LLDB mainline
ASTResultSynthesizer.cpp
Go to the documentation of this file.
1//===-- ASTResultSynthesizer.cpp ------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10
11#include "ClangASTImporter.h"
13
15#include "lldb/Target/Target.h"
18#include "lldb/Utility/Log.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/Decl.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclGroup.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/Stmt.h"
26#include "clang/Parse/Parser.h"
27#include "clang/Sema/SemaDiagnostic.h"
28#include "llvm/Support/Casting.h"
29#include "llvm/Support/raw_ostream.h"
30#include <cstdlib>
31
32using namespace llvm;
33using namespace clang;
34using namespace lldb_private;
35
37 bool top_level, Target &target)
38 : m_ast_context(nullptr), m_passthrough(passthrough),
39 m_passthrough_sema(nullptr), m_target(target), m_sema(nullptr),
40 m_top_level(top_level) {
41 if (!m_passthrough)
42 return;
43
44 m_passthrough_sema = dyn_cast<SemaConsumer>(passthrough);
45}
46
48
49void ASTResultSynthesizer::Initialize(ASTContext &Context) {
50 m_ast_context = &Context;
51
52 if (m_passthrough)
53 m_passthrough->Initialize(Context);
54}
55
58
59 if (NamedDecl *named_decl = dyn_cast<NamedDecl>(D)) {
60 if (log && log->GetVerbose()) {
61 if (named_decl->getIdentifier())
62 LLDB_LOGF(log, "TransformTopLevelDecl(%s)",
63 named_decl->getIdentifier()->getNameStart());
64 else if (ObjCMethodDecl *method_decl = dyn_cast<ObjCMethodDecl>(D))
65 LLDB_LOGF(log, "TransformTopLevelDecl(%s)",
66 method_decl->getSelector().getAsString().c_str());
67 else
68 LLDB_LOGF(log, "TransformTopLevelDecl(<complex>)");
69 }
70
71 if (m_top_level) {
72 RecordPersistentDecl(named_decl);
73 }
74 }
75
76 if (LinkageSpecDecl *linkage_spec_decl = dyn_cast<LinkageSpecDecl>(D)) {
77 RecordDecl::decl_iterator decl_iterator;
78
79 for (decl_iterator = linkage_spec_decl->decls_begin();
80 decl_iterator != linkage_spec_decl->decls_end(); ++decl_iterator) {
81 TransformTopLevelDecl(*decl_iterator);
82 }
83 } else if (!m_top_level) {
84 if (ObjCMethodDecl *method_decl = dyn_cast<ObjCMethodDecl>(D)) {
85 if (m_ast_context &&
86 !method_decl->getSelector().getAsString().compare("$__lldb_expr:")) {
87 RecordPersistentTypes(method_decl);
88 SynthesizeObjCMethodResult(method_decl);
89 }
90 } else if (FunctionDecl *function_decl = dyn_cast<FunctionDecl>(D)) {
91 // When completing user input the body of the function may be a nullptr.
92 if (m_ast_context && function_decl->hasBody() &&
93 !function_decl->getNameInfo().getAsString().compare("$__lldb_expr")) {
94 RecordPersistentTypes(function_decl);
95 SynthesizeFunctionResult(function_decl);
96 }
97 }
98 }
99}
100
102 DeclGroupRef::iterator decl_iterator;
103
104 for (decl_iterator = D.begin(); decl_iterator != D.end(); ++decl_iterator) {
105 Decl *decl = *decl_iterator;
106
108 }
109
110 if (m_passthrough)
111 return m_passthrough->HandleTopLevelDecl(D);
112 return true;
113}
114
117
118 if (!m_sema)
119 return false;
120
121 FunctionDecl *function_decl = FunDecl;
122
123 if (!function_decl)
124 return false;
125
126 if (log && log->GetVerbose()) {
127 std::string s;
128 raw_string_ostream os(s);
129
130 function_decl->print(os);
131
132 LLDB_LOGF(log, "Untransformed function AST:\n%s", s.c_str());
133 }
134
135 Stmt *function_body = function_decl->getBody();
136 CompoundStmt *compound_stmt = dyn_cast<CompoundStmt>(function_body);
137
138 bool ret = SynthesizeBodyResult(compound_stmt, function_decl);
139
140 if (log && log->GetVerbose()) {
141 std::string s;
142 raw_string_ostream os(s);
143
144 function_decl->print(os);
145
146 LLDB_LOGF(log, "Transformed function AST:\n%s", s.c_str());
147 }
148
149 return ret;
150}
151
153 ObjCMethodDecl *MethodDecl) {
155
156 if (!m_sema)
157 return false;
158
159 if (!MethodDecl)
160 return false;
161
162 if (log && log->GetVerbose()) {
163 std::string s;
164 raw_string_ostream os(s);
165
166 MethodDecl->print(os);
167
168 LLDB_LOGF(log, "Untransformed method AST:\n%s", s.c_str());
169 }
170
171 Stmt *method_body = MethodDecl->getBody();
172
173 if (!method_body)
174 return false;
175
176 CompoundStmt *compound_stmt = dyn_cast<CompoundStmt>(method_body);
177
178 bool ret = SynthesizeBodyResult(compound_stmt, MethodDecl);
179
180 if (log && log->GetVerbose()) {
181 std::string s;
182 raw_string_ostream os(s);
183
184 MethodDecl->print(os);
185
186 LLDB_LOGF(log, "Transformed method AST:\n%s", s.c_str());
187 }
188
189 return ret;
190}
191
192/// Returns true if LLDB can take the address of the given lvalue for the sake
193/// of capturing the expression result. Returns false if LLDB should instead
194/// store the expression result in a result variable.
195static bool CanTakeAddressOfLValue(const Expr *lvalue_expr) {
196 assert(lvalue_expr->getValueKind() == VK_LValue &&
197 "lvalue_expr not a lvalue");
198
199 QualType qt = lvalue_expr->getType();
200 // If the lvalue has const-qualified non-volatile integral or enum type, then
201 // the underlying value might come from a const static data member as
202 // described in C++11 [class.static.data]p3. If that's the case, then the
203 // value might not have an address if the user didn't also define the member
204 // in a namespace scope. Taking the address would cause that LLDB later fails
205 // to link the expression, so those lvalues should be stored in a result
206 // variable.
207 if (qt->isIntegralOrEnumerationType() && qt.isConstQualified() &&
208 !qt.isVolatileQualified())
209 return false;
210 return true;
211}
212
214 DeclContext *DC) {
216
217 ASTContext &Ctx(*m_ast_context);
218
219 if (!Body)
220 return false;
221
222 if (Body->body_empty())
223 return false;
224
225 Stmt **last_stmt_ptr = Body->body_end() - 1;
226 Stmt *last_stmt = *last_stmt_ptr;
227
228 while (isa<NullStmt>(last_stmt)) {
229 if (last_stmt_ptr != Body->body_begin()) {
230 last_stmt_ptr--;
231 last_stmt = *last_stmt_ptr;
232 } else {
233 return false;
234 }
235 }
236
237 Expr *last_expr = dyn_cast<Expr>(last_stmt);
238
239 if (!last_expr)
240 // No auxiliary variable necessary; expression returns void
241 return true;
242
243 // In C++11, last_expr can be a LValueToRvalue implicit cast. Strip that off
244 // if that's the case.
245
246 do {
247 ImplicitCastExpr *implicit_cast = dyn_cast<ImplicitCastExpr>(last_expr);
248
249 if (!implicit_cast)
250 break;
251
252 if (implicit_cast->getCastKind() != CK_LValueToRValue)
253 break;
254
255 last_expr = implicit_cast->getSubExpr();
256 } while (false);
257
258 // is_lvalue is used to record whether the expression returns an assignable
259 // Lvalue or an Rvalue. This is relevant because they are handled
260 // differently.
261 //
262 // For Lvalues
263 //
264 // - In AST result synthesis (here!) the expression E is transformed into an
265 // initialization T *$__lldb_expr_result_ptr = &E.
266 //
267 // - In structure allocation, a pointer-sized slot is allocated in the
268 // struct that is to be passed into the expression.
269 //
270 // - In IR transformations, reads and writes to $__lldb_expr_result_ptr are
271 // redirected at an entry in the struct ($__lldb_arg) passed into the
272 // expression. (Other persistent variables are treated similarly, having
273 // been materialized as references, but in those cases the value of the
274 // reference itself is never modified.)
275 //
276 // - During materialization, $0 (the result persistent variable) is ignored.
277 //
278 // - During dematerialization, $0 is marked up as a load address with value
279 // equal to the contents of the structure entry.
280 //
281 // - Note: if we cannot take an address of the resulting Lvalue (e.g. it's
282 // a static const member without an out-of-class definition), then we
283 // follow the Rvalue route.
284 //
285 // For Rvalues
286 //
287 // - In AST result synthesis the expression E is transformed into an
288 // initialization static T $__lldb_expr_result = E.
289 //
290 // - In structure allocation, a pointer-sized slot is allocated in the
291 // struct that is to be passed into the expression.
292 //
293 // - In IR transformations, an instruction is inserted at the beginning of
294 // the function to dereference the pointer resident in the slot. Reads and
295 // writes to $__lldb_expr_result are redirected at that dereferenced
296 // version. Guard variables for the static variable are excised.
297 //
298 // - During materialization, $0 (the result persistent variable) is
299 // populated with the location of a newly-allocated area of memory.
300 //
301 // - During dematerialization, $0 is ignored.
302
303 bool is_lvalue = last_expr->getValueKind() == VK_LValue &&
304 last_expr->getObjectKind() == OK_Ordinary;
305
306 QualType expr_qual_type = last_expr->getType();
307 const clang::Type *expr_type = expr_qual_type.getTypePtr();
308
309 if (!expr_type)
310 return false;
311
312 if (expr_type->isVoidType())
313 return true;
314
315 if (log) {
316 std::string s = expr_qual_type.getAsString();
317
318 LLDB_LOGF(log, "Last statement is an %s with type: %s",
319 (is_lvalue ? "lvalue" : "rvalue"), s.c_str());
320 }
321
322 clang::VarDecl *result_decl = nullptr;
323
324 if (is_lvalue && CanTakeAddressOfLValue(last_expr)) {
325 IdentifierInfo *result_ptr_id;
326
327 if (expr_type->isFunctionType())
328 result_ptr_id =
329 &Ctx.Idents.get("$__lldb_expr_result"); // functions actually should
330 // be treated like function
331 // pointers
332 else
333 result_ptr_id = &Ctx.Idents.get("$__lldb_expr_result_ptr");
334
335 m_sema->RequireCompleteType(last_expr->getSourceRange().getBegin(),
336 expr_qual_type,
337 clang::diag::err_incomplete_type);
338
339 QualType ptr_qual_type;
340
341 if (expr_qual_type->getAs<ObjCObjectType>() != nullptr)
342 ptr_qual_type = Ctx.getObjCObjectPointerType(expr_qual_type);
343 else
344 ptr_qual_type = Ctx.getPointerType(expr_qual_type);
345
346 result_decl =
347 VarDecl::Create(Ctx, DC, SourceLocation(), SourceLocation(),
348 result_ptr_id, ptr_qual_type, nullptr, SC_Static);
349
350 if (!result_decl)
351 return false;
352
353 ExprResult address_of_expr =
354 m_sema->CreateBuiltinUnaryOp(SourceLocation(), UO_AddrOf, last_expr);
355 if (address_of_expr.get())
356 m_sema->AddInitializerToDecl(result_decl, address_of_expr.get(), true);
357 else
358 return false;
359 } else {
360 IdentifierInfo &result_id = Ctx.Idents.get("$__lldb_expr_result");
361
362 result_decl =
363 VarDecl::Create(Ctx, DC, SourceLocation(), SourceLocation(), &result_id,
364 expr_qual_type, nullptr, SC_Static);
365
366 if (!result_decl)
367 return false;
368
369 m_sema->AddInitializerToDecl(result_decl, last_expr, true);
370 }
371
372 DC->addDecl(result_decl);
373
374 ///////////////////////////////
375 // call AddInitializerToDecl
376 //
377
378 // m_sema->AddInitializerToDecl(result_decl, last_expr);
379
380 /////////////////////////////////
381 // call ConvertDeclToDeclGroup
382 //
383
384 Sema::DeclGroupPtrTy result_decl_group_ptr;
385
386 result_decl_group_ptr = m_sema->ConvertDeclToDeclGroup(result_decl);
387
388 ////////////////////////
389 // call ActOnDeclStmt
390 //
391
392 StmtResult result_initialization_stmt_result(m_sema->ActOnDeclStmt(
393 result_decl_group_ptr, SourceLocation(), SourceLocation()));
394
395 ////////////////////////////////////////////////
396 // replace the old statement with the new one
397 //
398
399 *last_stmt_ptr = static_cast<Stmt *>(result_initialization_stmt_result.get());
400
401 return true;
402}
403
405 if (m_passthrough)
406 m_passthrough->HandleTranslationUnit(Ctx);
407}
408
409void ASTResultSynthesizer::RecordPersistentTypes(DeclContext *FunDeclCtx) {
410 typedef DeclContext::specific_decl_iterator<TypeDecl> TypeDeclIterator;
411
412 for (TypeDeclIterator i = TypeDeclIterator(FunDeclCtx->decls_begin()),
413 e = TypeDeclIterator(FunDeclCtx->decls_end());
414 i != e; ++i) {
416 }
417}
418
420 if (!D->getIdentifier())
421 return;
422
423 StringRef name = D->getName();
424 if (name.empty() || name.front() != '$')
425 return;
426
427 LLDB_LOG(GetLog(LLDBLog::Expressions), "Recording persistent type {0}", name);
428
429 m_decls.push_back(D);
430}
431
434
435 if (!D->getIdentifier())
436 return;
437
438 StringRef name = D->getName();
439 if (name.empty())
440 return;
441
442 LLDB_LOG(GetLog(LLDBLog::Expressions), "Recording persistent decl {0}", name);
443
444 m_decls.push_back(D);
445}
446
448 auto *state =
450 if (!state)
451 return;
452
453 auto *persistent_vars = llvm::cast<ClangPersistentVariables>(state);
454
456 m_target, m_ast_context->getLangOpts());
457
458 for (clang::NamedDecl *decl : m_decls) {
459 StringRef name = decl->getName();
460
461 Decl *D_scratch = persistent_vars->GetClangASTImporter()->DeportDecl(
462 &scratch_ts_sp->getASTContext(), decl);
463
464 if (!D_scratch) {
466
467 if (log) {
468 std::string s;
469 llvm::raw_string_ostream ss(s);
470 decl->dump(ss);
471
472 LLDB_LOGF(log, "Couldn't commit persistent decl: %s\n", s.c_str());
473 }
474
475 continue;
476 }
477
478 if (NamedDecl *NamedDecl_scratch = dyn_cast<NamedDecl>(D_scratch))
479 persistent_vars->RegisterPersistentDecl(ConstString(name),
480 NamedDecl_scratch, scratch_ts_sp);
481 }
482}
483
485 if (m_passthrough)
486 m_passthrough->HandleTagDeclDefinition(D);
487}
488
490 if (m_passthrough)
491 m_passthrough->CompleteTentativeDefinition(D);
492}
493
494void ASTResultSynthesizer::HandleVTable(CXXRecordDecl *RD) {
495 if (m_passthrough)
496 m_passthrough->HandleVTable(RD);
497}
498
500 if (m_passthrough)
501 m_passthrough->PrintStats();
502}
503
505 m_sema = &S;
506
508 m_passthrough_sema->InitializeSema(S);
509}
510
512 m_sema = nullptr;
513
515 m_passthrough_sema->ForgetSema();
516}
static bool CanTakeAddressOfLValue(const Expr *lvalue_expr)
Returns true if LLDB can take the address of the given lvalue for the sake of capturing the expressio...
#define lldbassert(x)
Definition: LLDBAssert.h:15
#define LLDB_LOG(log,...)
The LLDB_LOG* macros defined below are the way to emit log messages.
Definition: Log.h:369
#define LLDB_LOGF(log,...)
Definition: Log.h:376
clang::ASTContext * m_ast_context
The AST context to use for identifiers and types.
clang::ASTConsumer * m_passthrough
The ASTConsumer down the chain, for passthrough.
clang::SemaConsumer * m_passthrough_sema
The SemaConsumer down the chain, for passthrough.
void CommitPersistentDecls()
The parse has succeeded, so record its persistent decls.
void RecordPersistentTypes(clang::DeclContext *FunDeclCtx)
Given a DeclContext for a function or method, find all types declared in the context and record any p...
void RecordPersistentDecl(clang::NamedDecl *D)
Given a NamedDecl, register it as a pointer type in the target's scratch AST context.
bool SynthesizeBodyResult(clang::CompoundStmt *Body, clang::DeclContext *DC)
Process a function body and produce the result variable and initialization.
bool SynthesizeFunctionResult(clang::FunctionDecl *FunDecl)
Process a function and produce the result variable and initialization.
Target & m_target
The target, which contains the persistent variable store and the.
~ASTResultSynthesizer() override
Destructor.
ASTResultSynthesizer(clang::ASTConsumer *passthrough, bool top_level, Target &target)
Constructor.
void HandleTagDeclDefinition(clang::TagDecl *D) override
Passthrough stub.
void InitializeSema(clang::Sema &S) override
Set the Sema object to use when performing transforms, and pass it on.
void TransformTopLevelDecl(clang::Decl *D)
Hunt the given Decl for FunctionDecls named $__lldb_expr, recursing as necessary through LinkageSpecD...
bool SynthesizeObjCMethodResult(clang::ObjCMethodDecl *MethodDecl)
Process an Objective-C method and produce the result variable and initialization.
bool HandleTopLevelDecl(clang::DeclGroupRef D) override
Examine a list of Decls to find the function $__lldb_expr and transform its code.
std::vector< clang::NamedDecl * > m_decls
Persistent declarations to register assuming the expression succeeds.
void CompleteTentativeDefinition(clang::VarDecl *D) override
Passthrough stub.
void HandleVTable(clang::CXXRecordDecl *RD) override
Passthrough stub.
void HandleTranslationUnit(clang::ASTContext &Ctx) override
Passthrough stub.
void ForgetSema() override
Reset the Sema to NULL now that transformations are done.
void PrintStats() override
Passthrough stub.
void Initialize(clang::ASTContext &Context) override
Link this consumer with a particular AST context.
void MaybeRecordPersistentType(clang::TypeDecl *D)
Given a TypeDecl, if it declares a type whose name starts with a dollar sign, register it as a pointe...
clang::Sema * m_sema
The Sema to use.
A uniqued constant string class.
Definition: ConstString.h:40
bool GetVerbose() const
Definition: Log.cpp:326
static lldb::TypeSystemClangSP GetForTarget(Target &target, std::optional< IsolatedASTKind > ast_kind=DefaultAST, bool create_on_demand=true)
Returns the scratch TypeSystemClang for the given target.
PersistentExpressionState * GetPersistentExpressionStateForLanguage(lldb::LanguageType language)
Definition: Target.cpp:2623
A class that represents a running process on the host machine.
Log * GetLog(Cat mask)
Retrieve the Log object for the channel associated with the given log enum.
Definition: Log.h:332
@ eLanguageTypeC
Non-standardized C, such as K&R.
std::shared_ptr< lldb_private::TypeSystemClang > TypeSystemClangSP
Definition: lldb-forward.h:470
Definition: Debugger.h:54