LLDB mainline
IRInterpreter.cpp
Go to the documentation of this file.
1//===-- IRInterpreter.cpp -------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10#include "lldb/Core/Debugger.h"
11#include "lldb/Core/Module.h"
18#include "lldb/Utility/Endian.h"
20#include "lldb/Utility/Log.h"
21#include "lldb/Utility/Scalar.h"
22#include "lldb/Utility/Status.h"
25
26#include "lldb/Target/ABI.h"
28#include "lldb/Target/Target.h"
29#include "lldb/Target/Thread.h"
32
33#include "llvm/IR/Constants.h"
34#include "llvm/IR/DataLayout.h"
35#include "llvm/IR/Function.h"
36#include "llvm/IR/Instructions.h"
37#include "llvm/IR/Intrinsics.h"
38#include "llvm/IR/LLVMContext.h"
39#include "llvm/IR/Module.h"
40#include "llvm/IR/Operator.h"
41#include "llvm/Support/raw_ostream.h"
42
43#include <map>
44
45using namespace llvm;
47
48static std::string PrintValue(const Value *value, bool truncate = false) {
49 std::string s;
50 raw_string_ostream rso(s);
51 value->print(rso);
52 if (truncate)
53 s.resize(s.length() - 1);
54
55 size_t offset;
56 while ((offset = s.find('\n')) != s.npos)
57 s.erase(offset, 1);
58 while (s[0] == ' ' || s[0] == '\t')
59 s.erase(0, 1);
60
61 return s;
62}
63
64static std::string PrintType(const Type *type, bool truncate = false) {
65 std::string s;
66 raw_string_ostream rso(s);
67 type->print(rso);
68 if (truncate)
69 s.resize(s.length() - 1);
70 return s;
71}
72
73static bool CanIgnoreCall(const CallInst *call) {
74 const llvm::Function *called_function = call->getCalledFunction();
75
76 if (!called_function)
77 return false;
78
79 if (called_function->isIntrinsic()) {
80 switch (called_function->getIntrinsicID()) {
81 default:
82 break;
83 case llvm::Intrinsic::dbg_declare:
84 case llvm::Intrinsic::dbg_value:
85 return true;
86 }
87 }
88
89 return false;
90}
91
93public:
94 typedef std::map<const Value *, lldb::addr_t> ValueMap;
95
97 const DataLayout &m_target_data;
99 const BasicBlock *m_bb = nullptr;
100 const BasicBlock *m_prev_bb = nullptr;
101 BasicBlock::const_iterator m_ii;
102 BasicBlock::const_iterator m_ie;
103
107
110
111 InterpreterStackFrame(const DataLayout &target_data,
112 lldb_private::IRExecutionUnit &execution_unit,
113 lldb::addr_t stack_frame_bottom,
114 lldb::addr_t stack_frame_top)
115 : m_target_data(target_data), m_execution_unit(execution_unit) {
116 m_byte_order = (target_data.isLittleEndian() ? lldb::eByteOrderLittle
118 m_addr_byte_size = (target_data.getPointerSize(0));
119
120 m_frame_process_address = stack_frame_bottom;
121 m_frame_size = stack_frame_top - stack_frame_bottom;
122 m_stack_pointer = stack_frame_top;
123 }
124
126
127 void Jump(const BasicBlock *bb) {
128 m_prev_bb = m_bb;
129 m_bb = bb;
130 m_ii = m_bb->begin();
131 m_ie = m_bb->end();
132 }
133
134 std::string SummarizeValue(const Value *value) {
136
137 ss.Printf("%s", PrintValue(value).c_str());
138
139 ValueMap::iterator i = m_values.find(value);
140
141 if (i != m_values.end()) {
142 lldb::addr_t addr = i->second;
143
144 ss.Printf(" 0x%llx", (unsigned long long)addr);
145 }
146
147 return std::string(ss.GetString());
148 }
149
150 bool AssignToMatchType(lldb_private::Scalar &scalar, llvm::APInt value,
151 Type *type) {
152 size_t type_size = m_target_data.getTypeStoreSize(type);
153
154 if (type_size > 8)
155 return false;
156
157 if (type_size != 1)
158 type_size = PowerOf2Ceil(type_size);
159
160 scalar = value.zextOrTrunc(type_size * 8);
161 return true;
162 }
163
164 bool EvaluateValue(lldb_private::Scalar &scalar, const Value *value,
165 Module &module) {
166 const Constant *constant = dyn_cast<Constant>(value);
167
168 if (constant) {
169 if (constant->getValueID() == Value::ConstantFPVal) {
170 if (auto *cfp = dyn_cast<ConstantFP>(constant)) {
171 if (cfp->getType()->isDoubleTy())
172 scalar = cfp->getValueAPF().convertToDouble();
173 else if (cfp->getType()->isFloatTy())
174 scalar = cfp->getValueAPF().convertToFloat();
175 else
176 return false;
177 return true;
178 }
179 return false;
180 }
181 APInt value_apint;
182
183 if (!ResolveConstantValue(value_apint, constant))
184 return false;
185
186 return AssignToMatchType(scalar, value_apint, value->getType());
187 }
188
189 lldb::addr_t process_address = ResolveValue(value, module);
190 size_t value_size = m_target_data.getTypeStoreSize(value->getType());
191
192 lldb_private::DataExtractor value_extractor;
193 lldb_private::Status extract_error;
194
195 m_execution_unit.GetMemoryData(value_extractor, process_address,
196 value_size, extract_error);
197
198 if (!extract_error.Success())
199 return false;
200
201 lldb::offset_t offset = 0;
202 if (value_size <= 8) {
203 Type *ty = value->getType();
204 if (ty->isDoubleTy()) {
205 scalar = value_extractor.GetDouble(&offset);
206 return true;
207 } else if (ty->isFloatTy()) {
208 scalar = value_extractor.GetFloat(&offset);
209 return true;
210 } else {
211 uint64_t u64value = value_extractor.GetMaxU64(&offset, value_size);
212 return AssignToMatchType(scalar, llvm::APInt(64, u64value),
213 value->getType());
214 }
215 }
216
217 return false;
218 }
219
220 bool AssignValue(const Value *value, lldb_private::Scalar scalar,
221 Module &module) {
222 lldb::addr_t process_address = ResolveValue(value, module);
223
224 if (process_address == LLDB_INVALID_ADDRESS)
225 return false;
226
227 lldb_private::Scalar cast_scalar;
228 Type *vty = value->getType();
229 if (vty->isFloatTy() || vty->isDoubleTy()) {
230 cast_scalar = scalar;
231 } else {
232 scalar.MakeUnsigned();
233 if (!AssignToMatchType(cast_scalar, scalar.UInt128(llvm::APInt()),
234 value->getType()))
235 return false;
236 }
237
238 size_t value_byte_size = m_target_data.getTypeStoreSize(value->getType());
239
240 lldb_private::DataBufferHeap buf(value_byte_size, 0);
241
242 lldb_private::Status get_data_error;
243
244 if (!cast_scalar.GetAsMemoryData(buf.GetBytes(), buf.GetByteSize(),
245 m_byte_order, get_data_error))
246 return false;
247
248 lldb_private::Status write_error;
249
250 m_execution_unit.WriteMemory(process_address, buf.GetBytes(),
251 buf.GetByteSize(), write_error);
252
253 return write_error.Success();
254 }
255
256 bool ResolveConstantValue(APInt &value, const Constant *constant) {
257 switch (constant->getValueID()) {
258 default:
259 break;
260 case Value::FunctionVal:
261 if (const Function *constant_func = dyn_cast<Function>(constant)) {
262 lldb_private::ConstString name(constant_func->getName());
263 bool missing_weak = false;
264 lldb::addr_t addr = m_execution_unit.FindSymbol(name, missing_weak);
265 if (addr == LLDB_INVALID_ADDRESS)
266 return false;
267 value = APInt(m_target_data.getPointerSizeInBits(), addr);
268 return true;
269 }
270 break;
271 case Value::ConstantIntVal:
272 if (const ConstantInt *constant_int = dyn_cast<ConstantInt>(constant)) {
273 value = constant_int->getValue();
274 return true;
275 }
276 break;
277 case Value::ConstantFPVal:
278 if (const ConstantFP *constant_fp = dyn_cast<ConstantFP>(constant)) {
279 value = constant_fp->getValueAPF().bitcastToAPInt();
280 return true;
281 }
282 break;
283 case Value::ConstantExprVal:
284 if (const ConstantExpr *constant_expr =
285 dyn_cast<ConstantExpr>(constant)) {
286 switch (constant_expr->getOpcode()) {
287 default:
288 return false;
289 case Instruction::IntToPtr:
290 case Instruction::PtrToInt:
291 case Instruction::BitCast:
292 return ResolveConstantValue(value, constant_expr->getOperand(0));
293 case Instruction::GetElementPtr: {
294 ConstantExpr::const_op_iterator op_cursor = constant_expr->op_begin();
295 ConstantExpr::const_op_iterator op_end = constant_expr->op_end();
296
297 Constant *base = dyn_cast<Constant>(*op_cursor);
298
299 if (!base)
300 return false;
301
302 if (!ResolveConstantValue(value, base))
303 return false;
304
305 op_cursor++;
306
307 if (op_cursor == op_end)
308 return true; // no offset to apply!
309
310 SmallVector<Value *, 8> indices(op_cursor, op_end);
311 Type *src_elem_ty =
312 cast<GEPOperator>(constant_expr)->getSourceElementType();
313
314 // DataLayout::getIndexedOffsetInType assumes the indices are
315 // instances of ConstantInt.
316 uint64_t offset =
317 m_target_data.getIndexedOffsetInType(src_elem_ty, indices);
318
319 const bool is_signed = true;
320 value += APInt(value.getBitWidth(), offset, is_signed);
321
322 return true;
323 }
324 }
325 }
326 break;
327 case Value::ConstantPointerNullVal:
328 if (isa<ConstantPointerNull>(constant)) {
329 value = APInt(m_target_data.getPointerSizeInBits(), 0);
330 return true;
331 }
332 break;
333 }
334 return false;
335 }
336
337 bool MakeArgument(const Argument *value, uint64_t address) {
338 lldb::addr_t data_address = Malloc(value->getType());
339
340 if (data_address == LLDB_INVALID_ADDRESS)
341 return false;
342
343 lldb_private::Status write_error;
344
345 m_execution_unit.WritePointerToMemory(data_address, address, write_error);
346
347 if (!write_error.Success()) {
348 lldb_private::Status free_error;
349 m_execution_unit.Free(data_address, free_error);
350 return false;
351 }
352
353 m_values[value] = data_address;
354
355 lldb_private::Log *log(GetLog(LLDBLog::Expressions));
356
357 if (log) {
358 LLDB_LOGF(log, "Made an allocation for argument %s",
359 PrintValue(value).c_str());
360 LLDB_LOGF(log, " Data region : %llx", (unsigned long long)address);
361 LLDB_LOGF(log, " Ref region : %llx",
362 (unsigned long long)data_address);
363 }
364
365 return true;
366 }
367
368 bool ResolveConstant(lldb::addr_t process_address, const Constant *constant) {
369 APInt resolved_value;
370
371 if (!ResolveConstantValue(resolved_value, constant))
372 return false;
373
374 size_t constant_size = m_target_data.getTypeStoreSize(constant->getType());
375 lldb_private::DataBufferHeap buf(constant_size, 0);
376
377 lldb_private::Status get_data_error;
378
379 lldb_private::Scalar resolved_scalar(
380 resolved_value.zextOrTrunc(llvm::NextPowerOf2(constant_size) * 8));
381 if (!resolved_scalar.GetAsMemoryData(buf.GetBytes(), buf.GetByteSize(),
382 m_byte_order, get_data_error))
383 return false;
384
385 lldb_private::Status write_error;
386
387 m_execution_unit.WriteMemory(process_address, buf.GetBytes(),
388 buf.GetByteSize(), write_error);
389
390 return write_error.Success();
391 }
392
393 lldb::addr_t Malloc(size_t size, uint8_t byte_alignment) {
395
396 ret -= size;
397 ret -= (ret % byte_alignment);
398
399 if (ret < m_frame_process_address)
401
402 m_stack_pointer = ret;
403 return ret;
404 }
405
406 lldb::addr_t Malloc(llvm::Type *type) {
407 lldb_private::Status alloc_error;
408
409 return Malloc(m_target_data.getTypeAllocSize(type),
410 m_target_data.getPrefTypeAlign(type).value());
411 }
412
413 std::string PrintData(lldb::addr_t addr, llvm::Type *type) {
414 size_t length = m_target_data.getTypeStoreSize(type);
415
416 lldb_private::DataBufferHeap buf(length, 0);
417
418 lldb_private::Status read_error;
419
420 m_execution_unit.ReadMemory(buf.GetBytes(), addr, length, read_error);
421
422 if (!read_error.Success())
423 return std::string("<couldn't read data>");
424
426
427 for (size_t i = 0; i < length; i++) {
428 if ((!(i & 0xf)) && i)
429 ss.Printf("%02hhx - ", buf.GetBytes()[i]);
430 else
431 ss.Printf("%02hhx ", buf.GetBytes()[i]);
432 }
433
434 return std::string(ss.GetString());
435 }
436
437 lldb::addr_t ResolveValue(const Value *value, Module &module) {
438 ValueMap::iterator i = m_values.find(value);
439
440 if (i != m_values.end())
441 return i->second;
442
443 // Fall back and allocate space [allocation type Alloca]
444
445 lldb::addr_t data_address = Malloc(value->getType());
446
447 if (const Constant *constant = dyn_cast<Constant>(value)) {
448 if (!ResolveConstant(data_address, constant)) {
449 lldb_private::Status free_error;
450 m_execution_unit.Free(data_address, free_error);
452 }
453 }
454
455 m_values[value] = data_address;
456 return data_address;
457 }
458};
459
460static const char *unsupported_opcode_error =
461 "Interpreter doesn't handle one of the expression's opcodes";
462static const char *unsupported_operand_error =
463 "Interpreter doesn't handle one of the expression's operands";
464static const char *interpreter_internal_error =
465 "Interpreter encountered an internal error";
466static const char *interrupt_error =
467 "Interrupted while interpreting expression";
468static const char *bad_value_error =
469 "Interpreter couldn't resolve a value during execution";
470static const char *memory_allocation_error =
471 "Interpreter couldn't allocate memory";
472static const char *memory_write_error = "Interpreter couldn't write to memory";
473static const char *memory_read_error = "Interpreter couldn't read from memory";
474static const char *timeout_error =
475 "Reached timeout while interpreting expression";
476static const char *too_many_functions_error =
477 "Interpreter doesn't handle modules with multiple function bodies.";
478
479static bool CanResolveConstant(llvm::Constant *constant) {
480 switch (constant->getValueID()) {
481 default:
482 return false;
483 case Value::ConstantIntVal:
484 case Value::ConstantFPVal:
485 case Value::FunctionVal:
486 return true;
487 case Value::ConstantExprVal:
488 if (const ConstantExpr *constant_expr = dyn_cast<ConstantExpr>(constant)) {
489 switch (constant_expr->getOpcode()) {
490 default:
491 return false;
492 case Instruction::IntToPtr:
493 case Instruction::PtrToInt:
494 case Instruction::BitCast:
495 return CanResolveConstant(constant_expr->getOperand(0));
496 case Instruction::GetElementPtr: {
497 // Check that the base can be constant-resolved.
498 ConstantExpr::const_op_iterator op_cursor = constant_expr->op_begin();
499 Constant *base = dyn_cast<Constant>(*op_cursor);
500 if (!base || !CanResolveConstant(base))
501 return false;
502
503 // Check that all other operands are just ConstantInt.
504 for (Value *op : make_range(constant_expr->op_begin() + 1,
505 constant_expr->op_end())) {
506 ConstantInt *constant_int = dyn_cast<ConstantInt>(op);
507 if (!constant_int)
508 return false;
509 }
510 return true;
511 }
512 }
513 } else {
514 return false;
515 }
516 case Value::ConstantPointerNullVal:
517 return true;
518 }
519}
520
521bool IRInterpreter::CanInterpret(llvm::Module &module, llvm::Function &function,
523 const bool support_function_calls) {
524 lldb_private::Log *log(GetLog(LLDBLog::Expressions));
525
526 bool saw_function_with_body = false;
527 for (Function &f : module) {
528 if (f.begin() != f.end()) {
529 if (saw_function_with_body) {
530 LLDB_LOGF(log, "More than one function in the module has a body");
532 return false;
533 }
534 saw_function_with_body = true;
535 LLDB_LOGF(log, "Saw function with body: %s", f.getName().str().c_str());
536 }
537 }
538
539 for (BasicBlock &bb : function) {
540 for (Instruction &ii : bb) {
541 switch (ii.getOpcode()) {
542 default: {
543 LLDB_LOGF(log, "Unsupported instruction: %s", PrintValue(&ii).c_str());
545 return false;
546 }
547 case Instruction::Add:
548 case Instruction::Alloca:
549 case Instruction::BitCast:
550 case Instruction::Br:
551 case Instruction::PHI:
552 break;
553 case Instruction::Call: {
554 CallInst *call_inst = dyn_cast<CallInst>(&ii);
555
556 if (!call_inst) {
557 error =
559 return false;
560 }
561
562 if (!CanIgnoreCall(call_inst) && !support_function_calls) {
563 LLDB_LOGF(log, "Unsupported instruction: %s",
564 PrintValue(&ii).c_str());
565 error =
567 return false;
568 }
569 } break;
570 case Instruction::GetElementPtr:
571 break;
572 case Instruction::FCmp:
573 case Instruction::ICmp: {
574 CmpInst *cmp_inst = dyn_cast<CmpInst>(&ii);
575
576 if (!cmp_inst) {
577 error =
579 return false;
580 }
581
582 switch (cmp_inst->getPredicate()) {
583 default: {
584 LLDB_LOGF(log, "Unsupported ICmp predicate: %s",
585 PrintValue(&ii).c_str());
586
587 error =
589 return false;
590 }
591 case CmpInst::FCMP_OEQ:
592 case CmpInst::ICMP_EQ:
593 case CmpInst::FCMP_UNE:
594 case CmpInst::ICMP_NE:
595 case CmpInst::FCMP_OGT:
596 case CmpInst::ICMP_UGT:
597 case CmpInst::FCMP_OGE:
598 case CmpInst::ICMP_UGE:
599 case CmpInst::FCMP_OLT:
600 case CmpInst::ICMP_ULT:
601 case CmpInst::FCMP_OLE:
602 case CmpInst::ICMP_ULE:
603 case CmpInst::ICMP_SGT:
604 case CmpInst::ICMP_SGE:
605 case CmpInst::ICMP_SLT:
606 case CmpInst::ICMP_SLE:
607 break;
608 }
609 } break;
610 case Instruction::And:
611 case Instruction::AShr:
612 case Instruction::IntToPtr:
613 case Instruction::PtrToInt:
614 case Instruction::Load:
615 case Instruction::LShr:
616 case Instruction::Mul:
617 case Instruction::Or:
618 case Instruction::Ret:
619 case Instruction::SDiv:
620 case Instruction::SExt:
621 case Instruction::Shl:
622 case Instruction::SRem:
623 case Instruction::Store:
624 case Instruction::Sub:
625 case Instruction::Trunc:
626 case Instruction::UDiv:
627 case Instruction::URem:
628 case Instruction::Xor:
629 case Instruction::ZExt:
630 break;
631 case Instruction::FAdd:
632 case Instruction::FSub:
633 case Instruction::FMul:
634 case Instruction::FDiv:
635 break;
636 }
637
638 for (unsigned oi = 0, oe = ii.getNumOperands(); oi != oe; ++oi) {
639 Value *operand = ii.getOperand(oi);
640 Type *operand_type = operand->getType();
641
642 switch (operand_type->getTypeID()) {
643 default:
644 break;
645 case Type::FixedVectorTyID:
646 case Type::ScalableVectorTyID: {
647 LLDB_LOGF(log, "Unsupported operand type: %s",
648 PrintType(operand_type).c_str());
649 error =
651 return false;
652 }
653 }
654
655 // The IR interpreter currently doesn't know about
656 // 128-bit integers. As they're not that frequent,
657 // we can just fall back to the JIT rather than
658 // choking.
659 if (operand_type->getPrimitiveSizeInBits() > 64) {
660 LLDB_LOGF(log, "Unsupported operand type: %s",
661 PrintType(operand_type).c_str());
662 error =
664 return false;
665 }
666
667 if (Constant *constant = llvm::dyn_cast<Constant>(operand)) {
668 if (!CanResolveConstant(constant)) {
669 LLDB_LOGF(log, "Unsupported constant: %s",
670 PrintValue(constant).c_str());
673 return false;
674 }
675 }
676 }
677 }
678 }
679
680 return true;
681}
682
683bool IRInterpreter::Interpret(llvm::Module &module, llvm::Function &function,
684 llvm::ArrayRef<lldb::addr_t> args,
685 lldb_private::IRExecutionUnit &execution_unit,
687 lldb::addr_t stack_frame_bottom,
688 lldb::addr_t stack_frame_top,
691 lldb_private::Log *log(GetLog(LLDBLog::Expressions));
692
693 if (log) {
694 std::string s;
695 raw_string_ostream oss(s);
696
697 module.print(oss, nullptr);
698
699 LLDB_LOGF(log, "Module as passed in to IRInterpreter::Interpret: \n\"%s\"",
700 s.c_str());
701 }
702
703 const DataLayout &data_layout = module.getDataLayout();
704
705 InterpreterStackFrame frame(data_layout, execution_unit, stack_frame_bottom,
706 stack_frame_top);
707
709 error =
710 lldb_private::Status::FromErrorString("Couldn't allocate stack frame");
711 }
712
713 int arg_index = 0;
714
715 for (llvm::Function::arg_iterator ai = function.arg_begin(),
716 ae = function.arg_end();
717 ai != ae; ++ai, ++arg_index) {
718 if (args.size() <= static_cast<size_t>(arg_index)) {
720 "Not enough arguments passed in to function");
721 return false;
722 }
723
724 lldb::addr_t ptr = args[arg_index];
725
726 frame.MakeArgument(&*ai, ptr);
727 }
728
729 frame.Jump(&function.front());
730
731 lldb_private::Process *process = exe_ctx.GetProcessPtr();
732 lldb_private::Target *target = exe_ctx.GetTargetPtr();
733
734 using clock = std::chrono::steady_clock;
735
736 // Compute the time at which the timeout has been exceeded.
737 std::optional<clock::time_point> end_time;
738 if (timeout && timeout->count() > 0)
739 end_time = clock::now() + *timeout;
740
741 while (frame.m_ii != frame.m_ie) {
742 // Timeout reached: stop interpreting.
743 if (end_time && clock::now() >= *end_time) {
745 return false;
746 }
747
748 // If we have access to the debugger we can honor an interrupt request.
749 if (target) {
750 if (INTERRUPT_REQUESTED(target->GetDebugger(),
751 "Interrupted in IR interpreting.")) {
753 return false;
754 }
755 }
756
757 const Instruction *inst = &*frame.m_ii;
758
759 LLDB_LOGF(log, "Interpreting %s", PrintValue(inst).c_str());
760
761 switch (inst->getOpcode()) {
762 default:
763 break;
764
765 case Instruction::Add:
766 case Instruction::Sub:
767 case Instruction::Mul:
768 case Instruction::SDiv:
769 case Instruction::UDiv:
770 case Instruction::SRem:
771 case Instruction::URem:
772 case Instruction::Shl:
773 case Instruction::LShr:
774 case Instruction::AShr:
775 case Instruction::And:
776 case Instruction::Or:
777 case Instruction::Xor:
778 case Instruction::FAdd:
779 case Instruction::FSub:
780 case Instruction::FMul:
781 case Instruction::FDiv: {
782 const BinaryOperator *bin_op = dyn_cast<BinaryOperator>(inst);
783
784 if (!bin_op) {
785 LLDB_LOGF(
786 log,
787 "getOpcode() returns %s, but instruction is not a BinaryOperator",
788 inst->getOpcodeName());
789 error =
791 return false;
792 }
793
794 Value *lhs = inst->getOperand(0);
795 Value *rhs = inst->getOperand(1);
796
799
800 if (!frame.EvaluateValue(L, lhs, module)) {
801 LLDB_LOGF(log, "Couldn't evaluate %s", PrintValue(lhs).c_str());
803 return false;
804 }
805
806 if (!frame.EvaluateValue(R, rhs, module)) {
807 LLDB_LOGF(log, "Couldn't evaluate %s", PrintValue(rhs).c_str());
809 return false;
810 }
811
813
814 switch (inst->getOpcode()) {
815 default:
816 break;
817 case Instruction::Add:
818 case Instruction::FAdd:
819 result = L + R;
820 break;
821 case Instruction::Mul:
822 case Instruction::FMul:
823 result = L * R;
824 break;
825 case Instruction::Sub:
826 case Instruction::FSub:
827 result = L - R;
828 break;
829 case Instruction::SDiv:
830 L.MakeSigned();
831 R.MakeSigned();
832 result = L / R;
833 break;
834 case Instruction::UDiv:
835 L.MakeUnsigned();
836 R.MakeUnsigned();
837 result = L / R;
838 break;
839 case Instruction::FDiv:
840 result = L / R;
841 break;
842 case Instruction::SRem:
843 L.MakeSigned();
844 R.MakeSigned();
845 result = L % R;
846 break;
847 case Instruction::URem:
848 L.MakeUnsigned();
849 R.MakeUnsigned();
850 result = L % R;
851 break;
852 case Instruction::Shl:
853 result = L << R;
854 break;
855 case Instruction::AShr:
856 result = L >> R;
857 break;
858 case Instruction::LShr:
859 result = L;
860 result.ShiftRightLogical(R);
861 break;
862 case Instruction::And:
863 result = L & R;
864 break;
865 case Instruction::Or:
866 result = L | R;
867 break;
868 case Instruction::Xor:
869 result = L ^ R;
870 break;
871 }
872
873 frame.AssignValue(inst, result, module);
874
875 if (log) {
876 LLDB_LOGF(log, "Interpreted a %s", inst->getOpcodeName());
877 LLDB_LOGF(log, " L : %s", frame.SummarizeValue(lhs).c_str());
878 LLDB_LOGF(log, " R : %s", frame.SummarizeValue(rhs).c_str());
879 LLDB_LOGF(log, " = : %s", frame.SummarizeValue(inst).c_str());
880 }
881 } break;
882 case Instruction::Alloca: {
883 const AllocaInst *alloca_inst = cast<AllocaInst>(inst);
884
885 if (alloca_inst->isArrayAllocation()) {
886 LLDB_LOGF(log,
887 "AllocaInsts are not handled if isArrayAllocation() is true");
889 return false;
890 }
891
892 // The semantics of Alloca are:
893 // Create a region R of virtual memory of type T, backed by a data
894 // buffer
895 // Create a region P of virtual memory of type T*, backed by a data
896 // buffer
897 // Write the virtual address of R into P
898
899 Type *T = alloca_inst->getAllocatedType();
900 Type *Tptr = alloca_inst->getType();
901
902 lldb::addr_t R = frame.Malloc(T);
903
904 if (R == LLDB_INVALID_ADDRESS) {
905 LLDB_LOGF(log, "Couldn't allocate memory for an AllocaInst");
907 return false;
908 }
909
910 lldb::addr_t P = frame.Malloc(Tptr);
911
912 if (P == LLDB_INVALID_ADDRESS) {
913 LLDB_LOGF(log,
914 "Couldn't allocate the result pointer for an AllocaInst");
916 return false;
917 }
918
919 lldb_private::Status write_error;
920
921 execution_unit.WritePointerToMemory(P, R, write_error);
922
923 if (!write_error.Success()) {
924 LLDB_LOGF(log, "Couldn't write the result pointer for an AllocaInst");
926 lldb_private::Status free_error;
927 execution_unit.Free(P, free_error);
928 execution_unit.Free(R, free_error);
929 return false;
930 }
931
932 frame.m_values[alloca_inst] = P;
933
934 if (log) {
935 LLDB_LOGF(log, "Interpreted an AllocaInst");
936 LLDB_LOGF(log, " R : 0x%" PRIx64, R);
937 LLDB_LOGF(log, " P : 0x%" PRIx64, P);
938 }
939 } break;
940 case Instruction::BitCast:
941 case Instruction::ZExt: {
942 const CastInst *cast_inst = cast<CastInst>(inst);
943
944 Value *source = cast_inst->getOperand(0);
945
947
948 if (!frame.EvaluateValue(S, source, module)) {
949 LLDB_LOGF(log, "Couldn't evaluate %s", PrintValue(source).c_str());
951 return false;
952 }
953
954 frame.AssignValue(inst, S, module);
955 } break;
956 case Instruction::SExt: {
957 const CastInst *cast_inst = cast<CastInst>(inst);
958
959 Value *source = cast_inst->getOperand(0);
960
962
963 if (!frame.EvaluateValue(S, source, module)) {
964 LLDB_LOGF(log, "Couldn't evaluate %s", PrintValue(source).c_str());
966 return false;
967 }
968
969 S.MakeSigned();
970
971 lldb_private::Scalar S_signextend(S.SLongLong());
972
973 frame.AssignValue(inst, S_signextend, module);
974 } break;
975 case Instruction::Br: {
976 const BranchInst *br_inst = cast<BranchInst>(inst);
977
978 if (br_inst->isConditional()) {
979 Value *condition = br_inst->getCondition();
980
982
983 if (!frame.EvaluateValue(C, condition, module)) {
984 LLDB_LOGF(log, "Couldn't evaluate %s", PrintValue(condition).c_str());
986 return false;
987 }
988
989 if (!C.IsZero())
990 frame.Jump(br_inst->getSuccessor(0));
991 else
992 frame.Jump(br_inst->getSuccessor(1));
993
994 if (log) {
995 LLDB_LOGF(log, "Interpreted a BrInst with a condition");
996 LLDB_LOGF(log, " cond : %s",
997 frame.SummarizeValue(condition).c_str());
998 }
999 } else {
1000 frame.Jump(br_inst->getSuccessor(0));
1001
1002 if (log) {
1003 LLDB_LOGF(log, "Interpreted a BrInst with no condition");
1004 }
1005 }
1006 }
1007 continue;
1008 case Instruction::PHI: {
1009 const PHINode *phi_inst = cast<PHINode>(inst);
1010 if (!frame.m_prev_bb) {
1011 LLDB_LOGF(log,
1012 "Encountered PHI node without having jumped from another "
1013 "basic block");
1014 error =
1016 return false;
1017 }
1018
1019 Value *value = phi_inst->getIncomingValueForBlock(frame.m_prev_bb);
1020 lldb_private::Scalar result;
1021 if (!frame.EvaluateValue(result, value, module)) {
1022 LLDB_LOGF(log, "Couldn't evaluate %s", PrintValue(value).c_str());
1024 return false;
1025 }
1026 frame.AssignValue(inst, result, module);
1027
1028 if (log) {
1029 LLDB_LOGF(log, "Interpreted a %s", inst->getOpcodeName());
1030 LLDB_LOGF(log, " Incoming value : %s",
1031 frame.SummarizeValue(value).c_str());
1032 }
1033 } break;
1034 case Instruction::GetElementPtr: {
1035 const GetElementPtrInst *gep_inst = cast<GetElementPtrInst>(inst);
1036
1037 const Value *pointer_operand = gep_inst->getPointerOperand();
1038 Type *src_elem_ty = gep_inst->getSourceElementType();
1039
1041
1042 if (!frame.EvaluateValue(P, pointer_operand, module)) {
1043 LLDB_LOGF(log, "Couldn't evaluate %s",
1044 PrintValue(pointer_operand).c_str());
1046 return false;
1047 }
1048
1049 typedef SmallVector<Value *, 8> IndexVector;
1050 typedef IndexVector::iterator IndexIterator;
1051
1052 SmallVector<Value *, 8> indices(gep_inst->idx_begin(),
1053 gep_inst->idx_end());
1054
1055 SmallVector<Value *, 8> const_indices;
1056
1057 for (IndexIterator ii = indices.begin(), ie = indices.end(); ii != ie;
1058 ++ii) {
1059 ConstantInt *constant_index = dyn_cast<ConstantInt>(*ii);
1060
1061 if (!constant_index) {
1063
1064 if (!frame.EvaluateValue(I, *ii, module)) {
1065 LLDB_LOGF(log, "Couldn't evaluate %s", PrintValue(*ii).c_str());
1067 return false;
1068 }
1069
1070 LLDB_LOGF(log, "Evaluated constant index %s as %llu",
1071 PrintValue(*ii).c_str(), I.ULongLong(LLDB_INVALID_ADDRESS));
1072
1073 constant_index = cast<ConstantInt>(ConstantInt::get(
1074 (*ii)->getType(), I.ULongLong(LLDB_INVALID_ADDRESS)));
1075 }
1076
1077 const_indices.push_back(constant_index);
1078 }
1079
1080 uint64_t offset =
1081 data_layout.getIndexedOffsetInType(src_elem_ty, const_indices);
1082
1083 lldb_private::Scalar Poffset = P + offset;
1084
1085 frame.AssignValue(inst, Poffset, module);
1086
1087 if (log) {
1088 LLDB_LOGF(log, "Interpreted a GetElementPtrInst");
1089 LLDB_LOGF(log, " P : %s",
1090 frame.SummarizeValue(pointer_operand).c_str());
1091 LLDB_LOGF(log, " Poffset : %s", frame.SummarizeValue(inst).c_str());
1092 }
1093 } break;
1094 case Instruction::FCmp:
1095 case Instruction::ICmp: {
1096 const CmpInst *icmp_inst = cast<CmpInst>(inst);
1097
1098 CmpInst::Predicate predicate = icmp_inst->getPredicate();
1099
1100 Value *lhs = inst->getOperand(0);
1101 Value *rhs = inst->getOperand(1);
1102
1105
1106 if (!frame.EvaluateValue(L, lhs, module)) {
1107 LLDB_LOGF(log, "Couldn't evaluate %s", PrintValue(lhs).c_str());
1109 return false;
1110 }
1111
1112 if (!frame.EvaluateValue(R, rhs, module)) {
1113 LLDB_LOGF(log, "Couldn't evaluate %s", PrintValue(rhs).c_str());
1115 return false;
1116 }
1117
1118 lldb_private::Scalar result;
1119
1120 switch (predicate) {
1121 default:
1122 return false;
1123 case CmpInst::ICMP_EQ:
1124 case CmpInst::FCMP_OEQ:
1125 result = (L == R);
1126 break;
1127 case CmpInst::ICMP_NE:
1128 case CmpInst::FCMP_UNE:
1129 result = (L != R);
1130 break;
1131 case CmpInst::ICMP_UGT:
1132 L.MakeUnsigned();
1133 R.MakeUnsigned();
1134 result = (L > R);
1135 break;
1136 case CmpInst::ICMP_UGE:
1137 L.MakeUnsigned();
1138 R.MakeUnsigned();
1139 result = (L >= R);
1140 break;
1141 case CmpInst::FCMP_OGE:
1142 result = (L >= R);
1143 break;
1144 case CmpInst::FCMP_OGT:
1145 result = (L > R);
1146 break;
1147 case CmpInst::ICMP_ULT:
1148 L.MakeUnsigned();
1149 R.MakeUnsigned();
1150 result = (L < R);
1151 break;
1152 case CmpInst::FCMP_OLT:
1153 result = (L < R);
1154 break;
1155 case CmpInst::ICMP_ULE:
1156 L.MakeUnsigned();
1157 R.MakeUnsigned();
1158 result = (L <= R);
1159 break;
1160 case CmpInst::FCMP_OLE:
1161 result = (L <= R);
1162 break;
1163 case CmpInst::ICMP_SGT:
1164 L.MakeSigned();
1165 R.MakeSigned();
1166 result = (L > R);
1167 break;
1168 case CmpInst::ICMP_SGE:
1169 L.MakeSigned();
1170 R.MakeSigned();
1171 result = (L >= R);
1172 break;
1173 case CmpInst::ICMP_SLT:
1174 L.MakeSigned();
1175 R.MakeSigned();
1176 result = (L < R);
1177 break;
1178 case CmpInst::ICMP_SLE:
1179 L.MakeSigned();
1180 R.MakeSigned();
1181 result = (L <= R);
1182 break;
1183 }
1184
1185 frame.AssignValue(inst, result, module);
1186
1187 if (log) {
1188 LLDB_LOGF(log, "Interpreted an ICmpInst");
1189 LLDB_LOGF(log, " L : %s", frame.SummarizeValue(lhs).c_str());
1190 LLDB_LOGF(log, " R : %s", frame.SummarizeValue(rhs).c_str());
1191 LLDB_LOGF(log, " = : %s", frame.SummarizeValue(inst).c_str());
1192 }
1193 } break;
1194 case Instruction::IntToPtr: {
1195 const IntToPtrInst *int_to_ptr_inst = cast<IntToPtrInst>(inst);
1196
1197 Value *src_operand = int_to_ptr_inst->getOperand(0);
1198
1200
1201 if (!frame.EvaluateValue(I, src_operand, module)) {
1202 LLDB_LOGF(log, "Couldn't evaluate %s", PrintValue(src_operand).c_str());
1204 return false;
1205 }
1206
1207 frame.AssignValue(inst, I, module);
1208
1209 if (log) {
1210 LLDB_LOGF(log, "Interpreted an IntToPtr");
1211 LLDB_LOGF(log, " Src : %s", frame.SummarizeValue(src_operand).c_str());
1212 LLDB_LOGF(log, " = : %s", frame.SummarizeValue(inst).c_str());
1213 }
1214 } break;
1215 case Instruction::PtrToInt: {
1216 const PtrToIntInst *ptr_to_int_inst = cast<PtrToIntInst>(inst);
1217
1218 Value *src_operand = ptr_to_int_inst->getOperand(0);
1219
1221
1222 if (!frame.EvaluateValue(I, src_operand, module)) {
1223 LLDB_LOGF(log, "Couldn't evaluate %s", PrintValue(src_operand).c_str());
1225 return false;
1226 }
1227
1228 frame.AssignValue(inst, I, module);
1229
1230 if (log) {
1231 LLDB_LOGF(log, "Interpreted a PtrToInt");
1232 LLDB_LOGF(log, " Src : %s", frame.SummarizeValue(src_operand).c_str());
1233 LLDB_LOGF(log, " = : %s", frame.SummarizeValue(inst).c_str());
1234 }
1235 } break;
1236 case Instruction::Trunc: {
1237 const TruncInst *trunc_inst = cast<TruncInst>(inst);
1238
1239 Value *src_operand = trunc_inst->getOperand(0);
1240
1242
1243 if (!frame.EvaluateValue(I, src_operand, module)) {
1244 LLDB_LOGF(log, "Couldn't evaluate %s", PrintValue(src_operand).c_str());
1246 return false;
1247 }
1248
1249 frame.AssignValue(inst, I, module);
1250
1251 if (log) {
1252 LLDB_LOGF(log, "Interpreted a Trunc");
1253 LLDB_LOGF(log, " Src : %s", frame.SummarizeValue(src_operand).c_str());
1254 LLDB_LOGF(log, " = : %s", frame.SummarizeValue(inst).c_str());
1255 }
1256 } break;
1257 case Instruction::Load: {
1258 const LoadInst *load_inst = cast<LoadInst>(inst);
1259
1260 // The semantics of Load are:
1261 // Create a region D that will contain the loaded data
1262 // Resolve the region P containing a pointer
1263 // Dereference P to get the region R that the data should be loaded from
1264 // Transfer a unit of type type(D) from R to D
1265
1266 const Value *pointer_operand = load_inst->getPointerOperand();
1267
1268 lldb::addr_t D = frame.ResolveValue(load_inst, module);
1269 lldb::addr_t P = frame.ResolveValue(pointer_operand, module);
1270
1271 if (D == LLDB_INVALID_ADDRESS) {
1272 LLDB_LOGF(log, "LoadInst's value doesn't resolve to anything");
1274 return false;
1275 }
1276
1277 if (P == LLDB_INVALID_ADDRESS) {
1278 LLDB_LOGF(log, "LoadInst's pointer doesn't resolve to anything");
1280 return false;
1281 }
1282
1283 lldb::addr_t R;
1284 lldb_private::Status read_error;
1285 execution_unit.ReadPointerFromMemory(&R, P, read_error);
1286
1287 if (!read_error.Success()) {
1288 LLDB_LOGF(log, "Couldn't read the address to be loaded for a LoadInst");
1290 return false;
1291 }
1292
1293 Type *target_ty = load_inst->getType();
1294 size_t target_size = data_layout.getTypeStoreSize(target_ty);
1295 lldb_private::DataBufferHeap buffer(target_size, 0);
1296
1297 read_error.Clear();
1298 execution_unit.ReadMemory(buffer.GetBytes(), R, buffer.GetByteSize(),
1299 read_error);
1300 if (!read_error.Success()) {
1301 LLDB_LOGF(log, "Couldn't read from a region on behalf of a LoadInst");
1303 return false;
1304 }
1305
1306 lldb_private::Status write_error;
1307 execution_unit.WriteMemory(D, buffer.GetBytes(), buffer.GetByteSize(),
1308 write_error);
1309 if (!write_error.Success()) {
1310 LLDB_LOGF(log, "Couldn't write to a region on behalf of a LoadInst");
1312 return false;
1313 }
1314
1315 if (log) {
1316 LLDB_LOGF(log, "Interpreted a LoadInst");
1317 LLDB_LOGF(log, " P : 0x%" PRIx64, P);
1318 LLDB_LOGF(log, " R : 0x%" PRIx64, R);
1319 LLDB_LOGF(log, " D : 0x%" PRIx64, D);
1320 }
1321 } break;
1322 case Instruction::Ret: {
1323 return true;
1324 }
1325 case Instruction::Store: {
1326 const StoreInst *store_inst = cast<StoreInst>(inst);
1327
1328 // The semantics of Store are:
1329 // Resolve the region D containing the data to be stored
1330 // Resolve the region P containing a pointer
1331 // Dereference P to get the region R that the data should be stored in
1332 // Transfer a unit of type type(D) from D to R
1333
1334 const Value *value_operand = store_inst->getValueOperand();
1335 const Value *pointer_operand = store_inst->getPointerOperand();
1336
1337 lldb::addr_t D = frame.ResolveValue(value_operand, module);
1338 lldb::addr_t P = frame.ResolveValue(pointer_operand, module);
1339
1340 if (D == LLDB_INVALID_ADDRESS) {
1341 LLDB_LOGF(log, "StoreInst's value doesn't resolve to anything");
1343 return false;
1344 }
1345
1346 if (P == LLDB_INVALID_ADDRESS) {
1347 LLDB_LOGF(log, "StoreInst's pointer doesn't resolve to anything");
1349 return false;
1350 }
1351
1352 lldb::addr_t R;
1353 lldb_private::Status read_error;
1354 execution_unit.ReadPointerFromMemory(&R, P, read_error);
1355
1356 if (!read_error.Success()) {
1357 LLDB_LOGF(log, "Couldn't read the address to be loaded for a LoadInst");
1359 return false;
1360 }
1361
1362 Type *target_ty = value_operand->getType();
1363 size_t target_size = data_layout.getTypeStoreSize(target_ty);
1364 lldb_private::DataBufferHeap buffer(target_size, 0);
1365
1366 read_error.Clear();
1367 execution_unit.ReadMemory(buffer.GetBytes(), D, buffer.GetByteSize(),
1368 read_error);
1369 if (!read_error.Success()) {
1370 LLDB_LOGF(log, "Couldn't read from a region on behalf of a StoreInst");
1372 return false;
1373 }
1374
1375 lldb_private::Status write_error;
1376 execution_unit.WriteMemory(R, buffer.GetBytes(), buffer.GetByteSize(),
1377 write_error);
1378 if (!write_error.Success()) {
1379 LLDB_LOGF(log, "Couldn't write to a region on behalf of a StoreInst");
1381 return false;
1382 }
1383
1384 if (log) {
1385 LLDB_LOGF(log, "Interpreted a StoreInst");
1386 LLDB_LOGF(log, " D : 0x%" PRIx64, D);
1387 LLDB_LOGF(log, " P : 0x%" PRIx64, P);
1388 LLDB_LOGF(log, " R : 0x%" PRIx64, R);
1389 }
1390 } break;
1391 case Instruction::Call: {
1392 const CallInst *call_inst = cast<CallInst>(inst);
1393
1394 if (CanIgnoreCall(call_inst))
1395 break;
1396
1397 // Get the return type
1398 llvm::Type *returnType = call_inst->getType();
1399 if (returnType == nullptr) {
1401 "unable to access return type");
1402 return false;
1403 }
1404
1405 // Work with void, integer and pointer return types
1406 if (!returnType->isVoidTy() && !returnType->isIntegerTy() &&
1407 !returnType->isPointerTy()) {
1409 "return type is not supported");
1410 return false;
1411 }
1412
1413 // Check we can actually get a thread
1414 if (exe_ctx.GetThreadPtr() == nullptr) {
1415 error =
1416 lldb_private::Status::FromErrorString("unable to acquire thread");
1417 return false;
1418 }
1419
1420 // Make sure we have a valid process
1421 if (!process) {
1422 error =
1423 lldb_private::Status::FromErrorString("unable to get the process");
1424 return false;
1425 }
1426
1427 // Find the address of the callee function
1429 const llvm::Value *val = call_inst->getCalledOperand();
1430
1431 if (!frame.EvaluateValue(I, val, module)) {
1433 "unable to get address of function");
1434 return false;
1435 }
1437
1440
1441 llvm::FunctionType *prototype = call_inst->getFunctionType();
1442
1443 // Find number of arguments
1444 const int numArgs = call_inst->arg_size();
1445
1446 // We work with a fixed array of 16 arguments which is our upper limit
1447 static lldb_private::ABI::CallArgument rawArgs[16];
1448 if (numArgs >= 16) {
1450 "function takes too many arguments");
1451 return false;
1452 }
1453
1454 // Push all function arguments to the argument list that will be passed
1455 // to the call function thread plan
1456 for (int i = 0; i < numArgs; i++) {
1457 // Get details of this argument
1458 llvm::Value *arg_op = call_inst->getArgOperand(i);
1459 llvm::Type *arg_ty = arg_op->getType();
1460
1461 // Ensure that this argument is an supported type
1462 if (!arg_ty->isIntegerTy() && !arg_ty->isPointerTy()) {
1464 "argument %d must be integer type", i);
1465 return false;
1466 }
1467
1468 // Extract the arguments value
1469 lldb_private::Scalar tmp_op = 0;
1470 if (!frame.EvaluateValue(tmp_op, arg_op, module)) {
1472 "unable to evaluate argument %d", i);
1473 return false;
1474 }
1475
1476 // Check if this is a string literal or constant string pointer
1477 if (arg_ty->isPointerTy()) {
1478 lldb::addr_t addr = tmp_op.ULongLong();
1479 size_t dataSize = 0;
1480
1481 bool Success = execution_unit.GetAllocSize(addr, dataSize);
1483 assert(Success &&
1484 "unable to locate host data for transfer to device");
1485 // Create the required buffer
1486 rawArgs[i].size = dataSize;
1487 rawArgs[i].data_up.reset(new uint8_t[dataSize + 1]);
1488
1489 // Read string from host memory
1490 execution_unit.ReadMemory(rawArgs[i].data_up.get(), addr, dataSize,
1491 error);
1492 assert(!error.Fail() &&
1493 "we have failed to read the string from memory");
1494
1495 // Add null terminator
1496 rawArgs[i].data_up[dataSize] = '\0';
1498 } else /* if ( arg_ty->isPointerTy() ) */
1499 {
1501 // Get argument size in bytes
1502 rawArgs[i].size = arg_ty->getIntegerBitWidth() / 8;
1503 // Push value into argument list for thread plan
1504 rawArgs[i].value = tmp_op.ULongLong();
1505 }
1506 }
1507
1508 // Pack the arguments into an llvm::array
1509 llvm::ArrayRef<lldb_private::ABI::CallArgument> args(rawArgs, numArgs);
1510
1511 // Setup a thread plan to call the target function
1512 lldb::ThreadPlanSP call_plan_sp(
1514 exe_ctx.GetThreadRef(), funcAddr, *prototype, *returnType, args,
1515 options));
1516
1517 // Check if the plan is valid
1519 if (!call_plan_sp || !call_plan_sp->ValidatePlan(&ss)) {
1521 "unable to make ThreadPlanCallFunctionUsingABI for 0x%llx",
1522 I.ULongLong());
1523 return false;
1524 }
1525
1526 process->SetRunningUserExpression(true);
1527
1528 // Execute the actual function call thread plan
1530 process->RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics);
1531
1532 // Check that the thread plan completed successfully
1535 "ThreadPlanCallFunctionUsingABI failed");
1536 return false;
1537 }
1538
1539 process->SetRunningUserExpression(false);
1540
1541 // Void return type
1542 if (returnType->isVoidTy()) {
1543 // Cant assign to void types, so we leave the frame untouched
1544 } else
1545 // Integer or pointer return type
1546 if (returnType->isIntegerTy() || returnType->isPointerTy()) {
1547 // Get the encapsulated return value
1548 lldb::ValueObjectSP retVal = call_plan_sp.get()->GetReturnValueObject();
1549
1550 lldb_private::Scalar returnVal = -1;
1551 lldb_private::ValueObject *vobj = retVal.get();
1552
1553 // Check if the return value is valid
1554 if (vobj == nullptr || !retVal) {
1556 "unable to get the return value");
1557 return false;
1558 }
1559
1560 // Extract the return value as a integer
1561 lldb_private::Value &value = vobj->GetValue();
1562 returnVal = value.GetScalar();
1563
1564 // Push the return value as the result
1565 frame.AssignValue(inst, returnVal, module);
1566 }
1567 } break;
1568 }
1569
1570 ++frame.m_ii;
1571 }
1572
1573 return false;
1574}
static llvm::raw_ostream & error(Stream &strm)
#define INTERRUPT_REQUESTED(debugger,...)
This handy define will keep you from having to generate a report for the interruption by hand.
Definition: Debugger.h:454
static bool CanResolveConstant(llvm::Constant *constant)
static const char * memory_allocation_error
static const char * memory_read_error
static std::string PrintValue(const Value *value, bool truncate=false)
static const char * interpreter_internal_error
static std::string PrintType(const Type *type, bool truncate=false)
static const char * interrupt_error
static const char * unsupported_operand_error
static const char * timeout_error
static bool CanIgnoreCall(const CallInst *call)
static const char * memory_write_error
static const char * unsupported_opcode_error
static const char * bad_value_error
static const char * too_many_functions_error
#define LLDB_LOGF(log,...)
Definition: Log.h:376
static bool CanInterpret(llvm::Module &module, llvm::Function &function, lldb_private::Status &error, const bool support_function_calls)
static bool Interpret(llvm::Module &module, llvm::Function &function, llvm::ArrayRef< lldb::addr_t > args, lldb_private::IRExecutionUnit &execution_unit, lldb_private::Status &error, lldb::addr_t stack_frame_bottom, lldb::addr_t stack_frame_top, lldb_private::ExecutionContext &exe_ctx, lldb_private::Timeout< std::micro > timeout)
lldb::addr_t ResolveValue(const Value *value, Module &module)
const BasicBlock * m_bb
lldb::addr_t m_stack_pointer
std::string SummarizeValue(const Value *value)
bool ResolveConstantValue(APInt &value, const Constant *constant)
bool ResolveConstant(lldb::addr_t process_address, const Constant *constant)
const DataLayout & m_target_data
lldb_private::IRExecutionUnit & m_execution_unit
bool MakeArgument(const Argument *value, uint64_t address)
lldb::addr_t Malloc(size_t size, uint8_t byte_alignment)
const BasicBlock * m_prev_bb
BasicBlock::const_iterator m_ie
lldb::addr_t Malloc(llvm::Type *type)
bool AssignToMatchType(lldb_private::Scalar &scalar, llvm::APInt value, Type *type)
~InterpreterStackFrame()=default
InterpreterStackFrame(const DataLayout &target_data, lldb_private::IRExecutionUnit &execution_unit, lldb::addr_t stack_frame_bottom, lldb::addr_t stack_frame_top)
void Jump(const BasicBlock *bb)
std::string PrintData(lldb::addr_t addr, llvm::Type *type)
std::map< const Value *, lldb::addr_t > ValueMap
BasicBlock::const_iterator m_ii
lldb::ByteOrder m_byte_order
bool EvaluateValue(lldb_private::Scalar &scalar, const Value *value, Module &module)
bool AssignValue(const Value *value, lldb_private::Scalar scalar, Module &module)
lldb::addr_t m_frame_process_address
A section + offset based address class.
Definition: Address.h:62
A uniqued constant string class.
Definition: ConstString.h:40
A subclass of DataBuffer that stores a data buffer on the heap.
lldb::offset_t GetByteSize() const override
Get the number of bytes in the data buffer.
An data extractor class.
Definition: DataExtractor.h:48
float GetFloat(lldb::offset_t *offset_ptr) const
Extract a float from *offset_ptr.
uint64_t GetMaxU64(lldb::offset_t *offset_ptr, size_t byte_size) const
Extract an unsigned integer of size byte_size from *offset_ptr.
double GetDouble(lldb::offset_t *offset_ptr) const
"lldb/Target/ExecutionContext.h" A class that contains an execution context.
Target * GetTargetPtr() const
Returns a pointer to the target object.
Process * GetProcessPtr() const
Returns a pointer to the process object.
Thread & GetThreadRef() const
Returns a reference to the thread object.
Thread * GetThreadPtr() const
Returns a pointer to the thread object.
"lldb/Expression/IRExecutionUnit.h" Contains the IR and, optionally, JIT- compiled code for a module.
lldb::addr_t FindSymbol(ConstString name, bool &missing_weak)
void Free(lldb::addr_t process_address, Status &error)
void ReadPointerFromMemory(lldb::addr_t *address, lldb::addr_t process_address, Status &error)
void GetMemoryData(DataExtractor &extractor, lldb::addr_t process_address, size_t size, Status &error)
void WritePointerToMemory(lldb::addr_t process_address, lldb::addr_t address, Status &error)
bool GetAllocSize(lldb::addr_t address, size_t &size)
void WriteMemory(lldb::addr_t process_address, const uint8_t *bytes, size_t size, Status &error)
void ReadMemory(uint8_t *bytes, lldb::addr_t process_address, size_t size, Status &error)
A plug-in interface definition class for debugging a process.
Definition: Process.h:343
lldb::ExpressionResults RunThreadPlan(ExecutionContext &exe_ctx, lldb::ThreadPlanSP &thread_plan_sp, const EvaluateExpressionOptions &options, DiagnosticManager &diagnostic_manager)
Definition: Process.cpp:4956
void SetRunningUserExpression(bool on)
Definition: Process.cpp:1494
bool IsZero() const
Definition: Scalar.cpp:144
unsigned long long ULongLong(unsigned long long fail_value=0) const
Definition: Scalar.cpp:335
size_t GetAsMemoryData(void *dst, size_t dst_len, lldb::ByteOrder dst_byte_order, Status &error) const
Definition: Scalar.cpp:771
long long SLongLong(long long fail_value=0) const
Definition: Scalar.cpp:331
bool ShiftRightLogical(const Scalar &rhs)
Definition: Scalar.cpp:434
llvm::APInt UInt128(const llvm::APInt &fail_value) const
Definition: Scalar.cpp:351
An error handling class.
Definition: Status.h:118
void Clear()
Clear the object state.
Definition: Status.cpp:215
static Status FromErrorStringWithFormat(const char *format,...) __attribute__((format(printf
Definition: Status.cpp:106
static Status FromErrorString(const char *str)
Definition: Status.h:141
bool Success() const
Test for success condition.
Definition: Status.cpp:304
llvm::StringRef GetString() const
size_t Printf(const char *format,...) __attribute__((format(printf
Output printf formatted output to the stream.
Definition: Stream.cpp:134
Debugger & GetDebugger()
Definition: Target.h:1080
const Value & GetValue() const
Definition: ValueObject.h:511
const Scalar & GetScalar() const
Definition: Value.h:112
uint8_t * GetBytes()
Get a pointer to the data.
Definition: DataBuffer.h:108
#define UNUSED_IF_ASSERT_DISABLED(x)
Definition: lldb-defines.h:140
#define LLDB_INVALID_ADDRESS
Definition: lldb-defines.h:82
std::shared_ptr< lldb_private::ThreadPlan > ThreadPlanSP
Definition: lldb-forward.h:453
std::shared_ptr< lldb_private::ValueObject > ValueObjectSP
Definition: lldb-forward.h:484
uint64_t offset_t
Definition: lldb-types.h:85
ExpressionResults
The results of expression evaluation.
@ eExpressionCompleted
ByteOrder
Byte ordering definitions.
@ eByteOrderLittle
uint64_t addr_t
Definition: lldb-types.h:80
Definition: Debugger.h:54
std::unique_ptr< uint8_t[]> data_up
Definition: ABI.h:38