Address.h"
17#include "lldb/Target/ABI.h"
23#include "lldb/Target/Process.h"
25#include "lldb/Target/Target.h"
27#include "lldb/Utility/Log.h"
28#include "lldb/Utility/Stream.h"
29
30#include "llvm/ADT/APFloat.h"
31#include "llvm/ADT/APInt.h"
32#include "llvm/ADT/ArrayRef.h"
33#include "llvm/ADT/SmallVector.h"
34
35#include <limits>
36#include <memory>
37#include <string>
38
39#include <cassert>
40#include <cctype>
41#include <cinttypes>
42#include <cmath>
43
44#include <bitset>
45#include <optional>
46#include <sstream>
47
48using namespace lldb_private;
49using namespace lldb;
50
51#define NON_PRINTABLE_CHAR '.'
52
53static std::optional<llvm::APInt> GetAPInt(const DataExtractor &data,
54 lldb::offset_t *offset_ptr,
55 lldb::offset_t byte_size) {
56 if (byte_size == 0)
57 return std::nullopt;
58
59 llvm::SmallVector<uint64_t, 2> uint64_array;
60 lldb::offset_t bytes_left = byte_size;
61 uint64_t u64;
62 const lldb::ByteOrder byte_order = data.GetByteOrder();
63 if (byte_order == lldb::eByteOrderLittle) {
64 while (bytes_left > 0) {
65 if (bytes_left >= 8) {
66 u64 = data.GetU64(offset_ptr);
67 bytes_left -= 8;
68 } else {
69 u64 = data.GetMaxU64(offset_ptr, (uint32_t)bytes_left);
70 bytes_left = 0;
71 }
72 uint64_array.push_back(u64);
73 }
74 return llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
75 } else if (byte_order == lldb::eByteOrderBig) {
76 lldb::offset_t be_offset = *offset_ptr + byte_size;
77 lldb::offset_t temp_offset;
78 while (bytes_left > 0) {
79 if (bytes_left >= 8) {
80 be_offset -= 8;
81 temp_offset = be_offset;
82 u64 = data.GetU64(&temp_offset);
83 bytes_left -= 8;
84 } else {
85 be_offset -= bytes_left;
86 temp_offset = be_offset;
87 u64 = data.GetMaxU64(&temp_offset, (uint32_t)bytes_left);
88 bytes_left = 0;
89 }
90 uint64_array.push_back(u64);
91 }
92 *offset_ptr += byte_size;
93 return llvm::APInt(byte_size * 8, llvm::ArrayRef<uint64_t>(uint64_array));
94 }
95 return std::nullopt;
96}
97
99 lldb::offset_t offset, lldb::offset_t byte_size,
100 bool is_signed, unsigned radix) {
101 std::optional<llvm::APInt> apint = GetAPInt(data, &offset, byte_size);
102 if (apint) {
103 std::string apint_str = toString(*apint, radix, is_signed);
104 switch (radix) {
105 case 2:
106 s->Write("0b", 2);
107 break;
108 case 8:
109 s->Write("0", 1);
110 break;
111 case 10:
112 break;
113 }
114 s->Write(apint_str.c_str(), apint_str.size());
115 }
116 return offset;
117}
118
119/// Dumps decoded instructions to a stream.
121 ExecutionContextScope *exe_scope,
122 offset_t start_offset,
123 uint64_t base_addr,
124 size_t number_of_instructions) {
125 offset_t offset = start_offset;
126
127 TargetSP target_sp;
128 if (exe_scope)
129 target_sp = exe_scope->CalculateTarget();
130 if (target_sp) {
131 DisassemblerSP disassembler_sp(
132 Disassembler::FindPlugin(target_sp->GetArchitecture(),
133 target_sp->GetDisassemblyFlavor(), nullptr));
134 if (disassembler_sp) {
135 lldb::addr_t addr = base_addr + start_offset;
136 lldb_private::Address so_addr;
137 bool data_from_file = true;
138 if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr, so_addr)) {
139 data_from_file = false;
140 } else {
141 if (target_sp->GetSectionLoadList().IsEmpty() ||
142 !target_sp->GetImages().ResolveFileAddress(addr, so_addr))
143 so_addr.SetRawAddress(addr);
144 }
145
146 size_t bytes_consumed = disassembler_sp->DecodeInstructions(
147 so_addr, DE, start_offset, number_of_instructions, false,
148 data_from_file);
149
150 if (bytes_consumed) {
151 offset += bytes_consumed;
152 const bool show_address = base_addr != LLDB_INVALID_ADDRESS;
153 const bool show_bytes = true;
154 const bool show_control_flow_kind = true;
155 ExecutionContext exe_ctx;
156 exe_scope->CalculateExecutionContext(exe_ctx);
157 disassembler_sp->GetInstructionList().Dump(
158 s, show_address, show_bytes, show_control_flow_kind, &exe_ctx);
159 }
160 }
161 } else
162 s->Printf("invalid target");
163
164 return offset;
165}
166
167/// Prints the specific escape sequence of the given character to the stream.
168/// If the character doesn't have a known specific escape sequence (e.g., '\a',
169/// '\n' but not generic escape sequences such as'\x12'), this function will
170/// not modify the stream and return false.
171static bool TryDumpSpecialEscapedChar(Stream &s, const char c) {
172 switch (c) {
173 case '\033':
174 // Common non-standard escape code for 'escape'.
175 s.Printf("\\e");
176 return true;
177 case '\a':
178 s.Printf("\\a");
179 return true;
180 case '\b':
181 s.Printf("\\b");
182 return true;
183 case '\f':
184 s.Printf("\\f");
185 return true;
186 case '\n':
187 s.Printf("\\n");
188 return true;
189 case '\r':
190 s.Printf("\\r");
191 return true;
192 case '\t':
193 s.Printf("\\t");
194 return true;
195 case '\v':
196 s.Printf("\\v");
197 return true;
198 case '\0':
199 s.Printf("\\0");
200 return true;
201 default:
202 return false;
203 }
204}
205
206/// Dump the character to a stream. A character that is not printable will be
207/// represented by its escape sequence.
208static void DumpCharacter(Stream &s, const char c) {
210 return;
211 if (llvm::isPrint(c)) {
212 s.PutChar(c);
213 return;
214 }
215 s.Printf("\\x%2.2x", c);
216}
217
218/// Dump a floating point type.
219template <typename FloatT>
220void DumpFloatingPoint(std::ostringstream &ss, FloatT f) {
221 static_assert(std::is_floating_point<FloatT>::value,
222 "Only floating point types can be dumped.");
223 // NaN and Inf are potentially implementation defined and on Darwin it
224 // seems NaNs are printed without their sign. Manually implement dumping them
225 // here to avoid having to deal with platform differences.
226 if (std::isnan(f)) {
227 if (std::signbit(f))
228 ss << '-';
229 ss << "nan";
230 return;
231 }
232 if (std::isinf(f)) {
233 if (std::signbit(f))
234 ss << '-';
235 ss << "inf";
236 return;
237 }
238 ss << f;
239}
240
241static std::optional<MemoryTagMap>
242GetMemoryTags(lldb::addr_t addr, size_t length,
243 ExecutionContextScope *exe_scope) {
244 assert(addr != LLDB_INVALID_ADDRESS);
245
246 if (!exe_scope)
247 return std::nullopt;
248
249 TargetSP target_sp = exe_scope->CalculateTarget();
250 if (!target_sp)
251 return std::nullopt;
252
253 ProcessSP process_sp = target_sp->CalculateProcess();
254 if (!process_sp)
255 return std::nullopt;
256
257 llvm::Expected<const MemoryTagManager *> tag_manager_or_err =
258 process_sp->GetMemoryTagManager();
259 if (!tag_manager_or_err) {
260 llvm::consumeError(tag_manager_or_err.takeError());
261 return std::nullopt;
262 }
263
264 MemoryRegionInfos memory_regions;
265 // Don't check return status, list will be just empty if an error happened.
266 process_sp->GetMemoryRegions(memory_regions);
267
268 llvm::Expected<std::vector<MemoryTagManager::TagRange>> tagged_ranges_or_err =
269 (*tag_manager_or_err)
270 ->MakeTaggedRanges(addr, addr + length, memory_regions);
271 // Here we know that our range will not be inverted but we must still check
272 // for an error.
273 if (!tagged_ranges_or_err) {
274 llvm::consumeError(tagged_ranges_or_err.takeError());
275 return std::nullopt;
276 }
277 if (tagged_ranges_or_err->empty())
278 return std::nullopt;
279
280 MemoryTagMap memory_tag_map(*tag_manager_or_err);
281 for (const MemoryTagManager::TagRange &range : *tagged_ranges_or_err) {
282 llvm::Expected<std::vector<lldb::addr_t>> tags_or_err =
283 process_sp->ReadMemoryTags(range.GetRangeBase(), range.GetByteSize());
284
285 if (tags_or_err)
286 memory_tag_map.InsertTags(range.GetRangeBase(), *tags_or_err);
287 else
288 llvm::consumeError(tags_or_err.takeError());
289 }
290
291 if (memory_tag_map.Empty())
292 return std::nullopt;
293
294 return memory_tag_map;
295}
296
297static void printMemoryTags(const DataExtractor &DE, Stream *s,
298 lldb::addr_t addr, size_t len,
299 const std::optional<MemoryTagMap> &memory_tag_map) {
300 std::vector<std::optional<lldb::addr_t>> tags =
301 memory_tag_map->GetTags(addr, len);
302
303 // Only print if there is at least one tag for this line
304 if (tags.empty())
305 return;
306
307 s->Printf(" (tag%s:", tags.size() > 1 ? "s" : "");
308 // Some granules may not be tagged but print something for them
309 // so that the ordering remains intact.
310 for (auto tag : tags) {
311 if (tag)
312 s->Printf(" 0x%" PRIx64, *tag);
313 else
314 s->PutCString(" <no tag>");
315 }
316 s->PutCString(")");
317}
318
319static const llvm::fltSemantics &GetFloatSemantics(const TargetSP &target_sp,
320 size_t byte_size) {
321 if (target_sp) {
322 auto type_system_or_err =
323 target_sp->GetScratchTypeSystemForLanguage(eLanguageTypeC);
324 if (!type_system_or_err)
325 llvm::consumeError(type_system_or_err.takeError());
326 else if (auto ts = *type_system_or_err)
327 return ts->GetFloatTypeSemantics(byte_size);
328 }
329 // No target, just make a reasonable guess
330 switch(byte_size) {
331 case 2:
332 return llvm::APFloat::IEEEhalf();
333 case 4:
334 return llvm::APFloat::IEEEsingle();
335 case 8:
336 return llvm::APFloat::IEEEdouble();
337 }
338 return llvm::APFloat::Bogus();
339}
340
342 const DataExtractor &DE, Stream *s, offset_t start_offset,
343 lldb::Format item_format, size_t item_byte_size, size_t item_count,
344 size_t num_per_line, uint64_t base_addr,
345 uint32_t item_bit_size, // If zero, this is not a bitfield value, if
346 // non-zero, the value is a bitfield
347 uint32_t item_bit_offset, // If "item_bit_size" is non-zero, this is the
348 // shift amount to apply to a bitfield
349 ExecutionContextScope *exe_scope, bool show_memory_tags) {
350 if (s == nullptr)
351 return start_offset;
352
353 if (item_format == eFormatPointer) {
354 if (item_byte_size != 4 && item_byte_size != 8)
355 item_byte_size = s->GetAddressByteSize();
356 }
357
358 offset_t offset = start_offset;
359
360 std::optional<MemoryTagMap> memory_tag_map;
361 if (show_memory_tags && base_addr != LLDB_INVALID_ADDRESS)
362 memory_tag_map =
363 GetMemoryTags(base_addr, DE.GetByteSize() - offset, exe_scope);
364
365 if (item_format == eFormatInstruction)
366 return DumpInstructions(DE, s, exe_scope, start_offset, base_addr,
367 item_count);
368
369 if ((item_format == eFormatOSType || item_format == eFormatAddressInfo) &&
370 item_byte_size > 8)
371 item_format = eFormatHex;
372
373 lldb::offset_t line_start_offset = start_offset;
374 for (uint32_t count = 0; DE.ValidOffset(offset) && count < item_count;
375 ++count) {
376 // If we are at the beginning or end of a line
377 // Note that the last line is handled outside this for loop.
378 if ((count % num_per_line) == 0) {
379 // If we are at the end of a line
380 if (count > 0) {
381 if (item_format == eFormatBytesWithASCII &&
382 offset > line_start_offset) {
383 s->Printf("%*s",
384 static_cast<int>(
385 (num_per_line - (offset - line_start_offset)) * 3 + 2),
386 "");
387 DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1,
388 offset - line_start_offset, SIZE_MAX,
390 }
391
392 if (base_addr != LLDB_INVALID_ADDRESS && memory_tag_map) {
393 size_t line_len = offset - line_start_offset;
394 lldb::addr_t line_base =
395 base_addr +
396 (offset - start_offset - line_len) / DE.getTargetByteSize();
397 printMemoryTags(DE, s, line_base, line_len, memory_tag_map);
398 }
399
400 s->EOL();
401 }
402 if (base_addr != LLDB_INVALID_ADDRESS)
403 s->Printf("0x%8.8" PRIx64 ": ",
404 (uint64_t)(base_addr +
405 (offset - start_offset) / DE.getTargetByteSize()));
406
407 line_start_offset = offset;
408 } else if (item_format != eFormatChar &&
409 item_format != eFormatCharPrintable &&
410 item_format != eFormatCharArray && count > 0) {
411 s->PutChar(' ');
412 }
413
414 switch (item_format) {
415 case eFormatBoolean:
416 if (item_byte_size <= 8)
417 s->Printf("%s", DE.GetMaxU64Bitfield(&offset, item_byte_size,
418 item_bit_size, item_bit_offset)
419 ? "true"
420 : "false");
421 else {
422 s->Printf("error: unsupported byte size (%" PRIu64
423 ") for boolean format",
424 (uint64_t)item_byte_size);
425 return offset;
426 }
427 break;
428
429 case eFormatBinary:
430 if (item_byte_size <= 8) {
431 uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size,
432 item_bit_size, item_bit_offset);
433 // Avoid std::bitset<64>::to_string() since it is missing in earlier
434 // C++ libraries
435 std::string binary_value(64, '0');
436 std::bitset<64> bits(uval64);
437 for (uint32_t i = 0; i < 64; ++i)
438 if (bits[i])
439 binary_value[64 - 1 - i] = '1';
440 if (item_bit_size > 0)
441 s->Printf("0b%s", binary_value.c_str() + 64 - item_bit_size);
442 else if (item_byte_size > 0 && item_byte_size <= 8)
443 s->Printf("0b%s", binary_value.c_str() + 64 - item_byte_size * 8);
444 } else {
445 const bool is_signed = false;
446 const unsigned radix = 2;
447 offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
448 }
449 break;
450
451 case eFormatBytes:
453 for (uint32_t i = 0; i < item_byte_size; ++i) {
454 s->Printf("%2.2x", DE.GetU8(&offset));
455 }
456
457 // Put an extra space between the groups of bytes if more than one is
458 // being dumped in a group (item_byte_size is more than 1).
459 if (item_byte_size > 1)
460 s->PutChar(' ');
461 break;
462
463 case eFormatChar:
465 case eFormatCharArray: {
466 // Reject invalid item_byte_size.
467 if (item_byte_size > 8) {
468 s->Printf("error: unsupported byte size (%" PRIu64 ") for char format",
469 (uint64_t)item_byte_size);
470 return offset;
471 }
472
473 // If we are only printing one character surround it with single quotes
474 if (item_count == 1 && item_format == eFormatChar)
475 s->PutChar('\'');
476
477 const uint64_t ch = DE.GetMaxU64Bitfield(&offset, item_byte_size,
478 item_bit_size, item_bit_offset);
479 if (llvm::isPrint(ch))
480 s->Printf("%c", (char)ch);
481 else if (item_format != eFormatCharPrintable) {
482 if (!TryDumpSpecialEscapedChar(*s, ch)) {
483 if (item_byte_size == 1)
484 s->Printf("\\x%2.2x", (uint8_t)ch);
485 else
486 s->Printf("%" PRIu64, ch);
487 }
488 } else {
490 }
491
492 // If we are only printing one character surround it with single quotes
493 if (item_count == 1 && item_format == eFormatChar)
494 s->PutChar('\'');
495 } break;
496
497 case eFormatEnum: // Print enum value as a signed integer when we don't get
498 // the enum type
499 case eFormatDecimal:
500 if (item_byte_size <= 8)
501 s->Printf("%" PRId64,
502 DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size,
503 item_bit_offset));
504 else {
505 const bool is_signed = true;
506 const unsigned radix = 10;
507 offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
508 }
509 break;
510
511 case eFormatUnsigned:
512 if (item_byte_size <= 8)
513 s->Printf("%" PRIu64,
514 DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
515 item_bit_offset));
516 else {
517 const bool is_signed = false;
518 const unsigned radix = 10;
519 offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
520 }
521 break;
522
523 case eFormatOctal:
524 if (item_byte_size <= 8)
525 s->Printf("0%" PRIo64,
526 DE.GetMaxS64Bitfield(&offset, item_byte_size, item_bit_size,
527 item_bit_offset));
528 else {
529 const bool is_signed = false;
530 const unsigned radix = 8;
531 offset = DumpAPInt(s, DE, offset, item_byte_size, is_signed, radix);
532 }
533 break;
534
535 case eFormatOSType: {
536 uint64_t uval64 = DE.GetMaxU64Bitfield(&offset, item_byte_size,
537 item_bit_size, item_bit_offset);
538 s->PutChar('\'');
539 for (uint32_t i = 0; i < item_byte_size; ++i) {
540 uint8_t ch = (uint8_t)(uval64 >> ((item_byte_size - i - 1) * 8));
541 DumpCharacter(*s, ch);
542 }
543 s->PutChar('\'');
544 } break;
545
546 case eFormatCString: {
547 const char *cstr = DE.GetCStr(&offset);
548
549 if (!cstr) {
550 s->Printf("NULL");
551 offset = LLDB_INVALID_OFFSET;
552 } else {
553 s->PutChar('\"');
554
555 while (const char c = *cstr) {
556 DumpCharacter(*s, c);
557 ++cstr;
558 }
559
560 s->PutChar('\"');
561 }
562 } break;
563
564 case eFormatPointer:
566 DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
567 item_bit_offset),
568 sizeof(addr_t));
569 break;
570
572 size_t complex_int_byte_size = item_byte_size / 2;
573
574 if (complex_int_byte_size > 0 && complex_int_byte_size <= 8) {
575 s->Printf("%" PRIu64,
576 DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
577 s->Printf(" + %" PRIu64 "i",
578 DE.GetMaxU64Bitfield(&offset, complex_int_byte_size, 0, 0));
579 } else {
580 s->Printf("error: unsupported byte size (%" PRIu64
581 ") for complex integer format",
582 (uint64_t)item_byte_size);
583 return offset;
584 }
585 } break;
586
587 case eFormatComplex:
588 if (sizeof(float) * 2 == item_byte_size) {
589 float f32_1 = DE.GetFloat(&offset);
590 float f32_2 = DE.GetFloat(&offset);
591
592 s->Printf("%g + %gi", f32_1, f32_2);
593 break;
594 } else if (sizeof(double) * 2 == item_byte_size) {
595 double d64_1 = DE.GetDouble(&offset);
596 double d64_2 = DE.GetDouble(&offset);
597
598 s->Printf("%lg + %lgi", d64_1, d64_2);
599 break;
600 } else if (sizeof(long double) * 2 == item_byte_size) {
601 long double ld64_1 = DE.GetLongDouble(&offset);
602 long double ld64_2 = DE.GetLongDouble(&offset);
603 s->Printf("%Lg + %Lgi", ld64_1, ld64_2);
604 break;
605 } else {
606 s->Printf("error: unsupported byte size (%" PRIu64
607 ") for complex float format",
608 (uint64_t)item_byte_size);
609 return offset;
610 }
611 break;
612
613 default:
614 case eFormatDefault:
615 case eFormatHex:
616 case eFormatHexUppercase: {
617 bool wantsuppercase = (item_format == eFormatHexUppercase);
618 switch (item_byte_size) {
619 case 1:
620 case 2:
621 case 4:
622 case 8:
623 s->Printf(wantsuppercase ? "0x%*.*" PRIX64 : "0x%*.*" PRIx64,
624 (int)(2 * item_byte_size), (int)(2 * item_byte_size),
625 DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
626 item_bit_offset));
627 break;
628 default: {
629 assert(item_bit_size == 0 && item_bit_offset == 0);
630 const uint8_t *bytes =
631 (const uint8_t *)DE.GetData(&offset, item_byte_size);
632 if (bytes) {
633 s->PutCString("0x");
634 uint32_t idx;
635 if (DE.GetByteOrder() == eByteOrderBig) {
636 for (idx = 0; idx < item_byte_size; ++idx)
637 s->Printf(wantsuppercase ? "%2.2X" : "%2.2x", bytes[idx]);
638 } else {
639 for (idx = 0; idx < item_byte_size; ++idx)
640 s->Printf(wantsuppercase ? "%2.2X" : "%2.2x",
641 bytes[item_byte_size - 1 - idx]);
642 }
643 }
644 } break;
645 }
646 } break;
647
648 case eFormatFloat: {
649 TargetSP target_sp;
650 if (exe_scope)
651 target_sp = exe_scope->CalculateTarget();
652
653 std::optional<unsigned> format_max_padding;
654 if (target_sp)
655 format_max_padding = target_sp->GetMaxZeroPaddingInFloatFormat();
656
657 // Show full precision when printing float values
658 const unsigned format_precision = 0;
659
660 const llvm::fltSemantics &semantics =
661 GetFloatSemantics(target_sp, item_byte_size);
662
663 // Recalculate the byte size in case of a difference. This is possible
664 // when item_byte_size is 16 (128-bit), because you could get back the
665 // x87DoubleExtended semantics which has a byte size of 10 (80-bit).
666 const size_t semantics_byte_size =
667 (llvm::APFloat::getSizeInBits(semantics) + 7) / 8;
668 std::optional<llvm::APInt> apint =
669 GetAPInt(DE, &offset, semantics_byte_size);
670 if (apint) {
671 llvm::APFloat apfloat(semantics, *apint);
672 llvm::SmallVector<char, 256> sv;
673 if (format_max_padding)
674 apfloat.toString(sv, format_precision, *format_max_padding);
675 else
676 apfloat.toString(sv, format_precision);
677 s->AsRawOstream() << sv;
678 } else {
679 s->Format("error: unsupported byte size ({0}) for float format",
680 item_byte_size);
681 return offset;
682 }
683 } break;
684
685 case eFormatUnicode16:
686 s->Printf("U+%4.4x", DE.GetU16(&offset));
687 break;
688
689 case eFormatUnicode32:
690 s->Printf("U+0x%8.8x", DE.GetU32(&offset));
691 break;
692
693 case eFormatAddressInfo: {
694 addr_t addr = DE.GetMaxU64Bitfield(&offset, item_byte_size, item_bit_size,
695 item_bit_offset);
696 s->Printf("0x%*.*" PRIx64, (int)(2 * item_byte_size),
697 (int)(2 * item_byte_size), addr);
698 if (exe_scope) {
699 TargetSP target_sp(exe_scope->CalculateTarget());
700 lldb_private::Address so_addr;
701 if (target_sp) {
702 if (target_sp->GetSectionLoadList().ResolveLoadAddress(addr,
703 so_addr)) {
704 s->PutChar(' ');
705 so_addr.Dump(s, exe_scope, Address::DumpStyleResolvedDescription,
707 } else {
708 so_addr.SetOffset(addr);
709 so_addr.Dump(s, exe_scope,
711 if (ProcessSP process_sp = exe_scope->CalculateProcess()) {
712 if (ABISP abi_sp = process_sp->GetABI()) {
713 addr_t addr_fixed = abi_sp->FixCodeAddress(addr);
714 if (target_sp->GetSectionLoadList().ResolveLoadAddress(
715 addr_fixed, so_addr)) {
716 s->PutChar(' ');
717 s->Printf("(0x%*.*" PRIx64 ")", (int)(2 * item_byte_size),
718 (int)(2 * item_byte_size), addr_fixed);
719 s->PutChar(' ');
720 so_addr.Dump(s, exe_scope,
723 }
724 }
725 }
726 }
727 }
728 }
729 } break;
730
731 case eFormatHexFloat:
732 if (sizeof(float) == item_byte_size) {
733 char float_cstr[256];
734 llvm::APFloat ap_float(DE.GetFloat(&offset));
735 ap_float.convertToHexString(float_cstr, 0, false,
736 llvm::APFloat::rmNearestTiesToEven);
737 s->Printf("%s", float_cstr);
738 break;
739 } else if (sizeof(double) == item_byte_size) {
740 char float_cstr[256];
741 llvm::APFloat ap_float(DE.GetDouble(&offset));
742 ap_float.convertToHexString(float_cstr, 0, false,
743 llvm::APFloat::rmNearestTiesToEven);
744 s->Printf("%s", float_cstr);
745 break;
746 } else {
747 s->Printf("error: unsupported byte size (%" PRIu64
748 ") for hex float format",
749 (uint64_t)item_byte_size);
750 return offset;
751 }
752 break;
753
754 // please keep the single-item formats below in sync with
755 // FormatManager::GetSingleItemFormat if you fail to do so, users will
756 // start getting different outputs depending on internal implementation
757 // details they should not care about ||
758 case eFormatVectorOfChar: // ||
759 s->PutChar('{'); // \/
760 offset =
761 DumpDataExtractor(DE, s, offset, eFormatCharArray, 1, item_byte_size,
762 item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
763 s->PutChar('}');
764 break;
765
767 s->PutChar('{');
768 offset =
769 DumpDataExtractor(DE, s, offset, eFormatDecimal, 1, item_byte_size,
770 item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
771 s->PutChar('}');
772 break;
773
775 s->PutChar('{');
776 offset = DumpDataExtractor(DE, s, offset, eFormatHex, 1, item_byte_size,
777 item_byte_size, LLDB_INVALID_ADDRESS, 0, 0);
778 s->PutChar('}');
779 break;
780
782 s->PutChar('{');
783 offset = DumpDataExtractor(
784 DE, s, offset, eFormatDecimal, sizeof(uint16_t),
785 item_byte_size / sizeof(uint16_t), item_byte_size / sizeof(uint16_t),
787 s->PutChar('}');
788 break;
789
791 s->PutChar('{');
792 offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint16_t),
793 item_byte_size / sizeof(uint16_t),
794 item_byte_size / sizeof(uint16_t),
796 s->PutChar('}');
797 break;
798
800 s->PutChar('{');
801 offset = DumpDataExtractor(
802 DE, s, offset, eFormatDecimal, sizeof(uint32_t),
803 item_byte_size / sizeof(uint32_t), item_byte_size / sizeof(uint32_t),
805 s->PutChar('}');
806 break;
807
809 s->PutChar('{');
810 offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint32_t),
811 item_byte_size / sizeof(uint32_t),
812 item_byte_size / sizeof(uint32_t),
814 s->PutChar('}');
815 break;
816
818 s->PutChar('{');
819 offset = DumpDataExtractor(
820 DE, s, offset, eFormatDecimal, sizeof(uint64_t),
821 item_byte_size / sizeof(uint64_t), item_byte_size / sizeof(uint64_t),
823 s->PutChar('}');
824 break;
825
827 s->PutChar('{');
828 offset = DumpDataExtractor(DE, s, offset, eFormatHex, sizeof(uint64_t),
829 item_byte_size / sizeof(uint64_t),
830 item_byte_size / sizeof(uint64_t),
832 s->PutChar('}');
833 break;
834
836 s->PutChar('{');
837 offset =
838 DumpDataExtractor(DE, s, offset, eFormatFloat, 2, item_byte_size / 2,
839 item_byte_size / 2, LLDB_INVALID_ADDRESS, 0, 0);
840 s->PutChar('}');
841 break;
842
844 s->PutChar('{');
845 offset =
846 DumpDataExtractor(DE, s, offset, eFormatFloat, 4, item_byte_size / 4,
847 item_byte_size / 4, LLDB_INVALID_ADDRESS, 0, 0);
848 s->PutChar('}');
849 break;
850
852 s->PutChar('{');
853 offset =
854 DumpDataExtractor(DE, s, offset, eFormatFloat, 8, item_byte_size / 8,
855 item_byte_size / 8, LLDB_INVALID_ADDRESS, 0, 0);
856 s->PutChar('}');
857 break;
858
860 s->PutChar('{');
861 offset =
862 DumpDataExtractor(DE, s, offset, eFormatHex, 16, item_byte_size / 16,
863 item_byte_size / 16, LLDB_INVALID_ADDRESS, 0, 0);
864 s->PutChar('}');
865 break;
866 }
867 }
868
869 // If anything was printed we want to catch the end of the last line.
870 // Since we will exit the for loop above before we get a chance to append to
871 // it normally.
872 if (offset > line_start_offset) {
873 if (item_format == eFormatBytesWithASCII) {
874 s->Printf("%*s",
875 static_cast<int>(
876 (num_per_line - (offset - line_start_offset)) * 3 + 2),
877 "");
878 DumpDataExtractor(DE, s, line_start_offset, eFormatCharPrintable, 1,
879 offset - line_start_offset, SIZE_MAX,
881 }
882
883 if (base_addr != LLDB_INVALID_ADDRESS && memory_tag_map) {
884 size_t line_len = offset - line_start_offset;
885 lldb::addr_t line_base = base_addr + (offset - start_offset - line_len) /
887 printMemoryTags(DE, s, line_base, line_len, memory_tag_map);
888 }
889 }
890
891 return offset; // Return the offset at which we ended up
892}
893
894void lldb_private::DumpHexBytes(Stream *s, const void *src, size_t src_len,
895 uint32_t bytes_per_line,
896 lldb::addr_t base_addr) {
897 DataExtractor data(src, src_len, lldb::eByteOrderLittle, 4);
898 DumpDataExtractor(data, s,
899 0, // Offset into "src"
900 lldb::eFormatBytes, // Dump as hex bytes
901 1, // Size of each item is 1 for single bytes
902 src_len, // Number of bytes
903 bytes_per_line, // Num bytes per line
904 base_addr, // Base address
905 0, 0); // Bitfield info
906}
static lldb::offset_t DumpAPInt(Stream *s, const DataExtractor &data, lldb::offset_t offset, lldb::offset_t byte_size, bool is_signed, unsigned radix)
static void DumpCharacter(Stream &s, const char c)
Dump the character to a stream.
void DumpFloatingPoint(std::ostringstream &ss, FloatT f)
Dump a floating point type.
static std::optional< MemoryTagMap > GetMemoryTags(lldb::addr_t addr, size_t length, ExecutionContextScope *exe_scope)
static std::optional< llvm::APInt > GetAPInt(const DataExtractor &data, lldb::offset_t *offset_ptr, lldb::offset_t byte_size)
static void printMemoryTags(const DataExtractor &DE, Stream *s, lldb::addr_t addr, size_t len, const std::optional< MemoryTagMap > &memory_tag_map)
static lldb::offset_t DumpInstructions(const DataExtractor &DE, Stream *s, ExecutionContextScope *exe_scope, offset_t start_offset, uint64_t base_addr, size_t number_of_instructions)
Dumps decoded instructions to a stream.
static const llvm::fltSemantics & GetFloatSemantics(const TargetSP &target_sp, size_t byte_size)
#define NON_PRINTABLE_CHAR
static bool TryDumpSpecialEscapedChar(Stream &s, const char c)
Prints the specific escape sequence of the given character to the stream.
A section + offset based address class.
Definition: Address.h:59
void SetRawAddress(lldb::addr_t addr)
Definition: Address.h:444
@ DumpStyleModuleWithFileAddress
Display as the file address with the module name prepended (if any).
Definition: Address.h:90
@ DumpStyleResolvedDescription
Display the details about what an address resolves to.
Definition: Address.h:101
@ DumpStyleResolvedPointerDescription
Dereference a pointer at the current address and then lookup the dereferenced address using DumpStyle...
Definition: Address.h:112
bool Dump(Stream *s, ExecutionContextScope *exe_scope, DumpStyle style, DumpStyle fallback_style=DumpStyleInvalid, uint32_t addr_byte_size=UINT32_MAX, bool all_ranges=false) const
Dump a description of this object to a Stream.
Definition: Address.cpp:406
bool SetOffset(lldb::addr_t offset)
Set accessor for the offset.
Definition: Address.h:438
An data extractor class.
Definition: DataExtractor.h:48
float GetFloat(lldb::offset_t *offset_ptr) const
Extract a float from *offset_ptr.
const char * GetCStr(lldb::offset_t *offset_ptr) const
Extract a C string from *offset_ptr.
uint64_t GetU64(lldb::offset_t *offset_ptr) const
Extract a uint64_t value from *offset_ptr.
long double GetLongDouble(lldb::offset_t *offset_ptr) const
const void * GetData(lldb::offset_t *offset_ptr, lldb::offset_t length) const
Extract length bytes from *offset_ptr.
uint32_t getTargetByteSize() const
uint32_t GetU32(lldb::offset_t *offset_ptr) const
Extract a uint32_t value from *offset_ptr.
uint64_t GetByteSize() const
Get the number of bytes contained in this object.
uint16_t GetU16(lldb::offset_t *offset_ptr) const
Extract a uint16_t value from *offset_ptr.
uint64_t GetMaxU64Bitfield(lldb::offset_t *offset_ptr, size_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const
Extract an unsigned integer of size byte_size from *offset_ptr, then extract the bitfield from this v...
bool ValidOffset(lldb::offset_t offset) const
Test the validity of offset.
uint64_t GetMaxU64(lldb::offset_t *offset_ptr, size_t byte_size) const
Extract an unsigned integer of size byte_size from *offset_ptr.
int64_t GetMaxS64Bitfield(lldb::offset_t *offset_ptr, size_t size, uint32_t bitfield_bit_size, uint32_t bitfield_bit_offset) const
Extract an signed integer of size size from *offset_ptr, then extract and sign-extend the bitfield fr...
lldb::ByteOrder GetByteOrder() const
Get the current byte order value.
double GetDouble(lldb::offset_t *offset_ptr) const
uint8_t GetU8(lldb::offset_t *offset_ptr) const
Extract a uint8_t value from *offset_ptr.
static lldb::DisassemblerSP FindPlugin(const ArchSpec &arch, const char *flavor, const char *plugin_name)
"lldb/Target/ExecutionContextScope.h" Inherit from this if your object can reconstruct its execution ...
virtual void CalculateExecutionContext(ExecutionContext &exe_ctx)=0
Reconstruct the object's execution context into sc.
virtual lldb::ProcessSP CalculateProcess()=0
virtual lldb::TargetSP CalculateTarget()=0
"lldb/Target/ExecutionContext.h" A class that contains an execution context.
MemoryTagMap provides a way to give a sparse read result when reading memory tags for a range.
Definition: MemoryTagMap.h:23
void InsertTags(lldb::addr_t addr, const std::vector< lldb::addr_t > tags)
Insert tags into the map starting from addr.
A stream class that can stream formatted output to a file.
Definition: Stream.h:28
void Format(const char *format, Args &&... args)
Definition: Stream.h:309
uint32_t GetAddressByteSize() const
Get the address size in bytes.
Definition: Stream.cpp:179
size_t Write(const void *src, size_t src_len)
Output character bytes to the stream.
Definition: Stream.h:101
llvm::raw_ostream & AsRawOstream()
Returns a raw_ostream that forwards the data to this Stream object.
Definition: Stream.h:357
size_t Printf(const char *format,...) __attribute__((format(printf
Output printf formatted output to the stream.
Definition: Stream.cpp:107
size_t PutCString(llvm::StringRef cstr)
Output a C string to the stream.
Definition: Stream.cpp:63
size_t PutChar(char ch)
Definition: Stream.cpp:104
size_t EOL()
Output and End of Line character to the stream.
Definition: Stream.cpp:128
#define LLDB_INVALID_ADDRESS
Definition: lldb-defines.h:74
#define LLDB_INVALID_OFFSET
Definition: lldb-defines.h:85
A class that represents a running process on the host machine.
void DumpHexBytes(Stream *s, const void *src, size_t src_len, uint32_t bytes_per_line, lldb::addr_t base_addr)
void DumpAddress(llvm::raw_ostream &s, uint64_t addr, uint32_t addr_size, const char *prefix=nullptr, const char *suffix=nullptr)
Output an address value to this stream.
Definition: Stream.cpp:81
lldb::offset_t DumpDataExtractor(const DataExtractor &DE, Stream *s, lldb::offset_t offset, lldb::Format item_format, size_t item_byte_size, size_t item_count, size_t num_per_line, uint64_t base_addr, uint32_t item_bit_size, uint32_t item_bit_offset, ExecutionContextScope *exe_scope=nullptr, bool show_memory_tags=false)
Dumps item_count objects into the stream s.
const char * toString(AppleArm64ExceptionClass EC)
static uint32_t bits(const uint32_t val, const uint32_t msbit, const uint32_t lsbit)
Definition: ARMUtils.h:265
Definition: SBAddress.h:15
Format
Display format definitions.
@ eFormatCString
NULL terminated C strings.
@ eFormatCharArray
Print characters with no single quotes, used for character arrays that can contain non printable char...
@ eFormatInstruction
Disassemble an opcode.
@ eFormatVectorOfChar
@ eFormatVectorOfUInt64
@ eFormatVectorOfFloat16
@ eFormatVectorOfSInt64
@ eFormatComplex
Floating point complex type.
@ eFormatHexFloat
ISO C99 hex float string.
@ eFormatBytesWithASCII
@ eFormatOSType
OS character codes encoded into an integer 'PICT' 'text' etc...
@ eFormatUnicode16
@ eFormatAddressInfo
Describe what an address points to (func + offset.
@ eFormatVectorOfUInt128
@ eFormatVectorOfUInt8
@ eFormatVectorOfFloat32
@ eFormatVectorOfSInt32
@ eFormatUnicode32
@ eFormatVectorOfSInt8
@ eFormatVectorOfUInt16
@ eFormatHexUppercase
@ eFormatVectorOfFloat64
@ eFormatCharPrintable
Only printable characters, '.' if not printable.
@ eFormatComplexInteger
Integer complex type.
@ eFormatVectorOfSInt16
@ eFormatVectorOfUInt32
uint64_t offset_t
Definition: lldb-types.h:87
@ eLanguageTypeC
Non-standardized C, such as K&R.
ByteOrder
Byte ordering definitions.
@ eByteOrderLittle
uint64_t addr_t
Definition: lldb-types.h:83