LLDB  mainline
Process.cpp
Go to the documentation of this file.
1 //===-- Process.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 
13 #include "llvm/ADT/ScopeExit.h"
14 #include "llvm/Support/ScopedPrinter.h"
15 #include "llvm/Support/Threading.h"
16 
19 #include "lldb/Core/Debugger.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
23 #include "lldb/Core/StreamFile.h"
29 #include "lldb/Host/FileSystem.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostInfo.h"
32 #include "lldb/Host/OptionParser.h"
33 #include "lldb/Host/Pipe.h"
34 #include "lldb/Host/Terminal.h"
39 #include "lldb/Symbol/Function.h"
40 #include "lldb/Symbol/Symbol.h"
41 #include "lldb/Target/ABI.h"
45 #include "lldb/Target/JITLoader.h"
47 #include "lldb/Target/Language.h"
52 #include "lldb/Target/Platform.h"
53 #include "lldb/Target/Process.h"
55 #include "lldb/Target/StopInfo.h"
58 #include "lldb/Target/Target.h"
59 #include "lldb/Target/TargetList.h"
60 #include "lldb/Target/Thread.h"
61 #include "lldb/Target/ThreadPlan.h"
66 #include "lldb/Utility/Event.h"
67 #include "lldb/Utility/Log.h"
71 #include "lldb/Utility/State.h"
72 #include "lldb/Utility/Timer.h"
73 
74 using namespace lldb;
75 using namespace lldb_private;
76 using namespace std::chrono;
77 
78 // Comment out line below to disable memory caching, overriding the process
79 // setting target.process.disable-memory-cache
80 #define ENABLE_MEMORY_CACHING
81 
82 #ifdef ENABLE_MEMORY_CACHING
83 #define DISABLE_MEM_CACHE_DEFAULT false
84 #else
85 #define DISABLE_MEM_CACHE_DEFAULT true
86 #endif
87 
89  : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
90 public:
92 
94  bool will_modify,
95  uint32_t idx) const override {
96  // When getting the value for a key from the process options, we will
97  // always try and grab the setting from the current process if there is
98  // one. Else we just use the one from this instance.
99  if (exe_ctx) {
100  Process *process = exe_ctx->GetProcessPtr();
101  if (process) {
102  ProcessOptionValueProperties *instance_properties =
103  static_cast<ProcessOptionValueProperties *>(
104  process->GetValueProperties().get());
105  if (this != instance_properties)
106  return instance_properties->ProtectedGetPropertyAtIndex(idx);
107  }
108  }
109  return ProtectedGetPropertyAtIndex(idx);
110  }
111 };
112 
113 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = {
114  {
116  "parent",
117  "Continue tracing the parent process and detach the child.",
118  },
119  {
120  eFollowChild,
121  "child",
122  "Trace the child process and detach the parent.",
123  },
124 };
125 
126 #define LLDB_PROPERTIES_process
127 #include "TargetProperties.inc"
128 
129 enum {
130 #define LLDB_PROPERTIES_process
131 #include "TargetPropertiesEnum.inc"
133 };
134 
135 #define LLDB_PROPERTIES_process_experimental
136 #include "TargetProperties.inc"
137 
138 enum {
139 #define LLDB_PROPERTIES_process_experimental
140 #include "TargetPropertiesEnum.inc"
141 };
142 
144  : public Cloneable<ProcessExperimentalOptionValueProperties,
145  OptionValueProperties> {
146 public:
148  : Cloneable(
149  ConstString(Properties::GetExperimentalSettingsName())) {}
150 };
151 
152 ProcessExperimentalProperties::ProcessExperimentalProperties()
153  : Properties(OptionValuePropertiesSP(
155  m_collection_sp->Initialize(g_process_experimental_properties);
156 }
157 
159  : Properties(),
160  m_process(process) // Can be nullptr for global ProcessProperties
161 {
162  if (process == nullptr) {
163  // Global process properties, set them up one time
165  std::make_shared<ProcessOptionValueProperties>(ConstString("process"));
166  m_collection_sp->Initialize(g_process_properties);
167  m_collection_sp->AppendProperty(
168  ConstString("thread"), ConstString("Settings specific to threads."),
170  } else {
173  m_collection_sp->SetValueChangedCallback(
174  ePropertyPythonOSPluginPath,
175  [this] { m_process->LoadOperatingSystemPlugin(true); });
176  }
177 
179  std::make_unique<ProcessExperimentalProperties>();
180  m_collection_sp->AppendProperty(
182  ConstString("Experimental settings - setting these won't produce "
183  "errors if the setting is not present."),
184  true, m_experimental_properties_up->GetValueProperties());
185 }
186 
188 
190  const uint32_t idx = ePropertyDisableMemCache;
191  return m_collection_sp->GetPropertyAtIndexAsBoolean(
192  nullptr, idx, g_process_properties[idx].default_uint_value != 0);
193 }
194 
196  const uint32_t idx = ePropertyMemCacheLineSize;
197  return m_collection_sp->GetPropertyAtIndexAsUInt64(
198  nullptr, idx, g_process_properties[idx].default_uint_value);
199 }
200 
202  Args args;
203  const uint32_t idx = ePropertyExtraStartCommand;
204  m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
205  return args;
206 }
207 
209  const uint32_t idx = ePropertyExtraStartCommand;
210  m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
211 }
212 
214  const uint32_t idx = ePropertyPythonOSPluginPath;
215  return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
216 }
217 
219  const uint32_t idx = ePropertyVirtualAddressableBits;
220  return m_collection_sp->GetPropertyAtIndexAsUInt64(
221  nullptr, idx, g_process_properties[idx].default_uint_value);
222 }
223 
225  const uint32_t idx = ePropertyVirtualAddressableBits;
226  m_collection_sp->SetPropertyAtIndexAsUInt64(nullptr, idx, bits);
227 }
229  const uint32_t idx = ePropertyPythonOSPluginPath;
230  m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file);
231 }
232 
234  const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
235  return m_collection_sp->GetPropertyAtIndexAsBoolean(
236  nullptr, idx, g_process_properties[idx].default_uint_value != 0);
237 }
238 
240  const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
241  m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
242 }
243 
245  const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
246  return m_collection_sp->GetPropertyAtIndexAsBoolean(
247  nullptr, idx, g_process_properties[idx].default_uint_value != 0);
248 }
249 
251  const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
252  m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
253 }
254 
256  const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
257  return m_collection_sp->GetPropertyAtIndexAsBoolean(
258  nullptr, idx, g_process_properties[idx].default_uint_value != 0);
259 }
260 
262  const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
263  m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
264 }
265 
267  const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
268  return m_collection_sp->GetPropertyAtIndexAsBoolean(
269  nullptr, idx, g_process_properties[idx].default_uint_value != 0);
270 }
271 
273  const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
274  m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, disable);
275  m_process->Flush();
276 }
277 
279  const uint32_t idx = ePropertyDetachKeepsStopped;
280  return m_collection_sp->GetPropertyAtIndexAsBoolean(
281  nullptr, idx, g_process_properties[idx].default_uint_value != 0);
282 }
283 
285  const uint32_t idx = ePropertyDetachKeepsStopped;
286  m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
287 }
288 
290  const uint32_t idx = ePropertyWarningOptimization;
291  return m_collection_sp->GetPropertyAtIndexAsBoolean(
292  nullptr, idx, g_process_properties[idx].default_uint_value != 0);
293 }
294 
296  const uint32_t idx = ePropertyWarningUnsupportedLanguage;
297  return m_collection_sp->GetPropertyAtIndexAsBoolean(
298  nullptr, idx, g_process_properties[idx].default_uint_value != 0);
299 }
300 
302  const uint32_t idx = ePropertyStopOnExec;
303  return m_collection_sp->GetPropertyAtIndexAsBoolean(
304  nullptr, idx, g_process_properties[idx].default_uint_value != 0);
305 }
306 
308  const uint32_t idx = ePropertyUtilityExpressionTimeout;
309  uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
310  nullptr, idx, g_process_properties[idx].default_uint_value);
311  return std::chrono::seconds(value);
312 }
313 
314 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
315  const uint32_t idx = ePropertyInterruptTimeout;
316  uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
317  nullptr, idx, g_process_properties[idx].default_uint_value);
318  return std::chrono::seconds(value);
319 }
320 
322  const uint32_t idx = ePropertySteppingRunsAllThreads;
323  return m_collection_sp->GetPropertyAtIndexAsBoolean(
324  nullptr, idx, g_process_properties[idx].default_uint_value != 0);
325 }
326 
328  const bool fail_value = true;
329  const Property *exp_property =
330  m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
331  OptionValueProperties *exp_values =
332  exp_property->GetValue()->GetAsProperties();
333  if (!exp_values)
334  return fail_value;
335 
336  return exp_values->GetPropertyAtIndexAsBoolean(
337  nullptr, ePropertyOSPluginReportsAllThreads, fail_value);
338 }
339 
341  const Property *exp_property =
342  m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyExperimental);
343  OptionValueProperties *exp_values =
344  exp_property->GetValue()->GetAsProperties();
345  if (exp_values)
346  exp_values->SetPropertyAtIndexAsBoolean(
347  nullptr, ePropertyOSPluginReportsAllThreads, does_report);
348 }
349 
351  const uint32_t idx = ePropertyFollowForkMode;
352  return (FollowForkMode)m_collection_sp->GetPropertyAtIndexAsEnumeration(
353  nullptr, idx, g_process_properties[idx].default_uint_value);
354 }
355 
356 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
357  llvm::StringRef plugin_name,
358  ListenerSP listener_sp,
359  const FileSpec *crash_file_path,
360  bool can_connect) {
361  static uint32_t g_process_unique_id = 0;
362 
363  ProcessSP process_sp;
364  ProcessCreateInstance create_callback = nullptr;
365  if (!plugin_name.empty()) {
366  create_callback =
368  if (create_callback) {
369  process_sp = create_callback(target_sp, listener_sp, crash_file_path,
370  can_connect);
371  if (process_sp) {
372  if (process_sp->CanDebug(target_sp, true)) {
373  process_sp->m_process_unique_id = ++g_process_unique_id;
374  } else
375  process_sp.reset();
376  }
377  }
378  } else {
379  for (uint32_t idx = 0;
380  (create_callback =
382  ++idx) {
383  process_sp = create_callback(target_sp, listener_sp, crash_file_path,
384  can_connect);
385  if (process_sp) {
386  if (process_sp->CanDebug(target_sp, false)) {
387  process_sp->m_process_unique_id = ++g_process_unique_id;
388  break;
389  } else
390  process_sp.reset();
391  }
392  }
393  }
394  return process_sp;
395 }
396 
398  static ConstString class_name("lldb.process");
399  return class_name;
400 }
401 
402 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
403  : Process(target_sp, listener_sp,
404  UnixSignals::Create(HostInfo::GetArchitecture())) {
405  // This constructor just delegates to the full Process constructor,
406  // defaulting to using the Host's UnixSignals.
407 }
408 
409 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
410  const UnixSignalsSP &unix_signals_sp)
411  : ProcessProperties(this),
412  Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
413  Process::GetStaticBroadcasterClass().AsCString()),
414  m_target_wp(target_sp), m_public_state(eStateUnloaded),
415  m_private_state(eStateUnloaded),
416  m_private_state_broadcaster(nullptr,
417  "lldb.process.internal_state_broadcaster"),
418  m_private_state_control_broadcaster(
419  nullptr, "lldb.process.internal_state_control_broadcaster"),
420  m_private_state_listener_sp(
421  Listener::MakeListener("lldb.process.internal_state_listener")),
422  m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
423  m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
424  m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
425  m_thread_list(this), m_thread_plans(*this), m_extended_thread_list(this),
426  m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
427  m_notifications(), m_image_tokens(), m_listener_sp(listener_sp),
428  m_breakpoint_site_list(), m_dynamic_checkers_up(),
429  m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
430  m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
431  m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
432  m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
433  m_memory_cache(*this), m_allocated_memory_cache(*this),
434  m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
435  m_private_run_lock(), m_finalizing(false),
436  m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
437  m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
438  m_can_interpret_function_calls(false), m_warnings_issued(),
439  m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) {
441 
443  LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
444 
445  if (!m_unix_signals_sp)
446  m_unix_signals_sp = std::make_shared<UnixSignals>();
447 
448  SetEventName(eBroadcastBitStateChanged, "state-changed");
449  SetEventName(eBroadcastBitInterrupt, "interrupt");
450  SetEventName(eBroadcastBitSTDOUT, "stdout-available");
451  SetEventName(eBroadcastBitSTDERR, "stderr-available");
452  SetEventName(eBroadcastBitProfileData, "profile-data-available");
453  SetEventName(eBroadcastBitStructuredData, "structured-data-available");
454 
456  eBroadcastInternalStateControlStop, "control-stop");
458  eBroadcastInternalStateControlPause, "control-pause");
460  eBroadcastInternalStateControlResume, "control-resume");
461 
462  m_listener_sp->StartListeningForEvents(
466 
467  m_private_state_listener_sp->StartListeningForEvents(
470 
471  m_private_state_listener_sp->StartListeningForEvents(
475  // We need something valid here, even if just the default UnixSignalsSP.
476  assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
477 
478  // Allow the platform to override the default cache line size
479  OptionValueSP value_sp =
481  ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)
482  ->GetValue();
483  uint32_t platform_cache_line_size =
484  target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
485  if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
486  value_sp->SetUInt64Value(platform_cache_line_size);
487 
489 }
490 
493  LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
495 
496  // ThreadList::Clear() will try to acquire this process's mutex, so
497  // explicitly clear the thread list here to ensure that the mutex is not
498  // destroyed before the thread list.
500 }
501 
503  // NOTE: intentional leak so we don't crash if global destructor chain gets
504  // called as other threads still use the result of this function
505  static ProcessProperties *g_settings_ptr =
506  new ProcessProperties(nullptr);
507  return *g_settings_ptr;
508 }
509 
511  if (m_finalizing.exchange(true))
512  return;
513 
514  // Destroy the process. This will call the virtual function DoDestroy under
515  // the hood, giving our derived class a chance to do the ncessary tear down.
516  DestroyImpl(false);
517 
518  // Clear our broadcaster before we proceed with destroying
520 
521  // Do any cleanup needed prior to being destructed... Subclasses that
522  // override this method should call this superclass method as well.
523 
524  // We need to destroy the loader before the derived Process class gets
525  // destroyed since it is very likely that undoing the loader will require
526  // access to the real process.
527  m_dynamic_checkers_up.reset();
528  m_abi_sp.reset();
529  m_os_up.reset();
530  m_system_runtime_up.reset();
531  m_dyld_up.reset();
532  m_jit_loaders_up.reset();
539  std::vector<Notifications> empty_notifications;
540  m_notifications.swap(empty_notifications);
541  m_image_tokens.clear();
544  {
545  std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
546  m_language_runtimes.clear();
547  }
549  m_next_event_action_up.reset();
550  // Clear the last natural stop ID since it has a strong reference to this
551  // process
553  //#ifdef LLDB_CONFIGURATION_DEBUG
554  // StreamFile s(stdout, false);
555  // EventSP event_sp;
556  // while (m_private_state_listener_sp->GetNextEvent(event_sp))
557  // {
558  // event_sp->Dump (&s);
559  // s.EOL();
560  // }
561  //#endif
562  // We have to be very careful here as the m_private_state_listener might
563  // contain events that have ProcessSP values in them which can keep this
564  // process around forever. These events need to be cleared out.
566  m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
568  m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
571 }
572 
574  m_notifications.push_back(callbacks);
575  if (callbacks.initialize != nullptr)
576  callbacks.initialize(callbacks.baton, this);
577 }
578 
580  std::vector<Notifications>::iterator pos, end = m_notifications.end();
581  for (pos = m_notifications.begin(); pos != end; ++pos) {
582  if (pos->baton == callbacks.baton &&
583  pos->initialize == callbacks.initialize &&
584  pos->process_state_changed == callbacks.process_state_changed) {
585  m_notifications.erase(pos);
586  return true;
587  }
588  }
589  return false;
590 }
591 
593  std::vector<Notifications>::iterator notification_pos,
594  notification_end = m_notifications.end();
595  for (notification_pos = m_notifications.begin();
596  notification_pos != notification_end; ++notification_pos) {
597  if (notification_pos->process_state_changed)
598  notification_pos->process_state_changed(notification_pos->baton, this,
599  state);
600  }
601 }
602 
603 // FIXME: We need to do some work on events before the general Listener sees
604 // them.
605 // For instance if we are continuing from a breakpoint, we need to ensure that
606 // we do the little "insert real insn, step & stop" trick. But we can't do
607 // that when the event is delivered by the broadcaster - since that is done on
608 // the thread that is waiting for new events, so if we needed more than one
609 // event for our handling, we would stall. So instead we do it when we fetch
610 // the event off of the queue.
611 //
612 
613 StateType Process::GetNextEvent(EventSP &event_sp) {
614  StateType state = eStateInvalid;
615 
616  if (m_listener_sp->GetEventForBroadcaster(this, event_sp,
617  std::chrono::seconds(0)) &&
618  event_sp)
619  state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
620 
621  return state;
622 }
623 
625  const Timeout<std::micro> &timeout) {
626  // don't sync (potentially context switch) in case where there is no process
627  // IO
629  return;
630 
631  auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
632 
634  if (Result) {
635  LLDB_LOG(
636  log,
637  "waited from m_iohandler_sync to change from {0}. New value is {1}.",
638  iohandler_id, *Result);
639  } else {
640  LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
641  iohandler_id);
642  }
643 }
644 
646  EventSP *event_sp_ptr, bool wait_always,
647  ListenerSP hijack_listener_sp,
648  Stream *stream, bool use_run_lock) {
649  // We can't just wait for a "stopped" event, because the stopped event may
650  // have restarted the target. We have to actually check each event, and in
651  // the case of a stopped event check the restarted flag on the event.
652  if (event_sp_ptr)
653  event_sp_ptr->reset();
654  StateType state = GetState();
655  // If we are exited or detached, we won't ever get back to any other valid
656  // state...
657  if (state == eStateDetached || state == eStateExited)
658  return state;
659 
661  LLDB_LOG(log, "timeout = {0}", timeout);
662 
663  if (!wait_always && StateIsStoppedState(state, true) &&
665  LLDB_LOGF(log,
666  "Process::%s returning without waiting for events; process "
667  "private and public states are already 'stopped'.",
668  __FUNCTION__);
669  // We need to toggle the run lock as this won't get done in
670  // SetPublicState() if the process is hijacked.
671  if (hijack_listener_sp && use_run_lock)
673  return state;
674  }
675 
676  while (state != eStateInvalid) {
677  EventSP event_sp;
678  state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
679  if (event_sp_ptr && event_sp)
680  *event_sp_ptr = event_sp;
681 
682  bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
684  pop_process_io_handler);
685 
686  switch (state) {
687  case eStateCrashed:
688  case eStateDetached:
689  case eStateExited:
690  case eStateUnloaded:
691  // We need to toggle the run lock as this won't get done in
692  // SetPublicState() if the process is hijacked.
693  if (hijack_listener_sp && use_run_lock)
695  return state;
696  case eStateStopped:
698  continue;
699  else {
700  // We need to toggle the run lock as this won't get done in
701  // SetPublicState() if the process is hijacked.
702  if (hijack_listener_sp && use_run_lock)
704  return state;
705  }
706  default:
707  continue;
708  }
709  }
710  return state;
711 }
712 
713 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp,
714  Stream *stream,
715  bool &pop_process_io_handler) {
716  const bool handle_pop = pop_process_io_handler;
717 
718  pop_process_io_handler = false;
719  ProcessSP process_sp =
721 
722  if (!process_sp)
723  return false;
724 
725  StateType event_state =
727  if (event_state == eStateInvalid)
728  return false;
729 
730  switch (event_state) {
731  case eStateInvalid:
732  case eStateUnloaded:
733  case eStateAttaching:
734  case eStateLaunching:
735  case eStateStepping:
736  case eStateDetached:
737  if (stream)
738  stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
739  StateAsCString(event_state));
740  if (event_state == eStateDetached)
741  pop_process_io_handler = true;
742  break;
743 
744  case eStateConnected:
745  case eStateRunning:
746  // Don't be chatty when we run...
747  break;
748 
749  case eStateExited:
750  if (stream)
751  process_sp->GetStatus(*stream);
752  pop_process_io_handler = true;
753  break;
754 
755  case eStateStopped:
756  case eStateCrashed:
757  case eStateSuspended:
758  // Make sure the program hasn't been auto-restarted:
760  if (stream) {
761  size_t num_reasons =
763  if (num_reasons > 0) {
764  // FIXME: Do we want to report this, or would that just be annoyingly
765  // chatty?
766  if (num_reasons == 1) {
767  const char *reason =
769  event_sp.get(), 0);
770  stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
771  process_sp->GetID(),
772  reason ? reason : "<UNKNOWN REASON>");
773  } else {
774  stream->Printf("Process %" PRIu64
775  " stopped and restarted, reasons:\n",
776  process_sp->GetID());
777 
778  for (size_t i = 0; i < num_reasons; i++) {
779  const char *reason =
781  event_sp.get(), i);
782  stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
783  }
784  }
785  }
786  }
787  } else {
788  StopInfoSP curr_thread_stop_info_sp;
789  // Lock the thread list so it doesn't change on us, this is the scope for
790  // the locker:
791  {
792  ThreadList &thread_list = process_sp->GetThreadList();
793  std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
794 
795  ThreadSP curr_thread(thread_list.GetSelectedThread());
796  ThreadSP thread;
797  StopReason curr_thread_stop_reason = eStopReasonInvalid;
798  bool prefer_curr_thread = false;
799  if (curr_thread && curr_thread->IsValid()) {
800  curr_thread_stop_reason = curr_thread->GetStopReason();
801  switch (curr_thread_stop_reason) {
802  case eStopReasonNone:
803  case eStopReasonInvalid:
804  // Don't prefer the current thread if it didn't stop for a reason.
805  break;
806  case eStopReasonSignal: {
807  // We need to do the same computation we do for other threads
808  // below in case the current thread happens to be the one that
809  // stopped for the no-stop signal.
810  uint64_t signo = curr_thread->GetStopInfo()->GetValue();
811  if (process_sp->GetUnixSignals()->GetShouldStop(signo))
812  prefer_curr_thread = true;
813  } break;
814  default:
815  prefer_curr_thread = true;
816  break;
817  }
818  curr_thread_stop_info_sp = curr_thread->GetStopInfo();
819  }
820 
821  if (!prefer_curr_thread) {
822  // Prefer a thread that has just completed its plan over another
823  // thread as current thread.
824  ThreadSP plan_thread;
825  ThreadSP other_thread;
826 
827  const size_t num_threads = thread_list.GetSize();
828  size_t i;
829  for (i = 0; i < num_threads; ++i) {
830  thread = thread_list.GetThreadAtIndex(i);
831  StopReason thread_stop_reason = thread->GetStopReason();
832  switch (thread_stop_reason) {
833  case eStopReasonInvalid:
834  case eStopReasonNone:
835  break;
836 
837  case eStopReasonSignal: {
838  // Don't select a signal thread if we weren't going to stop at
839  // that signal. We have to have had another reason for stopping
840  // here, and the user doesn't want to see this thread.
841  uint64_t signo = thread->GetStopInfo()->GetValue();
842  if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
843  if (!other_thread)
844  other_thread = thread;
845  }
846  break;
847  }
848  case eStopReasonTrace:
852  case eStopReasonExec:
853  case eStopReasonFork:
854  case eStopReasonVFork:
859  if (!other_thread)
860  other_thread = thread;
861  break;
863  if (!plan_thread)
864  plan_thread = thread;
865  break;
866  }
867  }
868  if (plan_thread)
869  thread_list.SetSelectedThreadByID(plan_thread->GetID());
870  else if (other_thread)
871  thread_list.SetSelectedThreadByID(other_thread->GetID());
872  else {
873  if (curr_thread && curr_thread->IsValid())
874  thread = curr_thread;
875  else
876  thread = thread_list.GetThreadAtIndex(0);
877 
878  if (thread)
879  thread_list.SetSelectedThreadByID(thread->GetID());
880  }
881  }
882  }
883  // Drop the ThreadList mutex by here, since GetThreadStatus below might
884  // have to run code, e.g. for Data formatters, and if we hold the
885  // ThreadList mutex, then the process is going to have a hard time
886  // restarting the process.
887  if (stream) {
888  Debugger &debugger = process_sp->GetTarget().GetDebugger();
889  if (debugger.GetTargetList().GetSelectedTarget().get() ==
890  &process_sp->GetTarget()) {
891  ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
892 
893  if (!thread_sp || !thread_sp->IsValid())
894  return false;
895 
896  const bool only_threads_with_stop_reason = true;
897  const uint32_t start_frame = thread_sp->GetSelectedFrameIndex();
898  const uint32_t num_frames = 1;
899  const uint32_t num_frames_with_source = 1;
900  const bool stop_format = true;
901 
902  process_sp->GetStatus(*stream);
903  process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
904  start_frame, num_frames,
905  num_frames_with_source,
906  stop_format);
907  if (curr_thread_stop_info_sp) {
908  lldb::addr_t crashing_address;
909  ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
910  curr_thread_stop_info_sp, &crashing_address);
911  if (valobj_sp) {
913  ValueObject::GetExpressionPathFormat::
914  eGetExpressionPathFormatHonorPointers;
915  stream->PutCString("Likely cause: ");
916  valobj_sp->GetExpressionPath(*stream, format);
917  stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
918  }
919  }
920  } else {
921  uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
922  process_sp->GetTarget().shared_from_this());
923  if (target_idx != UINT32_MAX)
924  stream->Printf("Target %d: (", target_idx);
925  else
926  stream->Printf("Target <unknown index>: (");
927  process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
928  stream->Printf(") stopped.\n");
929  }
930  }
931 
932  // Pop the process IO handler
933  pop_process_io_handler = true;
934  }
935  break;
936  }
937 
938  if (handle_pop && pop_process_io_handler)
939  process_sp->PopProcessIOHandler();
940 
941  return true;
942 }
943 
944 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
945  if (listener_sp) {
946  return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
948  } else
949  return false;
950 }
951 
953 
955  const Timeout<std::micro> &timeout,
956  ListenerSP hijack_listener_sp) {
958  LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
959 
960  ListenerSP listener_sp = hijack_listener_sp;
961  if (!listener_sp)
962  listener_sp = m_listener_sp;
963 
964  StateType state = eStateInvalid;
965  if (listener_sp->GetEventForBroadcasterWithType(
967  timeout)) {
968  if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
969  state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
970  else
971  LLDB_LOG(log, "got no event or was interrupted.");
972  }
973 
974  LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
975  return state;
976 }
977 
980 
981  LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
982 
983  Event *event_ptr;
984  event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType(
986  if (log) {
987  if (event_ptr) {
988  LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
990  } else {
991  LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
992  }
993  }
994  return event_ptr;
995 }
996 
997 StateType
999  const Timeout<std::micro> &timeout) {
1001  LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1002 
1003  StateType state = eStateInvalid;
1004  if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1007  timeout))
1008  if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1009  state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1010 
1011  LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1012  state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1013  return state;
1014 }
1015 
1016 bool Process::GetEventsPrivate(EventSP &event_sp,
1017  const Timeout<std::micro> &timeout,
1018  bool control_only) {
1020  LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1021 
1022  if (control_only)
1023  return m_private_state_listener_sp->GetEventForBroadcaster(
1024  &m_private_state_control_broadcaster, event_sp, timeout);
1025  else
1026  return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1027 }
1028 
1029 bool Process::IsRunning() const {
1031 }
1032 
1034  std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1035 
1037  return m_exit_status;
1038  return -1;
1039 }
1040 
1042  std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1043 
1044  if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1045  return m_exit_string.c_str();
1046  return nullptr;
1047 }
1048 
1049 bool Process::SetExitStatus(int status, const char *cstr) {
1050  // Use a mutex to protect setting the exit status.
1051  std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1052 
1055  LLDB_LOGF(
1056  log, "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
1057  status, status, cstr ? "\"" : "", cstr ? cstr : "NULL", cstr ? "\"" : "");
1058 
1059  // We were already in the exited state
1061  LLDB_LOGF(log, "Process::SetExitStatus () ignoring exit status because "
1062  "state was already set to eStateExited");
1063  return false;
1064  }
1065 
1066  m_exit_status = status;
1067  if (cstr)
1068  m_exit_string = cstr;
1069  else
1070  m_exit_string.clear();
1071 
1072  // Clear the last natural stop ID since it has a strong reference to this
1073  // process
1075 
1077 
1078  // Allow subclasses to do some cleanup
1079  DidExit();
1080 
1081  return true;
1082 }
1083 
1085  switch (m_private_state.GetValue()) {
1086  case eStateConnected:
1087  case eStateAttaching:
1088  case eStateLaunching:
1089  case eStateStopped:
1090  case eStateRunning:
1091  case eStateStepping:
1092  case eStateCrashed:
1093  case eStateSuspended:
1094  return true;
1095  default:
1096  return false;
1097  }
1098 }
1099 
1100 // This static callback can be used to watch for local child processes on the
1101 // current host. The child process exits, the process will be found in the
1102 // global target list (we want to be completely sure that the
1103 // lldb_private::Process doesn't go away before we can deliver the signal.
1105  lldb::pid_t pid, bool exited,
1106  int signo, // Zero for no signal
1107  int exit_status // Exit value of process if signal is zero
1108  ) {
1110  LLDB_LOGF(log,
1111  "Process::SetProcessExitStatus (pid=%" PRIu64
1112  ", exited=%i, signal=%i, exit_status=%i)\n",
1113  pid, exited, signo, exit_status);
1114 
1115  if (exited) {
1116  TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1117  if (target_sp) {
1118  ProcessSP process_sp(target_sp->GetProcessSP());
1119  if (process_sp) {
1120  const char *signal_cstr = nullptr;
1121  if (signo)
1122  signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo);
1123 
1124  process_sp->SetExitStatus(exit_status, signal_cstr);
1125  }
1126  }
1127  return true;
1128  }
1129  return false;
1130 }
1131 
1133  ThreadList &new_thread_list) {
1135  return DoUpdateThreadList(old_thread_list, new_thread_list);
1136 }
1137 
1139  const uint32_t stop_id = GetStopID();
1140  if (m_thread_list.GetSize(false) == 0 ||
1141  stop_id != m_thread_list.GetStopID()) {
1142  bool clear_unused_threads = true;
1143  const StateType state = GetPrivateState();
1144  if (StateIsStoppedState(state, true)) {
1145  std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1146  m_thread_list.SetStopID(stop_id);
1147 
1148  // m_thread_list does have its own mutex, but we need to hold onto the
1149  // mutex between the call to UpdateThreadList(...) and the
1150  // os->UpdateThreadList(...) so it doesn't change on us
1151  ThreadList &old_thread_list = m_thread_list;
1152  ThreadList real_thread_list(this);
1153  ThreadList new_thread_list(this);
1154  // Always update the thread list with the protocol specific thread list,
1155  // but only update if "true" is returned
1156  if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1157  // Don't call into the OperatingSystem to update the thread list if we
1158  // are shutting down, since that may call back into the SBAPI's,
1159  // requiring the API lock which is already held by whoever is shutting
1160  // us down, causing a deadlock.
1162  if (os && !m_destroy_in_process) {
1163  // Clear any old backing threads where memory threads might have been
1164  // backed by actual threads from the lldb_private::Process subclass
1165  size_t num_old_threads = old_thread_list.GetSize(false);
1166  for (size_t i = 0; i < num_old_threads; ++i)
1167  old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1168  // See if the OS plugin reports all threads. If it does, then
1169  // it is safe to clear unseen thread's plans here. Otherwise we
1170  // should preserve them in case they show up again:
1171  clear_unused_threads = GetOSPluginReportsAllThreads();
1172 
1173  // Turn off dynamic types to ensure we don't run any expressions.
1174  // Objective-C can run an expression to determine if a SBValue is a
1175  // dynamic type or not and we need to avoid this. OperatingSystem
1176  // plug-ins can't run expressions that require running code...
1177 
1178  Target &target = GetTarget();
1179  const lldb::DynamicValueType saved_prefer_dynamic =
1180  target.GetPreferDynamicValue();
1181  if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1183 
1184  // Now let the OperatingSystem plug-in update the thread list
1185 
1186  os->UpdateThreadList(
1187  old_thread_list, // Old list full of threads created by OS plug-in
1188  real_thread_list, // The actual thread list full of threads
1189  // created by each lldb_private::Process
1190  // subclass
1191  new_thread_list); // The new thread list that we will show to the
1192  // user that gets filled in
1193 
1194  if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1195  target.SetPreferDynamicValue(saved_prefer_dynamic);
1196  } else {
1197  // No OS plug-in, the new thread list is the same as the real thread
1198  // list.
1199  new_thread_list = real_thread_list;
1200  }
1201 
1202  m_thread_list_real.Update(real_thread_list);
1203  m_thread_list.Update(new_thread_list);
1204  m_thread_list.SetStopID(stop_id);
1205 
1207  // Clear any extended threads that we may have accumulated previously
1210 
1211  m_queue_list.Clear();
1213  }
1214  }
1215  // Now update the plan stack map.
1216  // If we do have an OS plugin, any absent real threads in the
1217  // m_thread_list have already been removed from the ThreadPlanStackMap.
1218  // So any remaining threads are OS Plugin threads, and those we want to
1219  // preserve in case they show up again.
1220  m_thread_plans.Update(m_thread_list, clear_unused_threads);
1221  }
1222  }
1223 }
1224 
1226  return m_thread_plans.Find(tid);
1227 }
1228 
1230  return m_thread_plans.PrunePlansForTID(tid);
1231 }
1232 
1234  m_thread_plans.Update(GetThreadList(), true, false);
1235 }
1236 
1238  lldb::DescriptionLevel desc_level,
1239  bool internal, bool condense_trivial,
1240  bool skip_unreported_plans) {
1242  strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1243 }
1245  bool internal, bool condense_trivial,
1246  bool skip_unreported_plans) {
1247  m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1248  skip_unreported_plans);
1249 }
1250 
1252  if (m_system_runtime_up) {
1253  if (m_queue_list.GetSize() == 0 ||
1255  const StateType state = GetPrivateState();
1256  if (StateIsStoppedState(state, true)) {
1257  m_system_runtime_up->PopulateQueueList(m_queue_list);
1259  }
1260  }
1261  }
1262 }
1263 
1266  if (os)
1267  return os->CreateThread(tid, context);
1268  return ThreadSP();
1269 }
1270 
1272  return AssignIndexIDToThread(thread_id);
1273 }
1274 
1275 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1276  return (m_thread_id_to_index_id_map.find(thread_id) !=
1278 }
1279 
1281  uint32_t result = 0;
1282  std::map<uint64_t, uint32_t>::iterator iterator =
1283  m_thread_id_to_index_id_map.find(thread_id);
1284  if (iterator == m_thread_id_to_index_id_map.end()) {
1285  result = ++m_thread_index_id;
1286  m_thread_id_to_index_id_map[thread_id] = result;
1287  } else {
1288  result = iterator->second;
1289  }
1290 
1291  return result;
1292 }
1293 
1295  return m_public_state.GetValue();
1296 }
1297 
1298 void Process::SetPublicState(StateType new_state, bool restarted) {
1299  const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1300  if (new_state_is_stopped) {
1301  // This will only set the time if the public stop time has no value, so
1302  // it is ok to call this multiple times. With a public stop we can't look
1303  // at the stop ID because many private stops might have happened, so we
1304  // can't check for a stop ID of zero. This allows the "statistics" command
1305  // to dump the time it takes to reach somewhere in your code, like a
1306  // breakpoint you set.
1308  }
1309 
1312  LLDB_LOGF(log, "Process::SetPublicState (state = %s, restarted = %i)",
1313  StateAsCString(new_state), restarted);
1314  const StateType old_state = m_public_state.GetValue();
1315  m_public_state.SetValue(new_state);
1316 
1317  // On the transition from Run to Stopped, we unlock the writer end of the run
1318  // lock. The lock gets locked in Resume, which is the public API to tell the
1319  // program to run.
1321  if (new_state == eStateDetached) {
1322  LLDB_LOGF(log,
1323  "Process::SetPublicState (%s) -- unlocking run lock for detach",
1324  StateAsCString(new_state));
1326  } else {
1327  const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1328  if ((old_state_is_stopped != new_state_is_stopped)) {
1329  if (new_state_is_stopped && !restarted) {
1330  LLDB_LOGF(log, "Process::SetPublicState (%s) -- unlocking run lock",
1331  StateAsCString(new_state));
1333  }
1334  }
1335  }
1336  }
1337 }
1338 
1342  LLDB_LOGF(log, "Process::Resume -- locking run lock");
1344  Status error("Resume request failed - process still running.");
1345  LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1346  return error;
1347  }
1349  if (!error.Success()) {
1350  // Undo running state change
1352  }
1353  return error;
1354 }
1355 
1356 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack";
1357 
1361  LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1363  Status error("Resume request failed - process still running.");
1364  LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1365  return error;
1366  }
1367 
1368  ListenerSP listener_sp(
1370  HijackProcessEvents(listener_sp);
1371 
1373  if (error.Success()) {
1374  StateType state = WaitForProcessToStop(llvm::None, nullptr, true,
1375  listener_sp, stream);
1376  const bool must_be_alive =
1377  false; // eStateExited is ok, so this must be false
1378  if (!StateIsStoppedState(state, must_be_alive))
1379  error.SetErrorStringWithFormat(
1380  "process not in stopped state after synchronous resume: %s",
1381  StateAsCString(state));
1382  } else {
1383  // Undo running state change
1385  }
1386 
1387  // Undo the hijacking of process events...
1389 
1390  return error;
1391 }
1392 
1395  const char *hijacking_name = GetHijackingListenerName();
1396  if (hijacking_name &&
1397  strcmp(hijacking_name, g_resume_sync_name))
1398  return true;
1399  }
1400  return false;
1401 }
1402 
1405  const char *hijacking_name = GetHijackingListenerName();
1406  if (hijacking_name &&
1407  strcmp(hijacking_name, g_resume_sync_name) == 0)
1408  return true;
1409  }
1410  return false;
1411 }
1412 
1414 
1416  if (m_finalizing)
1417  return;
1418 
1421  bool state_changed = false;
1422 
1423  LLDB_LOGF(log, "Process::SetPrivateState (%s)", StateAsCString(new_state));
1424 
1425  std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1426  std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1427 
1428  const StateType old_state = m_private_state.GetValueNoLock();
1429  state_changed = old_state != new_state;
1430 
1431  const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1432  const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1433  if (old_state_is_stopped != new_state_is_stopped) {
1434  if (new_state_is_stopped)
1436  else
1438  }
1439 
1440  if (state_changed) {
1441  m_private_state.SetValueNoLock(new_state);
1442  EventSP event_sp(
1444  new ProcessEventData(shared_from_this(), new_state)));
1445  if (StateIsStoppedState(new_state, false)) {
1446  // Note, this currently assumes that all threads in the list stop when
1447  // the process stops. In the future we will want to support a debugging
1448  // model where some threads continue to run while others are stopped.
1449  // When that happens we will either need a way for the thread list to
1450  // identify which threads are stopping or create a special thread list
1451  // containing only threads which actually stopped.
1452  //
1453  // The process plugin is responsible for managing the actual behavior of
1454  // the threads and should have stopped any threads that are going to stop
1455  // before we get here.
1457 
1458  if (m_mod_id.BumpStopID() == 0)
1460 
1464  LLDB_LOGF(log, "Process::SetPrivateState (%s) stop_id = %u",
1465  StateAsCString(new_state), m_mod_id.GetStopID());
1466  }
1467 
1469  } else {
1470  LLDB_LOGF(log,
1471  "Process::SetPrivateState (%s) state didn't change. Ignoring...",
1472  StateAsCString(new_state));
1473  }
1474 }
1475 
1478 }
1479 
1482 }
1483 
1485 
1486 const lldb::ABISP &Process::GetABI() {
1487  if (!m_abi_sp)
1488  m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1489  return m_abi_sp;
1490 }
1491 
1492 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1493  std::vector<LanguageRuntime *> language_runtimes;
1494 
1495  if (m_finalizing)
1496  return language_runtimes;
1497 
1498  std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1499  // Before we pass off a copy of the language runtimes, we must make sure that
1500  // our collection is properly populated. It's possible that some of the
1501  // language runtimes were not loaded yet, either because nobody requested it
1502  // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1503  // hadn't been loaded).
1504  for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1505  if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1506  language_runtimes.emplace_back(runtime);
1507  }
1508 
1509  return language_runtimes;
1510 }
1511 
1513  if (m_finalizing)
1514  return nullptr;
1515 
1516  LanguageRuntime *runtime = nullptr;
1517 
1518  std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1519  LanguageRuntimeCollection::iterator pos;
1520  pos = m_language_runtimes.find(language);
1521  if (pos == m_language_runtimes.end() || !pos->second) {
1522  lldb::LanguageRuntimeSP runtime_sp(
1523  LanguageRuntime::FindPlugin(this, language));
1524 
1525  m_language_runtimes[language] = runtime_sp;
1526  runtime = runtime_sp.get();
1527  } else
1528  runtime = pos->second.get();
1529 
1530  if (runtime)
1531  // It's possible that a language runtime can support multiple LanguageTypes,
1532  // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1533  // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1534  // primary language type and make sure that our runtime supports it.
1535  assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1536 
1537  return runtime;
1538 }
1539 
1541  if (m_finalizing)
1542  return false;
1543 
1544  if (in_value.IsDynamic())
1545  return false;
1546  LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1547 
1548  if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1549  LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1550  return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1551  }
1552 
1553  for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1554  if (runtime->CouldHaveDynamicValue(in_value))
1555  return true;
1556  }
1557 
1558  return false;
1559 }
1560 
1562  m_dynamic_checkers_up.reset(dynamic_checkers);
1563 }
1564 
1566  return m_breakpoint_site_list;
1567 }
1568 
1570  return m_breakpoint_site_list;
1571 }
1572 
1574  m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1575  // bp_site->SetEnabled(true);
1576  DisableBreakpointSite(bp_site);
1577  });
1578 }
1579 
1582 
1583  if (error.Success())
1584  m_breakpoint_site_list.Remove(break_id);
1585 
1586  return error;
1587 }
1588 
1590  Status error;
1591  BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1592  if (bp_site_sp) {
1593  if (bp_site_sp->IsEnabled())
1594  error = DisableBreakpointSite(bp_site_sp.get());
1595  } else {
1596  error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1597  break_id);
1598  }
1599 
1600  return error;
1601 }
1602 
1604  Status error;
1605  BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1606  if (bp_site_sp) {
1607  if (!bp_site_sp->IsEnabled())
1608  error = EnableBreakpointSite(bp_site_sp.get());
1609  } else {
1610  error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1611  break_id);
1612  }
1613  return error;
1614 }
1615 
1617 Process::CreateBreakpointSite(const BreakpointLocationSP &owner,
1618  bool use_hardware) {
1619  addr_t load_addr = LLDB_INVALID_ADDRESS;
1620 
1621  bool show_error = true;
1622  switch (GetState()) {
1623  case eStateInvalid:
1624  case eStateUnloaded:
1625  case eStateConnected:
1626  case eStateAttaching:
1627  case eStateLaunching:
1628  case eStateDetached:
1629  case eStateExited:
1630  show_error = false;
1631  break;
1632 
1633  case eStateStopped:
1634  case eStateRunning:
1635  case eStateStepping:
1636  case eStateCrashed:
1637  case eStateSuspended:
1638  show_error = IsAlive();
1639  break;
1640  }
1641 
1642  // Reset the IsIndirect flag here, in case the location changes from pointing
1643  // to a indirect symbol to a regular symbol.
1644  owner->SetIsIndirect(false);
1645 
1646  if (owner->ShouldResolveIndirectFunctions()) {
1647  Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
1648  if (symbol && symbol->IsIndirect()) {
1649  Status error;
1650  Address symbol_address = symbol->GetAddress();
1651  load_addr = ResolveIndirectFunction(&symbol_address, error);
1652  if (!error.Success() && show_error) {
1654  "warning: failed to resolve indirect function at 0x%" PRIx64
1655  " for breakpoint %i.%i: %s\n",
1656  symbol->GetLoadAddress(&GetTarget()),
1657  owner->GetBreakpoint().GetID(), owner->GetID(),
1658  error.AsCString() ? error.AsCString() : "unknown error");
1659  return LLDB_INVALID_BREAK_ID;
1660  }
1661  Address resolved_address(load_addr);
1662  load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1663  owner->SetIsIndirect(true);
1664  } else
1665  load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1666  } else
1667  load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1668 
1669  if (load_addr != LLDB_INVALID_ADDRESS) {
1670  BreakpointSiteSP bp_site_sp;
1671 
1672  // Look up this breakpoint site. If it exists, then add this new owner,
1673  // otherwise create a new breakpoint site and add it.
1674 
1675  bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1676 
1677  if (bp_site_sp) {
1678  bp_site_sp->AddOwner(owner);
1679  owner->SetBreakpointSite(bp_site_sp);
1680  return bp_site_sp->GetID();
1681  } else {
1682  bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner,
1683  load_addr, use_hardware));
1684  if (bp_site_sp) {
1685  Status error = EnableBreakpointSite(bp_site_sp.get());
1686  if (error.Success()) {
1687  owner->SetBreakpointSite(bp_site_sp);
1688  return m_breakpoint_site_list.Add(bp_site_sp);
1689  } else {
1690  if (show_error || use_hardware) {
1691  // Report error for setting breakpoint...
1693  "warning: failed to set breakpoint site at 0x%" PRIx64
1694  " for breakpoint %i.%i: %s\n",
1695  load_addr, owner->GetBreakpoint().GetID(), owner->GetID(),
1696  error.AsCString() ? error.AsCString() : "unknown error");
1697  }
1698  }
1699  }
1700  }
1701  }
1702  // We failed to enable the breakpoint
1703  return LLDB_INVALID_BREAK_ID;
1704 }
1705 
1707  lldb::user_id_t owner_loc_id,
1708  BreakpointSiteSP &bp_site_sp) {
1709  uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id);
1710  if (num_owners == 0) {
1711  // Don't try to disable the site if we don't have a live process anymore.
1712  if (IsAlive())
1713  DisableBreakpointSite(bp_site_sp.get());
1714  m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1715  }
1716 }
1717 
1719  uint8_t *buf) const {
1720  size_t bytes_removed = 0;
1721  BreakpointSiteList bp_sites_in_range;
1722 
1723  if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1724  bp_sites_in_range)) {
1725  bp_sites_in_range.ForEach([bp_addr, size,
1726  buf](BreakpointSite *bp_site) -> void {
1727  if (bp_site->GetType() == BreakpointSite::eSoftware) {
1728  addr_t intersect_addr;
1729  size_t intersect_size;
1730  size_t opcode_offset;
1731  if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1732  &intersect_size, &opcode_offset)) {
1733  assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1734  assert(bp_addr < intersect_addr + intersect_size &&
1735  intersect_addr + intersect_size <= bp_addr + size);
1736  assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1737  size_t buf_offset = intersect_addr - bp_addr;
1738  ::memcpy(buf + buf_offset,
1739  bp_site->GetSavedOpcodeBytes() + opcode_offset,
1740  intersect_size);
1741  }
1742  }
1743  });
1744  }
1745  return bytes_removed;
1746 }
1747 
1748 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) {
1749  PlatformSP platform_sp(GetTarget().GetPlatform());
1750  if (platform_sp)
1751  return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1752  return 0;
1753 }
1754 
1756  Status error;
1757  assert(bp_site != nullptr);
1759  const addr_t bp_addr = bp_site->GetLoadAddress();
1760  LLDB_LOGF(
1761  log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1762  bp_site->GetID(), (uint64_t)bp_addr);
1763  if (bp_site->IsEnabled()) {
1764  LLDB_LOGF(
1765  log,
1766  "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1767  " -- already enabled",
1768  bp_site->GetID(), (uint64_t)bp_addr);
1769  return error;
1770  }
1771 
1772  if (bp_addr == LLDB_INVALID_ADDRESS) {
1773  error.SetErrorString("BreakpointSite contains an invalid load address.");
1774  return error;
1775  }
1776  // Ask the lldb::Process subclass to fill in the correct software breakpoint
1777  // trap for the breakpoint site
1778  const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1779 
1780  if (bp_opcode_size == 0) {
1781  error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1782  "returned zero, unable to get breakpoint "
1783  "trap for address 0x%" PRIx64,
1784  bp_addr);
1785  } else {
1786  const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1787 
1788  if (bp_opcode_bytes == nullptr) {
1789  error.SetErrorString(
1790  "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1791  return error;
1792  }
1793 
1794  // Save the original opcode by reading it
1795  if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1796  error) == bp_opcode_size) {
1797  // Write a software breakpoint in place of the original opcode
1798  if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1799  bp_opcode_size) {
1800  uint8_t verify_bp_opcode_bytes[64];
1801  if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1802  error) == bp_opcode_size) {
1803  if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1804  bp_opcode_size) == 0) {
1805  bp_site->SetEnabled(true);
1807  LLDB_LOGF(log,
1808  "Process::EnableSoftwareBreakpoint (site_id = %d) "
1809  "addr = 0x%" PRIx64 " -- SUCCESS",
1810  bp_site->GetID(), (uint64_t)bp_addr);
1811  } else
1812  error.SetErrorString(
1813  "failed to verify the breakpoint trap in memory.");
1814  } else
1815  error.SetErrorString(
1816  "Unable to read memory to verify breakpoint trap.");
1817  } else
1818  error.SetErrorString("Unable to write breakpoint trap to memory.");
1819  } else
1820  error.SetErrorString("Unable to read memory at breakpoint address.");
1821  }
1822  if (log && error.Fail())
1823  LLDB_LOGF(
1824  log,
1825  "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1826  " -- FAILED: %s",
1827  bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1828  return error;
1829 }
1830 
1832  Status error;
1833  assert(bp_site != nullptr);
1835  addr_t bp_addr = bp_site->GetLoadAddress();
1836  lldb::user_id_t breakID = bp_site->GetID();
1837  LLDB_LOGF(log,
1838  "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1839  ") addr = 0x%" PRIx64,
1840  breakID, (uint64_t)bp_addr);
1841 
1842  if (bp_site->IsHardware()) {
1843  error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1844  } else if (bp_site->IsEnabled()) {
1845  const size_t break_op_size = bp_site->GetByteSize();
1846  const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1847  if (break_op_size > 0) {
1848  // Clear a software breakpoint instruction
1849  uint8_t curr_break_op[8];
1850  assert(break_op_size <= sizeof(curr_break_op));
1851  bool break_op_found = false;
1852 
1853  // Read the breakpoint opcode
1854  if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1855  break_op_size) {
1856  bool verify = false;
1857  // Make sure the breakpoint opcode exists at this address
1858  if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1859  break_op_found = true;
1860  // We found a valid breakpoint opcode at this address, now restore
1861  // the saved opcode.
1862  if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1863  break_op_size, error) == break_op_size) {
1864  verify = true;
1865  } else
1866  error.SetErrorString(
1867  "Memory write failed when restoring original opcode.");
1868  } else {
1869  error.SetErrorString(
1870  "Original breakpoint trap is no longer in memory.");
1871  // Set verify to true and so we can check if the original opcode has
1872  // already been restored
1873  verify = true;
1874  }
1875 
1876  if (verify) {
1877  uint8_t verify_opcode[8];
1878  assert(break_op_size < sizeof(verify_opcode));
1879  // Verify that our original opcode made it back to the inferior
1880  if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1881  break_op_size) {
1882  // compare the memory we just read with the original opcode
1883  if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1884  break_op_size) == 0) {
1885  // SUCCESS
1886  bp_site->SetEnabled(false);
1887  LLDB_LOGF(log,
1888  "Process::DisableSoftwareBreakpoint (site_id = %d) "
1889  "addr = 0x%" PRIx64 " -- SUCCESS",
1890  bp_site->GetID(), (uint64_t)bp_addr);
1891  return error;
1892  } else {
1893  if (break_op_found)
1894  error.SetErrorString("Failed to restore original opcode.");
1895  }
1896  } else
1897  error.SetErrorString("Failed to read memory to verify that "
1898  "breakpoint trap was restored.");
1899  }
1900  } else
1901  error.SetErrorString(
1902  "Unable to read memory that should contain the breakpoint trap.");
1903  }
1904  } else {
1905  LLDB_LOGF(
1906  log,
1907  "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1908  " -- already disabled",
1909  bp_site->GetID(), (uint64_t)bp_addr);
1910  return error;
1911  }
1912 
1913  LLDB_LOGF(
1914  log,
1915  "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1916  " -- FAILED: %s",
1917  bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1918  return error;
1919 }
1920 
1921 // Uncomment to verify memory caching works after making changes to caching
1922 // code
1923 //#define VERIFY_MEMORY_READS
1924 
1925 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1926  error.Clear();
1927  if (!GetDisableMemoryCache()) {
1928 #if defined(VERIFY_MEMORY_READS)
1929  // Memory caching is enabled, with debug verification
1930 
1931  if (buf && size) {
1932  // Uncomment the line below to make sure memory caching is working.
1933  // I ran this through the test suite and got no assertions, so I am
1934  // pretty confident this is working well. If any changes are made to
1935  // memory caching, uncomment the line below and test your changes!
1936 
1937  // Verify all memory reads by using the cache first, then redundantly
1938  // reading the same memory from the inferior and comparing to make sure
1939  // everything is exactly the same.
1940  std::string verify_buf(size, '\0');
1941  assert(verify_buf.size() == size);
1942  const size_t cache_bytes_read =
1943  m_memory_cache.Read(this, addr, buf, size, error);
1944  Status verify_error;
1945  const size_t verify_bytes_read =
1946  ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1947  verify_buf.size(), verify_error);
1948  assert(cache_bytes_read == verify_bytes_read);
1949  assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1950  assert(verify_error.Success() == error.Success());
1951  return cache_bytes_read;
1952  }
1953  return 0;
1954 #else // !defined(VERIFY_MEMORY_READS)
1955  // Memory caching is enabled, without debug verification
1956 
1957  return m_memory_cache.Read(addr, buf, size, error);
1958 #endif // defined (VERIFY_MEMORY_READS)
1959  } else {
1960  // Memory caching is disabled
1961 
1962  return ReadMemoryFromInferior(addr, buf, size, error);
1963  }
1964 }
1965 
1967  Status &error) {
1968  char buf[256];
1969  out_str.clear();
1970  addr_t curr_addr = addr;
1971  while (true) {
1972  size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
1973  if (length == 0)
1974  break;
1975  out_str.append(buf, length);
1976  // If we got "length - 1" bytes, we didn't get the whole C string, we need
1977  // to read some more characters
1978  if (length == sizeof(buf) - 1)
1979  curr_addr += length;
1980  else
1981  break;
1982  }
1983  return out_str.size();
1984 }
1985 
1986 // Deprecated in favor of ReadStringFromMemory which has wchar support and
1987 // correct code to find null terminators.
1989  size_t dst_max_len,
1990  Status &result_error) {
1991  size_t total_cstr_len = 0;
1992  if (dst && dst_max_len) {
1993  result_error.Clear();
1994  // NULL out everything just to be safe
1995  memset(dst, 0, dst_max_len);
1996  Status error;
1997  addr_t curr_addr = addr;
1998  const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
1999  size_t bytes_left = dst_max_len - 1;
2000  char *curr_dst = dst;
2001 
2002  while (bytes_left > 0) {
2003  addr_t cache_line_bytes_left =
2004  cache_line_size - (curr_addr % cache_line_size);
2005  addr_t bytes_to_read =
2006  std::min<addr_t>(bytes_left, cache_line_bytes_left);
2007  size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2008 
2009  if (bytes_read == 0) {
2010  result_error = error;
2011  dst[total_cstr_len] = '\0';
2012  break;
2013  }
2014  const size_t len = strlen(curr_dst);
2015 
2016  total_cstr_len += len;
2017 
2018  if (len < bytes_to_read)
2019  break;
2020 
2021  curr_dst += bytes_read;
2022  curr_addr += bytes_read;
2023  bytes_left -= bytes_read;
2024  }
2025  } else {
2026  if (dst == nullptr)
2027  result_error.SetErrorString("invalid arguments");
2028  else
2029  result_error.Clear();
2030  }
2031  return total_cstr_len;
2032 }
2033 
2034 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2035  Status &error) {
2037 
2038  if (buf == nullptr || size == 0)
2039  return 0;
2040 
2041  size_t bytes_read = 0;
2042  uint8_t *bytes = (uint8_t *)buf;
2043 
2044  while (bytes_read < size) {
2045  const size_t curr_size = size - bytes_read;
2046  const size_t curr_bytes_read =
2047  DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2048  bytes_read += curr_bytes_read;
2049  if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2050  break;
2051  }
2052 
2053  // Replace any software breakpoint opcodes that fall into this range back
2054  // into "buf" before we return
2055  if (bytes_read > 0)
2056  RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2057  return bytes_read;
2058 }
2059 
2061  size_t integer_byte_size,
2062  uint64_t fail_value,
2063  Status &error) {
2064  Scalar scalar;
2065  if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2066  error))
2067  return scalar.ULongLong(fail_value);
2068  return fail_value;
2069 }
2070 
2072  size_t integer_byte_size,
2073  int64_t fail_value,
2074  Status &error) {
2075  Scalar scalar;
2076  if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2077  error))
2078  return scalar.SLongLong(fail_value);
2079  return fail_value;
2080 }
2081 
2083  Scalar scalar;
2084  if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2085  error))
2086  return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2087  return LLDB_INVALID_ADDRESS;
2088 }
2089 
2091  Status &error) {
2092  Scalar scalar;
2093  const uint32_t addr_byte_size = GetAddressByteSize();
2094  if (addr_byte_size <= 4)
2095  scalar = (uint32_t)ptr_value;
2096  else
2097  scalar = ptr_value;
2098  return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2099  addr_byte_size;
2100 }
2101 
2102 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2103  Status &error) {
2104  size_t bytes_written = 0;
2105  const uint8_t *bytes = (const uint8_t *)buf;
2106 
2107  while (bytes_written < size) {
2108  const size_t curr_size = size - bytes_written;
2109  const size_t curr_bytes_written = DoWriteMemory(
2110  addr + bytes_written, bytes + bytes_written, curr_size, error);
2111  bytes_written += curr_bytes_written;
2112  if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2113  break;
2114  }
2115  return bytes_written;
2116 }
2117 
2118 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2119  Status &error) {
2120 #if defined(ENABLE_MEMORY_CACHING)
2121  m_memory_cache.Flush(addr, size);
2122 #endif
2123 
2124  if (buf == nullptr || size == 0)
2125  return 0;
2126 
2128 
2129  // We need to write any data that would go where any current software traps
2130  // (enabled software breakpoints) any software traps (breakpoints) that we
2131  // may have placed in our tasks memory.
2132 
2133  BreakpointSiteList bp_sites_in_range;
2134  if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2135  return WriteMemoryPrivate(addr, buf, size, error);
2136 
2137  // No breakpoint sites overlap
2138  if (bp_sites_in_range.IsEmpty())
2139  return WriteMemoryPrivate(addr, buf, size, error);
2140 
2141  const uint8_t *ubuf = (const uint8_t *)buf;
2142  uint64_t bytes_written = 0;
2143 
2144  bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2145  &error](BreakpointSite *bp) -> void {
2146  if (error.Fail())
2147  return;
2148 
2149  if (bp->GetType() != BreakpointSite::eSoftware)
2150  return;
2151 
2152  addr_t intersect_addr;
2153  size_t intersect_size;
2154  size_t opcode_offset;
2155  const bool intersects = bp->IntersectsRange(
2156  addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2157  UNUSED_IF_ASSERT_DISABLED(intersects);
2158  assert(intersects);
2159  assert(addr <= intersect_addr && intersect_addr < addr + size);
2160  assert(addr < intersect_addr + intersect_size &&
2161  intersect_addr + intersect_size <= addr + size);
2162  assert(opcode_offset + intersect_size <= bp->GetByteSize());
2163 
2164  // Check for bytes before this breakpoint
2165  const addr_t curr_addr = addr + bytes_written;
2166  if (intersect_addr > curr_addr) {
2167  // There are some bytes before this breakpoint that we need to just
2168  // write to memory
2169  size_t curr_size = intersect_addr - curr_addr;
2170  size_t curr_bytes_written =
2171  WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2172  bytes_written += curr_bytes_written;
2173  if (curr_bytes_written != curr_size) {
2174  // We weren't able to write all of the requested bytes, we are
2175  // done looping and will return the number of bytes that we have
2176  // written so far.
2177  if (error.Success())
2178  error.SetErrorToGenericError();
2179  }
2180  }
2181  // Now write any bytes that would cover up any software breakpoints
2182  // directly into the breakpoint opcode buffer
2183  ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2184  intersect_size);
2185  bytes_written += intersect_size;
2186  });
2187 
2188  // Write any remaining bytes after the last breakpoint if we have any left
2189  if (bytes_written < size)
2190  bytes_written +=
2191  WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2192  size - bytes_written, error);
2193 
2194  return bytes_written;
2195 }
2196 
2197 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2198  size_t byte_size, Status &error) {
2199  if (byte_size == UINT32_MAX)
2200  byte_size = scalar.GetByteSize();
2201  if (byte_size > 0) {
2202  uint8_t buf[32];
2203  const size_t mem_size =
2204  scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2205  if (mem_size > 0)
2206  return WriteMemory(addr, buf, mem_size, error);
2207  else
2208  error.SetErrorString("failed to get scalar as memory data");
2209  } else {
2210  error.SetErrorString("invalid scalar value");
2211  }
2212  return 0;
2213 }
2214 
2216  bool is_signed, Scalar &scalar,
2217  Status &error) {
2218  uint64_t uval = 0;
2219  if (byte_size == 0) {
2220  error.SetErrorString("byte size is zero");
2221  } else if (byte_size & (byte_size - 1)) {
2222  error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2223  byte_size);
2224  } else if (byte_size <= sizeof(uval)) {
2225  const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2226  if (bytes_read == byte_size) {
2227  DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2228  GetAddressByteSize());
2229  lldb::offset_t offset = 0;
2230  if (byte_size <= 4)
2231  scalar = data.GetMaxU32(&offset, byte_size);
2232  else
2233  scalar = data.GetMaxU64(&offset, byte_size);
2234  if (is_signed)
2235  scalar.SignExtend(byte_size * 8);
2236  return bytes_read;
2237  }
2238  } else {
2239  error.SetErrorStringWithFormat(
2240  "byte size of %u is too large for integer scalar type", byte_size);
2241  }
2242  return 0;
2243 }
2244 
2245 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2246  Status error;
2247  for (const auto &Entry : entries) {
2248  WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2249  error);
2250  if (!error.Success())
2251  break;
2252  }
2253  return error;
2254 }
2255 
2256 #define USE_ALLOCATE_MEMORY_CACHE 1
2257 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2258  Status &error) {
2259  if (GetPrivateState() != eStateStopped) {
2260  error.SetErrorToGenericError();
2261  return LLDB_INVALID_ADDRESS;
2262  }
2263 
2264 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2265  return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2266 #else
2267  addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2269  LLDB_LOGF(log,
2270  "Process::AllocateMemory(size=%" PRIu64
2271  ", permissions=%s) => 0x%16.16" PRIx64
2272  " (m_stop_id = %u m_memory_id = %u)",
2273  (uint64_t)size, GetPermissionsAsCString(permissions),
2274  (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2275  m_mod_id.GetMemoryID());
2276  return allocated_addr;
2277 #endif
2278 }
2279 
2280 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2281  Status &error) {
2282  addr_t return_addr = AllocateMemory(size, permissions, error);
2283  if (error.Success()) {
2284  std::string buffer(size, 0);
2285  WriteMemory(return_addr, buffer.c_str(), size, error);
2286  }
2287  return return_addr;
2288 }
2289 
2291  if (m_can_jit == eCanJITDontKnow) {
2293  Status err;
2294 
2295  uint64_t allocated_memory = AllocateMemory(
2296  8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2297  err);
2298 
2299  if (err.Success()) {
2301  LLDB_LOGF(log,
2302  "Process::%s pid %" PRIu64
2303  " allocation test passed, CanJIT () is true",
2304  __FUNCTION__, GetID());
2305  } else {
2306  m_can_jit = eCanJITNo;
2307  LLDB_LOGF(log,
2308  "Process::%s pid %" PRIu64
2309  " allocation test failed, CanJIT () is false: %s",
2310  __FUNCTION__, GetID(), err.AsCString());
2311  }
2312 
2313  DeallocateMemory(allocated_memory);
2314  }
2315 
2316  return m_can_jit == eCanJITYes;
2317 }
2318 
2319 void Process::SetCanJIT(bool can_jit) {
2320  m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2321 }
2322 
2323 void Process::SetCanRunCode(bool can_run_code) {
2324  SetCanJIT(can_run_code);
2325  m_can_interpret_function_calls = can_run_code;
2326 }
2327 
2329  Status error;
2330 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2332  error.SetErrorStringWithFormat(
2333  "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2334  }
2335 #else
2336  error = DoDeallocateMemory(ptr);
2337 
2339  LLDB_LOGF(log,
2340  "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2341  ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2342  ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2343  m_mod_id.GetMemoryID());
2344 #endif
2345  return error;
2346 }
2347 
2348 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2349  lldb::addr_t header_addr,
2350  size_t size_to_read) {
2352  if (log) {
2353  LLDB_LOGF(log,
2354  "Process::ReadModuleFromMemory reading %s binary from memory",
2355  file_spec.GetPath().c_str());
2356  }
2357  ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2358  if (module_sp) {
2359  Status error;
2360  ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2361  shared_from_this(), header_addr, error, size_to_read);
2362  if (objfile)
2363  return module_sp;
2364  }
2365  return ModuleSP();
2366 }
2367 
2369  uint32_t &permissions) {
2370  MemoryRegionInfo range_info;
2371  permissions = 0;
2372  Status error(GetMemoryRegionInfo(load_addr, range_info));
2373  if (!error.Success())
2374  return false;
2375  if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2376  range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2377  range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2378  return false;
2379  }
2380 
2381  if (range_info.GetReadable() == MemoryRegionInfo::eYes)
2382  permissions |= lldb::ePermissionsReadable;
2383 
2384  if (range_info.GetWritable() == MemoryRegionInfo::eYes)
2385  permissions |= lldb::ePermissionsWritable;
2386 
2387  if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
2388  permissions |= lldb::ePermissionsExecutable;
2389 
2390  return true;
2391 }
2392 
2393 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) {
2394  Status error;
2395  error.SetErrorString("watchpoints are not supported");
2396  return error;
2397 }
2398 
2399 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) {
2400  Status error;
2401  error.SetErrorString("watchpoints are not supported");
2402  return error;
2403 }
2404 
2405 StateType
2407  const Timeout<std::micro> &timeout) {
2408  StateType state;
2409 
2410  while (true) {
2411  event_sp.reset();
2412  state = GetStateChangedEventsPrivate(event_sp, timeout);
2413 
2414  if (StateIsStoppedState(state, false))
2415  break;
2416 
2417  // If state is invalid, then we timed out
2418  if (state == eStateInvalid)
2419  break;
2420 
2421  if (event_sp)
2422  HandlePrivateEvent(event_sp);
2423  }
2424  return state;
2425 }
2426 
2428  if (flush)
2429  m_thread_list.Clear();
2430  m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2431  if (flush)
2432  Flush();
2433 }
2434 
2436  Status error;
2437  m_abi_sp.reset();
2438  m_dyld_up.reset();
2439  m_jit_loaders_up.reset();
2440  m_system_runtime_up.reset();
2441  m_os_up.reset();
2442  m_process_input_reader.reset();
2443 
2444  Module *exe_module = GetTarget().GetExecutableModulePointer();
2445 
2446  // The "remote executable path" is hooked up to the local Executable
2447  // module. But we should be able to debug a remote process even if the
2448  // executable module only exists on the remote. However, there needs to
2449  // be a way to express this path, without actually having a module.
2450  // The way to do that is to set the ExecutableFile in the LaunchInfo.
2451  // Figure that out here:
2452 
2453  FileSpec exe_spec_to_use;
2454  if (!exe_module) {
2455  if (!launch_info.GetExecutableFile()) {
2456  error.SetErrorString("executable module does not exist");
2457  return error;
2458  }
2459  exe_spec_to_use = launch_info.GetExecutableFile();
2460  } else
2461  exe_spec_to_use = exe_module->GetFileSpec();
2462 
2463  if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2464  // Install anything that might need to be installed prior to launching.
2465  // For host systems, this will do nothing, but if we are connected to a
2466  // remote platform it will install any needed binaries
2467  error = GetTarget().Install(&launch_info);
2468  if (error.Fail())
2469  return error;
2470  }
2471  // Listen and queue events that are broadcasted during the process launch.
2472  ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2473  HijackProcessEvents(listener_sp);
2474  auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2475 
2478 
2479  error = WillLaunch(exe_module);
2480  if (error.Success()) {
2481  const bool restarted = false;
2482  SetPublicState(eStateLaunching, restarted);
2483  m_should_detach = false;
2484 
2486  // Now launch using these arguments.
2487  error = DoLaunch(exe_module, launch_info);
2488  } else {
2489  // This shouldn't happen
2490  error.SetErrorString("failed to acquire process run lock");
2491  }
2492 
2493  if (error.Fail()) {
2494  if (GetID() != LLDB_INVALID_PROCESS_ID) {
2496  const char *error_string = error.AsCString();
2497  if (error_string == nullptr)
2498  error_string = "launch failed";
2499  SetExitStatus(-1, error_string);
2500  }
2501  } else {
2502  EventSP event_sp;
2503 
2504  // Now wait for the process to launch and return control to us, and then
2505  // call DidLaunch:
2506  StateType state = WaitForProcessStopPrivate(event_sp, seconds(10));
2507 
2508  if (state == eStateInvalid || !event_sp) {
2509  // We were able to launch the process, but we failed to catch the
2510  // initial stop.
2511  error.SetErrorString("failed to catch stop after launch");
2512  SetExitStatus(0, "failed to catch stop after launch");
2513  Destroy(false);
2514  } else if (state == eStateStopped || state == eStateCrashed) {
2515  DidLaunch();
2516 
2517  DynamicLoader *dyld = GetDynamicLoader();
2518  if (dyld)
2519  dyld->DidLaunch();
2520 
2522 
2523  SystemRuntime *system_runtime = GetSystemRuntime();
2524  if (system_runtime)
2525  system_runtime->DidLaunch();
2526 
2527  if (!m_os_up)
2529 
2530  // We successfully launched the process and stopped, now it the
2531  // right time to set up signal filters before resuming.
2533 
2534  // Note, the stop event was consumed above, but not handled. This
2535  // was done to give DidLaunch a chance to run. The target is either
2536  // stopped or crashed. Directly set the state. This is done to
2537  // prevent a stop message with a bunch of spurious output on thread
2538  // status, as well as not pop a ProcessIOHandler.
2539  // We are done with the launch hijack listener, and this stop should
2540  // go to the public state listener:
2542  SetPublicState(state, false);
2543 
2546  else
2548 
2549  // Target was stopped at entry as was intended. Need to notify the
2550  // listeners about it.
2551  if (state == eStateStopped &&
2552  launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2553  HandlePrivateEvent(event_sp);
2554  } else if (state == eStateExited) {
2555  // We exited while trying to launch somehow. Don't call DidLaunch
2556  // as that's not likely to work, and return an invalid pid.
2557  HandlePrivateEvent(event_sp);
2558  }
2559  }
2560  } else {
2561  std::string local_exec_file_path = exe_spec_to_use.GetPath();
2562  error.SetErrorStringWithFormat("file doesn't exist: '%s'",
2563  local_exec_file_path.c_str());
2564  }
2565 
2566  return error;
2567 }
2568 
2570  Status error = DoLoadCore();
2571  if (error.Success()) {
2572  ListenerSP listener_sp(
2573  Listener::MakeListener("lldb.process.load_core_listener"));
2574  HijackProcessEvents(listener_sp);
2575 
2578  else
2580 
2581  DynamicLoader *dyld = GetDynamicLoader();
2582  if (dyld)
2583  dyld->DidAttach();
2584 
2586 
2587  SystemRuntime *system_runtime = GetSystemRuntime();
2588  if (system_runtime)
2589  system_runtime->DidAttach();
2590 
2591  if (!m_os_up)
2593 
2594  // We successfully loaded a core file, now pretend we stopped so we can
2595  // show all of the threads in the core file and explore the crashed state.
2597 
2598  // Wait for a stopped event since we just posted one above...
2599  lldb::EventSP event_sp;
2600  StateType state =
2601  WaitForProcessToStop(llvm::None, &event_sp, true, listener_sp);
2602 
2603  if (!StateIsStoppedState(state, false)) {
2605  LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2606  StateAsCString(state));
2607  error.SetErrorString(
2608  "Did not get stopped event after loading the core file.");
2609  }
2611  }
2612  return error;
2613 }
2614 
2616  if (!m_dyld_up)
2617  m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
2618  return m_dyld_up.get();
2619 }
2620 
2622 
2623 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2624  return false;
2625 }
2626 
2628  if (!m_jit_loaders_up) {
2629  m_jit_loaders_up = std::make_unique<JITLoaderList>();
2631  }
2632  return *m_jit_loaders_up;
2633 }
2634 
2636  if (!m_system_runtime_up)
2638  return m_system_runtime_up.get();
2639 }
2640 
2642  uint32_t exec_count)
2643  : NextEventAction(process), m_exec_count(exec_count) {
2645  LLDB_LOGF(
2646  log,
2647  "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2648  __FUNCTION__, static_cast<void *>(process), exec_count);
2649 }
2650 
2654 
2655  StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2656  LLDB_LOGF(log,
2657  "Process::AttachCompletionHandler::%s called with state %s (%d)",
2658  __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2659 
2660  switch (state) {
2661  case eStateAttaching:
2662  return eEventActionSuccess;
2663 
2664  case eStateRunning:
2665  case eStateConnected:
2666  return eEventActionRetry;
2667 
2668  case eStateStopped:
2669  case eStateCrashed:
2670  // During attach, prior to sending the eStateStopped event,
2671  // lldb_private::Process subclasses must set the new process ID.
2672  assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2673  // We don't want these events to be reported, so go set the
2674  // ShouldReportStop here:
2676 
2677  if (m_exec_count > 0) {
2678  --m_exec_count;
2679 
2680  LLDB_LOGF(log,
2681  "Process::AttachCompletionHandler::%s state %s: reduced "
2682  "remaining exec count to %" PRIu32 ", requesting resume",
2683  __FUNCTION__, StateAsCString(state), m_exec_count);
2684 
2685  RequestResume();
2686  return eEventActionRetry;
2687  } else {
2688  LLDB_LOGF(log,
2689  "Process::AttachCompletionHandler::%s state %s: no more "
2690  "execs expected to start, continuing with attach",
2691  __FUNCTION__, StateAsCString(state));
2692 
2694  return eEventActionSuccess;
2695  }
2696  break;
2697 
2698  default:
2699  case eStateExited:
2700  case eStateInvalid:
2701  break;
2702  }
2703 
2704  m_exit_string.assign("No valid Process");
2705  return eEventActionExit;
2706 }
2707 
2710  return eEventActionSuccess;
2711 }
2712 
2714  return m_exit_string.c_str();
2715 }
2716 
2718  if (m_listener_sp)
2719  return m_listener_sp;
2720  else
2721  return debugger.GetListener();
2722 }
2723 
2725  m_abi_sp.reset();
2726  m_process_input_reader.reset();
2727  m_dyld_up.reset();
2728  m_jit_loaders_up.reset();
2729  m_system_runtime_up.reset();
2730  m_os_up.reset();
2731 
2732  lldb::pid_t attach_pid = attach_info.GetProcessID();
2733  Status error;
2734  if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2735  char process_name[PATH_MAX];
2736 
2737  if (attach_info.GetExecutableFile().GetPath(process_name,
2738  sizeof(process_name))) {
2739  const bool wait_for_launch = attach_info.GetWaitForLaunch();
2740 
2741  if (wait_for_launch) {
2742  error = WillAttachToProcessWithName(process_name, wait_for_launch);
2743  if (error.Success()) {
2745  m_should_detach = true;
2746  const bool restarted = false;
2747  SetPublicState(eStateAttaching, restarted);
2748  // Now attach using these arguments.
2749  error = DoAttachToProcessWithName(process_name, attach_info);
2750  } else {
2751  // This shouldn't happen
2752  error.SetErrorString("failed to acquire process run lock");
2753  }
2754 
2755  if (error.Fail()) {
2756  if (GetID() != LLDB_INVALID_PROCESS_ID) {
2758  if (error.AsCString() == nullptr)
2759  error.SetErrorString("attach failed");
2760 
2761  SetExitStatus(-1, error.AsCString());
2762  }
2763  } else {
2765  this, attach_info.GetResumeCount()));
2767  }
2768  return error;
2769  }
2770  } else {
2771  ProcessInstanceInfoList process_infos;
2772  PlatformSP platform_sp(GetTarget().GetPlatform());
2773 
2774  if (platform_sp) {
2775  ProcessInstanceInfoMatch match_info;
2776  match_info.GetProcessInfo() = attach_info;
2777  match_info.SetNameMatchType(NameMatch::Equals);
2778  platform_sp->FindProcesses(match_info, process_infos);
2779  const uint32_t num_matches = process_infos.size();
2780  if (num_matches == 1) {
2781  attach_pid = process_infos[0].GetProcessID();
2782  // Fall through and attach using the above process ID
2783  } else {
2784  match_info.GetProcessInfo().GetExecutableFile().GetPath(
2785  process_name, sizeof(process_name));
2786  if (num_matches > 1) {
2787  StreamString s;
2788  ProcessInstanceInfo::DumpTableHeader(s, true, false);
2789  for (size_t i = 0; i < num_matches; i++) {
2790  process_infos[i].DumpAsTableRow(
2791  s, platform_sp->GetUserIDResolver(), true, false);
2792  }
2793  error.SetErrorStringWithFormat(
2794  "more than one process named %s:\n%s", process_name,
2795  s.GetData());
2796  } else
2797  error.SetErrorStringWithFormat(
2798  "could not find a process named %s", process_name);
2799  }
2800  } else {
2801  error.SetErrorString(
2802  "invalid platform, can't find processes by name");
2803  return error;
2804  }
2805  }
2806  } else {
2807  error.SetErrorString("invalid process name");
2808  }
2809  }
2810 
2811  if (attach_pid != LLDB_INVALID_PROCESS_ID) {
2812  error = WillAttachToProcessWithID(attach_pid);
2813  if (error.Success()) {
2814 
2816  // Now attach using these arguments.
2817  m_should_detach = true;
2818  const bool restarted = false;
2819  SetPublicState(eStateAttaching, restarted);
2820  error = DoAttachToProcessWithID(attach_pid, attach_info);
2821  } else {
2822  // This shouldn't happen
2823  error.SetErrorString("failed to acquire process run lock");
2824  }
2825 
2826  if (error.Success()) {
2828  this, attach_info.GetResumeCount()));
2830  } else {
2831  if (GetID() != LLDB_INVALID_PROCESS_ID)
2833 
2834  const char *error_string = error.AsCString();
2835  if (error_string == nullptr)
2836  error_string = "attach failed";
2837 
2838  SetExitStatus(-1, error_string);
2839  }
2840  }
2841  }
2842  return error;
2843 }
2844 
2848  LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
2849 
2850  // Let the process subclass figure out at much as it can about the process
2851  // before we go looking for a dynamic loader plug-in.
2852  ArchSpec process_arch;
2853  DidAttach(process_arch);
2854 
2855  if (process_arch.IsValid()) {
2856  GetTarget().SetArchitecture(process_arch);
2857  if (log) {
2858  const char *triple_str = process_arch.GetTriple().getTriple().c_str();
2859  LLDB_LOGF(log,
2860  "Process::%s replacing process architecture with DidAttach() "
2861  "architecture: %s",
2862  __FUNCTION__, triple_str ? triple_str : "<null>");
2863  }
2864  }
2865 
2866  // We just attached. If we have a platform, ask it for the process
2867  // architecture, and if it isn't the same as the one we've already set,
2868  // switch architectures.
2869  PlatformSP platform_sp(GetTarget().GetPlatform());
2870  assert(platform_sp);
2871  if (platform_sp) {
2872  const ArchSpec &target_arch = GetTarget().GetArchitecture();
2873  if (target_arch.IsValid() &&
2874  !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) {
2875  ArchSpec platform_arch;
2876  platform_sp =
2877  platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch);
2878  if (platform_sp) {
2879  GetTarget().SetPlatform(platform_sp);
2880  GetTarget().SetArchitecture(platform_arch);
2881  LLDB_LOGF(log,
2882  "Process::%s switching platform to %s and architecture "
2883  "to %s based on info from attach",
2884  __FUNCTION__, platform_sp->GetName().AsCString(""),
2885  platform_arch.GetTriple().getTriple().c_str());
2886  }
2887  } else if (!process_arch.IsValid()) {
2888  ProcessInstanceInfo process_info;
2889  GetProcessInfo(process_info);
2890  const ArchSpec &process_arch = process_info.GetArchitecture();
2891  const ArchSpec &target_arch = GetTarget().GetArchitecture();
2892  if (process_arch.IsValid() &&
2893  target_arch.IsCompatibleMatch(process_arch) &&
2894  !target_arch.IsExactMatch(process_arch)) {
2895  GetTarget().SetArchitecture(process_arch);
2896  LLDB_LOGF(log,
2897  "Process::%s switching architecture to %s based on info "
2898  "the platform retrieved for pid %" PRIu64,
2899  __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
2900  GetID());
2901  }
2902  }
2903  }
2904 
2905  // We have completed the attach, now it is time to find the dynamic loader
2906  // plug-in
2907  DynamicLoader *dyld = GetDynamicLoader();
2908  if (dyld) {
2909  dyld->DidAttach();
2910  if (log) {
2911  ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2912  LLDB_LOG(log,
2913  "after DynamicLoader::DidAttach(), target "
2914  "executable is {0} (using {1} plugin)",
2915  exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2916  dyld->GetPluginName());
2917  }
2918  }
2919 
2921 
2922  SystemRuntime *system_runtime = GetSystemRuntime();
2923  if (system_runtime) {
2924  system_runtime->DidAttach();
2925  if (log) {
2926  ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2927  LLDB_LOG(log,
2928  "after SystemRuntime::DidAttach(), target "
2929  "executable is {0} (using {1} plugin)",
2930  exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
2931  system_runtime->GetPluginName());
2932  }
2933  }
2934 
2935  if (!m_os_up) {
2937  if (m_os_up) {
2938  // Somebody might have gotten threads before now, but we need to force the
2939  // update after we've loaded the OperatingSystem plugin or it won't get a
2940  // chance to process the threads.
2941  m_thread_list.Clear();
2943  }
2944  }
2945  // Figure out which one is the executable, and set that in our target:
2946  ModuleSP new_executable_module_sp;
2947  for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
2948  if (module_sp && module_sp->IsExecutable()) {
2949  if (GetTarget().GetExecutableModulePointer() != module_sp.get())
2950  new_executable_module_sp = module_sp;
2951  break;
2952  }
2953  }
2954  if (new_executable_module_sp) {
2955  GetTarget().SetExecutableModule(new_executable_module_sp,
2957  if (log) {
2958  ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2959  LLDB_LOGF(
2960  log,
2961  "Process::%s after looping through modules, target executable is %s",
2962  __FUNCTION__,
2963  exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2964  : "<none>");
2965  }
2966  }
2967 }
2968 
2969 Status Process::ConnectRemote(llvm::StringRef remote_url) {
2970  m_abi_sp.reset();
2971  m_process_input_reader.reset();
2972 
2973  // Find the process and its architecture. Make sure it matches the
2974  // architecture of the current Target, and if not adjust it.
2975 
2976  Status error(DoConnectRemote(remote_url));
2977  if (error.Success()) {
2978  if (GetID() != LLDB_INVALID_PROCESS_ID) {
2979  EventSP event_sp;
2980  StateType state = WaitForProcessStopPrivate(event_sp, llvm::None);
2981 
2982  if (state == eStateStopped || state == eStateCrashed) {
2983  // If we attached and actually have a process on the other end, then
2984  // this ended up being the equivalent of an attach.
2985  CompleteAttach();
2986 
2987  // This delays passing the stopped event to listeners till
2988  // CompleteAttach gets a chance to complete...
2989  HandlePrivateEvent(event_sp);
2990  }
2991  }
2992 
2995  else
2997  }
2998  return error;
2999 }
3000 
3003  LIBLLDB_LOG_STEP));
3004  LLDB_LOGF(log,
3005  "Process::PrivateResume() m_stop_id = %u, public state: %s "
3006  "private state: %s",
3009 
3010  // If signals handing status changed we might want to update our signal
3011  // filters before resuming.
3013 
3014  Status error(WillResume());
3015  // Tell the process it is about to resume before the thread list
3016  if (error.Success()) {
3017  // Now let the thread list know we are about to resume so it can let all of
3018  // our threads know that they are about to be resumed. Threads will each be
3019  // called with Thread::WillResume(StateType) where StateType contains the
3020  // state that they are supposed to have when the process is resumed
3021  // (suspended/running/stepping). Threads should also check their resume
3022  // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3023  // start back up with a signal.
3024  if (m_thread_list.WillResume()) {
3025  // Last thing, do the PreResumeActions.
3026  if (!RunPreResumeActions()) {
3027  error.SetErrorString(
3028  "Process::PrivateResume PreResumeActions failed, not resuming.");
3029  } else {
3031  error = DoResume();
3032  if (error.Success()) {
3033  DidResume();
3035  LLDB_LOGF(log, "Process thinks the process has resumed.");
3036  } else {
3037  LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3038  return error;
3039  }
3040  }
3041  } else {
3042  // Somebody wanted to run without running (e.g. we were faking a step
3043  // from one frame of a set of inlined frames that share the same PC to
3044  // another.) So generate a continue & a stopped event, and let the world
3045  // handle them.
3046  LLDB_LOGF(log,
3047  "Process::PrivateResume() asked to simulate a start & stop.");
3048 
3051  }
3052  } else
3053  LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3054  error.AsCString("<unknown error>"));
3055  return error;
3056 }
3057 
3058 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3060  return Status("Process is not running.");
3061 
3062  // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3063  // case it was already set and some thread plan logic calls halt on its own.
3064  m_clear_thread_plans_on_stop |= clear_thread_plans;
3065 
3066  ListenerSP halt_listener_sp(
3067  Listener::MakeListener("lldb.process.halt_listener"));
3068  HijackProcessEvents(halt_listener_sp);
3069 
3070  EventSP event_sp;
3071 
3073 
3075  // Don't hijack and eat the eStateExited as the code that was doing the
3076  // attach will be waiting for this event...
3078  SetExitStatus(SIGKILL, "Cancelled async attach.");
3079  Destroy(false);
3080  return Status();
3081  }
3082 
3083  // Wait for the process halt timeout seconds for the process to stop.
3084  StateType state =
3085  WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3086  halt_listener_sp, nullptr, use_run_lock);
3088 
3089  if (state == eStateInvalid || !event_sp) {
3090  // We timed out and didn't get a stop event...
3091  return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3092  }
3093 
3094  BroadcastEvent(event_sp);
3095 
3096  return Status();
3097 }
3098 
3099 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3100  Status error;
3101 
3102  // Check both the public & private states here. If we're hung evaluating an
3103  // expression, for instance, then the public state will be stopped, but we
3104  // still need to interrupt.
3108  LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3109 
3110  ListenerSP listener_sp(
3111  Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3112  HijackProcessEvents(listener_sp);
3113 
3115 
3116  // Consume the interrupt event.
3118  &exit_event_sp, true, listener_sp);
3119 
3121 
3122  // If the process exited while we were waiting for it to stop, put the
3123  // exited event into the shared pointer passed in and return. Our caller
3124  // doesn't need to do anything else, since they don't have a process
3125  // anymore...
3126 
3127  if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3128  LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3129  __FUNCTION__);
3130  return error;
3131  } else
3132  exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3133 
3134  if (state != eStateStopped) {
3135  LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3136  StateAsCString(state));
3137  // If we really couldn't stop the process then we should just error out
3138  // here, but if the lower levels just bobbled sending the event and we
3139  // really are stopped, then continue on.
3140  StateType private_state = m_private_state.GetValue();
3141  if (private_state != eStateStopped) {
3142  return Status(
3143  "Attempt to stop the target in order to detach timed out. "
3144  "State = %s",
3146  }
3147  }
3148  }
3149  return error;
3150 }
3151 
3152 Status Process::Detach(bool keep_stopped) {
3153  EventSP exit_event_sp;
3154  Status error;
3155  m_destroy_in_process = true;
3156 
3157  error = WillDetach();
3158 
3159  if (error.Success()) {
3160  if (DetachRequiresHalt()) {
3161  error = StopForDestroyOrDetach(exit_event_sp);
3162  if (!error.Success()) {
3163  m_destroy_in_process = false;
3164  return error;
3165  } else if (exit_event_sp) {
3166  // We shouldn't need to do anything else here. There's no process left
3167  // to detach from...
3169  m_destroy_in_process = false;
3170  return error;
3171  }
3172  }
3173 
3176 
3177  error = DoDetach(keep_stopped);
3178  if (error.Success()) {
3179  DidDetach();
3181  } else {
3182  return error;
3183  }
3184  }
3185  m_destroy_in_process = false;
3186 
3187  // If we exited when we were waiting for a process to stop, then forward the
3188  // event here so we don't lose the event
3189  if (exit_event_sp) {
3190  // Directly broadcast our exited event because we shut down our private
3191  // state thread above
3192  BroadcastEvent(exit_event_sp);
3193  }
3194 
3195  // If we have been interrupted (to kill us) in the middle of running, we may
3196  // not end up propagating the last events through the event system, in which
3197  // case we might strand the write lock. Unlock it here so when we do to tear
3198  // down the process we don't get an error destroying the lock.
3199 
3201  return error;
3202 }
3203 
3204 Status Process::Destroy(bool force_kill) {
3205  // If we've already called Process::Finalize then there's nothing useful to
3206  // be done here. Finalize has actually called Destroy already.
3207  if (m_finalizing)
3208  return {};
3209  return DestroyImpl(force_kill);
3210 }
3211 
3212 Status Process::DestroyImpl(bool force_kill) {
3213  // Tell ourselves we are in the process of destroying the process, so that we
3214  // don't do any unnecessary work that might hinder the destruction. Remember
3215  // to set this back to false when we are done. That way if the attempt
3216  // failed and the process stays around for some reason it won't be in a
3217  // confused state.
3218 
3219  if (force_kill)
3220  m_should_detach = false;
3221 
3222  if (GetShouldDetach()) {
3223  // FIXME: This will have to be a process setting:
3224  bool keep_stopped = false;
3225  Detach(keep_stopped);
3226  }
3227 
3228  m_destroy_in_process = true;
3229 
3231  if (error.Success()) {
3232  EventSP exit_event_sp;
3233  if (DestroyRequiresHalt()) {
3234  error = StopForDestroyOrDetach(exit_event_sp);
3235  }
3236 
3238  // Ditch all thread plans, and remove all our breakpoints: in case we
3239  // have to restart the target to kill it, we don't want it hitting a
3240  // breakpoint... Only do this if we've stopped, however, since if we
3241  // didn't manage to halt it above, then we're not going to have much luck
3242  // doing this now.
3245  }
3246 
3247  error = DoDestroy();
3248  if (error.Success()) {
3249  DidDestroy();
3251  }
3254  m_stdin_forward = false;
3255 
3256  if (m_process_input_reader) {
3257  m_process_input_reader->SetIsDone(true);
3258  m_process_input_reader->Cancel();
3259  m_process_input_reader.reset();
3260  }
3261 
3262  // If we exited when we were waiting for a process to stop, then forward
3263  // the event here so we don't lose the event
3264  if (exit_event_sp) {
3265  // Directly broadcast our exited event because we shut down our private
3266  // state thread above
3267  BroadcastEvent(exit_event_sp);
3268  }
3269 
3270  // If we have been interrupted (to kill us) in the middle of running, we
3271  // may not end up propagating the last events through the event system, in
3272  // which case we might strand the write lock. Unlock it here so when we do
3273  // to tear down the process we don't get an error destroying the lock.
3275  }
3276 
3277  m_destroy_in_process = false;
3278 
3279  return error;
3280 }
3281 
3283  Status error(WillSignal());
3284  if (error.Success()) {
3285  error = DoSignal(signal);
3286  if (error.Success())
3287  DidSignal();
3288  }
3289  return error;
3290 }
3291 
3292 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3293  assert(signals_sp && "null signals_sp");
3294  m_unix_signals_sp = signals_sp;
3295 }
3296 
3297 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3298  assert(m_unix_signals_sp && "null m_unix_signals_sp");
3299  return m_unix_signals_sp;
3300 }
3301 
3303  return GetTarget().GetArchitecture().GetByteOrder();
3304 }
3305 
3308 }
3309 
3311  const StateType state =
3313  bool return_value = true;
3316 
3317  switch (state) {
3318  case eStateDetached:
3319  case eStateExited:
3320  case eStateUnloaded:
3324  m_stdin_forward = false;
3325 
3326  LLVM_FALLTHROUGH;
3327  case eStateConnected:
3328  case eStateAttaching:
3329  case eStateLaunching:
3330  // These events indicate changes in the state of the debugging session,
3331  // always report them.
3332  return_value = true;
3333  break;
3334  case eStateInvalid:
3335  // We stopped for no apparent reason, don't report it.
3336  return_value = false;
3337  break;
3338  case eStateRunning:
3339  case eStateStepping:
3340  // If we've started the target running, we handle the cases where we are
3341  // already running and where there is a transition from stopped to running
3342  // differently. running -> running: Automatically suppress extra running
3343  // events stopped -> running: Report except when there is one or more no
3344  // votes
3345  // and no yes votes.
3348  return_value = true;
3349  else {
3350  switch (m_last_broadcast_state) {
3351  case eStateRunning:
3352  case eStateStepping:
3353  // We always suppress multiple runnings with no PUBLIC stop in between.
3354  return_value = false;
3355  break;
3356  default:
3357  // TODO: make this work correctly. For now always report
3358  // run if we aren't running so we don't miss any running events. If I
3359  // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3360  // and hit the breakpoints on multiple threads, then somehow during the
3361  // stepping over of all breakpoints no run gets reported.
3362 
3363  // This is a transition from stop to run.
3364  switch (m_thread_list.ShouldReportRun(event_ptr)) {
3365  case eVoteYes:
3366  case eVoteNoOpinion:
3367  return_value = true;
3368  break;
3369  case eVoteNo:
3370  return_value = false;
3371  break;
3372  }
3373  break;
3374  }
3375  }
3376  break;
3377  case eStateStopped:
3378  case eStateCrashed:
3379  case eStateSuspended:
3380  // We've stopped. First see if we're going to restart the target. If we
3381  // are going to stop, then we always broadcast the event. If we aren't
3382  // going to stop, let the thread plans decide if we're going to report this
3383  // event. If no thread has an opinion, we don't report it.
3384 
3388  LLDB_LOGF(log,
3389  "Process::ShouldBroadcastEvent (%p) stopped due to an "
3390  "interrupt, state: %s",
3391  static_cast<void *>(event_ptr), StateAsCString(state));
3392  // Even though we know we are going to stop, we should let the threads
3393  // have a look at the stop, so they can properly set their state.
3394  m_thread_list.ShouldStop(event_ptr);
3395  return_value = true;
3396  } else {
3397  bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3398  bool should_resume = false;
3399 
3400  // It makes no sense to ask "ShouldStop" if we've already been
3401  // restarted... Asking the thread list is also not likely to go well,
3402  // since we are running again. So in that case just report the event.
3403 
3404  if (!was_restarted)
3405  should_resume = !m_thread_list.ShouldStop(event_ptr);
3406 
3407  if (was_restarted || should_resume || m_resume_requested) {
3408  Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3409  LLDB_LOGF(log,
3410  "Process::ShouldBroadcastEvent: should_resume: %i state: "
3411  "%s was_restarted: %i report_stop_vote: %d.",
3412  should_resume, StateAsCString(state), was_restarted,
3413  report_stop_vote);
3414 
3415  switch (report_stop_vote) {
3416  case eVoteYes:
3417  return_value = true;
3418  break;
3419  case eVoteNoOpinion:
3420  case eVoteNo:
3421  return_value = false;
3422  break;
3423  }
3424 
3425  if (!was_restarted) {
3426  LLDB_LOGF(log,
3427  "Process::ShouldBroadcastEvent (%p) Restarting process "
3428  "from state: %s",
3429  static_cast<void *>(event_ptr), StateAsCString(state));
3430  ProcessEventData::SetRestartedInEvent(event_ptr, true);
3431  PrivateResume();
3432  }
3433  } else {
3434  return_value = true;
3436  }
3437  }
3438  break;
3439  }
3440 
3441  // Forcing the next event delivery is a one shot deal. So reset it here.
3443 
3444  // We do some coalescing of events (for instance two consecutive running
3445  // events get coalesced.) But we only coalesce against events we actually
3446  // broadcast. So we use m_last_broadcast_state to track that. NB - you
3447  // can't use "m_public_state.GetValue()" for that purpose, as was originally
3448  // done, because the PublicState reflects the last event pulled off the
3449  // queue, and there may be several events stacked up on the queue unserviced.
3450  // So the PublicState may not reflect the last broadcasted event yet.
3451  // m_last_broadcast_state gets updated here.
3452 
3453  if (return_value)
3454  m_last_broadcast_state = state;
3455 
3456  LLDB_LOGF(log,
3457  "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3458  "broadcast state: %s - %s",
3459  static_cast<void *>(event_ptr), StateAsCString(state),
3461  return_value ? "YES" : "NO");
3462  return return_value;
3463 }
3464 
3465 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3467 
3468  bool already_running = PrivateStateThreadIsValid();
3469  LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3470  already_running ? " already running"
3471  : " starting private state thread");
3472 
3473  if (!is_secondary_thread && already_running)
3474  return true;
3475 
3476  // Create a thread that watches our internal state and controls which events
3477  // make it to clients (into the DCProcess event queue).
3478  char thread_name[1024];
3479  uint32_t max_len = llvm::get_max_thread_name_length();
3480  if (max_len > 0 && max_len <= 30) {
3481  // On platforms with abbreviated thread name lengths, choose thread names
3482  // that fit within the limit.
3483  if (already_running)
3484  snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3485  else
3486  snprintf(thread_name, sizeof(thread_name), "intern-state");
3487  } else {
3488  if (already_running)
3489  snprintf(thread_name, sizeof(thread_name),
3490  "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3491  GetID());
3492  else
3493  snprintf(thread_name, sizeof(thread_name),
3494  "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3495  }
3496 
3497  // Create the private state thread, and start it running.
3498  PrivateStateThreadArgs *args_ptr =
3499  new PrivateStateThreadArgs(this, is_secondary_thread);
3500  llvm::Expected<HostThread> private_state_thread =
3502  (void *)args_ptr, 8 * 1024 * 1024);
3503  if (!private_state_thread) {
3505  "failed to launch host thread: {}",
3506  llvm::toString(private_state_thread.takeError()));
3507  return false;
3508  }
3509 
3510  assert(private_state_thread->IsJoinable());
3511  m_private_state_thread = *private_state_thread;
3513  return true;
3514 }
3515 
3518 }
3519 
3522 }
3523 
3527  else {
3529  LLDB_LOGF(
3530  log,
3531  "Went to stop the private state thread, but it was already invalid.");
3532  }
3533 }
3534 
3537 
3538  assert(signal == eBroadcastInternalStateControlStop ||
3541 
3542  LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3543 
3544  // Signal the private state thread
3546  // Broadcast the event.
3547  // It is important to do this outside of the if below, because it's
3548  // possible that the thread state is invalid but that the thread is waiting
3549  // on a control event instead of simply being on its way out (this should
3550  // not happen, but it apparently can).
3551  LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3552  std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3554  event_receipt_sp);
3555 
3556  // Wait for the event receipt or for the private state thread to exit
3557  bool receipt_received = false;
3558  if (PrivateStateThreadIsValid()) {
3559  while (!receipt_received) {
3560  // Check for a receipt for n seconds and then check if the private
3561  // state thread is still around.
3562  receipt_received =
3563  event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3564  if (!receipt_received) {
3565  // Check if the private state thread is still around. If it isn't
3566  // then we are done waiting
3568  break; // Private state thread exited or is exiting, we are done
3569  }
3570  }
3571  }
3572 
3573  if (signal == eBroadcastInternalStateControlStop) {
3574  thread_result_t result = {};
3575  m_private_state_thread.Join(&result);
3577  }
3578  } else {
3579  LLDB_LOGF(
3580  log,
3581  "Private state thread already dead, no need to signal it to stop.");
3582  }
3583 }
3584 
3588  nullptr);
3589  else
3591 }
3592 
3593 void Process::HandlePrivateEvent(EventSP &event_sp) {
3595  m_resume_requested = false;
3596 
3597  const StateType new_state =
3599 
3600  // First check to see if anybody wants a shot at this event:
3601  if (m_next_event_action_up) {
3602  NextEventAction::EventActionResult action_result =
3603  m_next_event_action_up->PerformAction(event_sp);
3604  LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3605 
3606  switch (action_result) {
3608  SetNextEventAction(nullptr);
3609  break;
3610 
3612  break;
3613 
3615  // Handle Exiting Here. If we already got an exited event, we should
3616  // just propagate it. Otherwise, swallow this event, and set our state
3617  // to exit so the next event will kill us.
3618  if (new_state != eStateExited) {
3619  // FIXME: should cons up an exited event, and discard this one.
3620  SetExitStatus(0, m_next_event_action_up->GetExitString());
3621  SetNextEventAction(nullptr);
3622  return;
3623  }
3624  SetNextEventAction(nullptr);
3625  break;
3626  }
3627  }
3628 
3629  // See if we should broadcast this state to external clients?
3630  const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3631 
3632  if (should_broadcast) {
3633  const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3634  if (log) {
3635  LLDB_LOGF(log,
3636  "Process::%s (pid = %" PRIu64
3637  ") broadcasting new state %s (old state %s) to %s",
3638  __FUNCTION__, GetID(), StateAsCString(new_state),
3640  is_hijacked ? "hijacked" : "public");
3641  }
3643  if (StateIsRunningState(new_state)) {
3644  // Only push the input handler if we aren't fowarding events, as this
3645  // means the curses GUI is in use... Or don't push it if we are launching
3646  // since it will come up stopped.
3647  if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3648  new_state != eStateLaunching && new_state != eStateAttaching) {
3652  LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3653  __FUNCTION__, m_iohandler_sync.GetValue());
3654  }
3655  } else if (StateIsStoppedState(new_state, false)) {
3656  if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3657  // If the lldb_private::Debugger is handling the events, we don't want
3658  // to pop the process IOHandler here, we want to do it when we receive
3659  // the stopped event so we can carefully control when the process
3660  // IOHandler is popped because when we stop we want to display some
3661  // text stating how and why we stopped, then maybe some
3662  // process/thread/frame info, and then we want the "(lldb) " prompt to
3663  // show up. If we pop the process IOHandler here, then we will cause
3664  // the command interpreter to become the top IOHandler after the
3665  // process pops off and it will update its prompt right away... See the
3666  // Debugger.cpp file where it calls the function as
3667  // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3668  // Otherwise we end up getting overlapping "(lldb) " prompts and
3669  // garbled output.
3670  //
3671  // If we aren't handling the events in the debugger (which is indicated
3672  // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3673  // we are hijacked, then we always pop the process IO handler manually.
3674  // Hijacking happens when the internal process state thread is running
3675  // thread plans, or when commands want to run in synchronous mode and
3676  // they call "process->WaitForProcessToStop()". An example of something
3677  // that will hijack the events is a simple expression:
3678  //
3679  // (lldb) expr (int)puts("hello")
3680  //
3681  // This will cause the internal process state thread to resume and halt
3682  // the process (and _it_ will hijack the eBroadcastBitStateChanged
3683  // events) and we do need the IO handler to be pushed and popped
3684  // correctly.
3685 
3686  if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3688  }
3689  }
3690 
3691  BroadcastEvent(event_sp);
3692  } else {
3693  if (log) {
3694  LLDB_LOGF(
3695  log,
3696  "Process::%s (pid = %" PRIu64
3697  ") suppressing state %s (old state %s): should_broadcast == false",
3698  __FUNCTION__, GetID(), StateAsCString(new_state),
3700  }
3701  }
3702 }
3703 
3705  EventSP event_sp;
3706  Status error(WillHalt());
3707  if (error.Fail())
3708  return error;
3709 
3710  // Ask the process subclass to actually halt our process
3711  bool caused_stop;
3712  error = DoHalt(caused_stop);
3713 
3714  DidHalt();
3715  return error;
3716 }
3717 
3719  std::unique_ptr<PrivateStateThreadArgs> args_up(
3720  static_cast<PrivateStateThreadArgs *>(arg));
3721  thread_result_t result =
3722  args_up->process->RunPrivateStateThread(args_up->is_secondary_thread);
3723  return result;
3724 }
3725 
3727  bool control_only = true;
3728 
3730  LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
3731  __FUNCTION__, static_cast<void *>(this), GetID());
3732 
3733  bool exit_now = false;
3734  bool interrupt_requested = false;
3735  while (!exit_now) {
3736  EventSP event_sp;
3737  GetEventsPrivate(event_sp, llvm::None, control_only);
3738  if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
3739  LLDB_LOGF(log,
3740  "Process::%s (arg = %p, pid = %" PRIu64
3741  ") got a control event: %d",
3742  __FUNCTION__, static_cast<void *>(this), GetID(),
3743  event_sp->GetType());
3744 
3745  switch (event_sp->GetType()) {
3747  exit_now = true;
3748  break; // doing any internal state management below
3749 
3751  control_only = true;
3752  break;
3753 
3755  control_only = false;
3756  break;
3757  }
3758 
3759  continue;
3760  } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
3762  LLDB_LOGF(log,
3763  "Process::%s (arg = %p, pid = %" PRIu64
3764  ") woke up with an interrupt while attaching - "
3765  "forwarding interrupt.",
3766  __FUNCTION__, static_cast<void *>(this), GetID());
3769  LLDB_LOGF(log,
3770  "Process::%s (arg = %p, pid = %" PRIu64
3771  ") woke up with an interrupt - Halting.",
3772  __FUNCTION__, static_cast<void *>(this), GetID());
3773  Status error = HaltPrivate();
3774  if (error.Fail() && log)
3775  LLDB_LOGF(log,
3776  "Process::%s (arg = %p, pid = %" PRIu64
3777  ") failed to halt the process: %s",
3778  __FUNCTION__, static_cast<void *>(this), GetID(),
3779  error.AsCString());
3780  // Halt should generate a stopped event. Make a note of the fact that
3781  // we were doing the interrupt, so we can set the interrupted flag
3782  // after we receive the event. We deliberately set this to true even if
3783  // HaltPrivate failed, so that we can interrupt on the next natural
3784  // stop.
3785  interrupt_requested = true;
3786  } else {
3787  // This can happen when someone (e.g. Process::Halt) sees that we are
3788  // running and sends an interrupt request, but the process actually
3789  // stops before we receive it. In that case, we can just ignore the
3790  // request. We use m_last_broadcast_state, because the Stopped event
3791  // may not have been popped of the event queue yet, which is when the
3792  // public state gets updated.
3793  LLDB_LOGF(log,
3794  "Process::%s ignoring interrupt as we have already stopped.",
3795  __FUNCTION__);
3796  }
3797  continue;
3798  }
3799 
3800  const StateType internal_state =
3802 
3803  if (internal_state != eStateInvalid) {
3805  StateIsStoppedState(internal_state, true)) {
3808  }
3809 
3810  if (interrupt_requested) {
3811  if (StateIsStoppedState(internal_state, true)) {
3812  // We requested the interrupt, so mark this as such in the stop event
3813  // so clients can tell an interrupted process from a natural stop
3814  ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
3815  interrupt_requested = false;
3816  } else if (log) {
3817  LLDB_LOGF(log,
3818  "Process::%s interrupt_requested, but a non-stopped "
3819  "state '%s' received.",
3820  __FUNCTION__, StateAsCString(internal_state));
3821  }
3822  }
3823 
3824  HandlePrivateEvent(event_sp);
3825  }
3826 
3827  if (internal_state == eStateInvalid || internal_state == eStateExited ||
3828  internal_state == eStateDetached) {
3829  LLDB_LOGF(log,
3830  "Process::%s (arg = %p, pid = %" PRIu64
3831  ") about to exit with internal state %s...",
3832  __FUNCTION__, static_cast<void *>(this), GetID(),
3833  StateAsCString(internal_state));
3834 
3835  break;
3836  }
3837  }
3838 
3839  // Verify log is still enabled before attempting to write to it...
3840  LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
3841  __FUNCTION__, static_cast<void *>(this), GetID());
3842 
3843  // If we are a secondary thread, then the primary thread we are working for
3844  // will have already acquired the public_run_lock, and isn't done with what
3845  // it was doing yet, so don't try to change it on the way out.
3846  if (!is_secondary_thread)
3848  return {};
3849 }
3850 
3851 // Process Event Data
3852 
3854 
3855 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
3856  StateType state)
3857  : EventData(), m_process_wp(), m_state(state), m_restarted(false),
3858  m_update_state(0), m_interrupted(false) {
3859  if (process_sp)
3860  m_process_wp = process_sp;
3861 }
3862 
3864 
3866  static ConstString g_flavor("Process::ProcessEventData");
3867  return g_flavor;
3868 }
3869 
3872 }
3873 
3875  bool &found_valid_stopinfo) {
3876  found_valid_stopinfo = false;
3877 
3878  ProcessSP process_sp(m_process_wp.lock());
3879  if (!process_sp)
3880  return false;
3881 
3882  ThreadList &curr_thread_list = process_sp->GetThreadList();
3883  uint32_t num_threads = curr_thread_list.GetSize();
3884  uint32_t idx;
3885 
3886  // The actions might change one of the thread's stop_info's opinions about
3887  // whether we should stop the process, so we need to query that as we go.
3888 
3889  // One other complication here, is that we try to catch any case where the
3890  // target has run (except for expressions) and immediately exit, but if we
3891  // get that wrong (which is possible) then the thread list might have
3892  // changed, and that would cause our iteration here to crash. We could
3893  // make a copy of the thread list, but we'd really like to also know if it
3894  // has changed at all, so we make up a vector of the thread ID's and check
3895  // what we get back against this list & bag out if anything differs.
3896  ThreadList not_suspended_thread_list(process_sp.get());
3897  std::vector<uint32_t> thread_index_array(num_threads);
3898  uint32_t not_suspended_idx = 0;
3899  for (idx = 0; idx < num_threads; ++idx) {
3900  lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
3901 
3902  /*
3903  Filter out all suspended threads, they could not be the reason
3904  of stop and no need to perform any actions on them.
3905  */
3906  if (thread_sp->GetResumeState() != eStateSuspended) {
3907  not_suspended_thread_list.AddThread(thread_sp);
3908  thread_index_array[not_suspended_idx] = thread_sp->GetIndexID();
3909  not_suspended_idx++;
3910  }
3911  }
3912 
3913  // Use this to track whether we should continue from here. We will only
3914  // continue the target running if no thread says we should stop. Of course
3915  // if some thread's PerformAction actually sets the target running, then it
3916  // doesn't matter what the other threads say...
3917 
3918  bool still_should_stop = false;
3919 
3920  // Sometimes - for instance if we have a bug in the stub we are talking to,
3921  // we stop but no thread has a valid stop reason. In that case we should
3922  // just stop, because we have no way of telling what the right thing to do
3923  // is, and it's better to let the user decide than continue behind their
3924  // backs.
3925 
3926  for (idx = 0; idx < not_suspended_thread_list.GetSize(); ++idx) {
3927  curr_thread_list = process_sp->GetThreadList();
3928  if (curr_thread_list.GetSize() != num_threads) {
3931  LLDB_LOGF(
3932  log,
3933  "Number of threads changed from %u to %u while processing event.",
3934  num_threads, curr_thread_list.GetSize());
3935  break;
3936  }
3937 
3938  lldb::ThreadSP thread_sp = not_suspended_thread_list.GetThreadAtIndex(idx);
3939 
3940  if (thread_sp->GetIndexID() != thread_index_array[idx]) {
3943  LLDB_LOGF(log,
3944  "The thread at position %u changed from %u to %u while "
3945  "processing event.",
3946  idx, thread_index_array[idx], thread_sp->GetIndexID());
3947  break;
3948  }
3949 
3950  StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
3951  if (stop_info_sp && stop_info_sp->IsValid()) {
3952  found_valid_stopinfo = true;
3953  bool this_thread_wants_to_stop;
3954  if (stop_info_sp->GetOverrideShouldStop()) {
3955  this_thread_wants_to_stop =
3956  stop_info_sp->GetOverriddenShouldStopValue();
3957  } else {
3958  stop_info_sp->PerformAction(event_ptr);
3959  // The stop action might restart the target. If it does, then we
3960  // want to mark that in the event so that whoever is receiving it
3961  // will know to wait for the running event and reflect that state
3962  // appropriately. We also need to stop processing actions, since they
3963  // aren't expecting the target to be running.
3964 
3965  // FIXME: we might have run.
3966  if (stop_info_sp->HasTargetRunSinceMe()) {
3967  SetRestarted(true);
3968  break;
3969  }
3970 
3971  this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
3972  }
3973 
3974  if (!still_should_stop)
3975  still_should_stop = this_thread_wants_to_stop;
3976  }
3977  }
3978 
3979  return still_should_stop;
3980 }
3981 
3983  ProcessSP process_sp(m_process_wp.lock());
3984 
3985  if (!process_sp)
3986  return;
3987 
3988  // This function gets called twice for each event, once when the event gets
3989  // pulled off of the private process event queue, and then any number of
3990  // times, first when it gets pulled off of the public event queue, then other
3991  // times when we're pretending that this is where we stopped at the end of
3992  // expression evaluation. m_update_state is used to distinguish these three
3993  // cases; it is 0 when we're just pulling it off for private handling, and >
3994  // 1 for expression evaluation, and we don't want to do the breakpoint
3995  // command handling then.
3996  if (m_update_state != 1)
3997  return;
3998 
3999  process_sp->SetPublicState(
4001 
4002  if (m_state == eStateStopped && !m_restarted) {
4003  // Let process subclasses know we are about to do a public stop and do
4004  // anything they might need to in order to speed up register and memory
4005  // accesses.
4006  process_sp->WillPublicStop();
4007  }
4008 
4009  // If this is a halt event, even if the halt stopped with some reason other
4010  // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4011  // the halt request came through) don't do the StopInfo actions, as they may
4012  // end up restarting the process.
4013  if (m_interrupted)
4014  return;
4015 
4016  // If we're not stopped or have restarted, then skip the StopInfo actions:
4017  if (m_state != eStateStopped || m_restarted) {
4018  return;
4019  }
4020 
4021  bool does_anybody_have_an_opinion = false;
4022  bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4023 
4024  if (GetRestarted()) {
4025  return;
4026  }
4027 
4028  if (!still_should_stop && does_anybody_have_an_opinion) {
4029  // We've been asked to continue, so do that here.
4030  SetRestarted(true);
4031  // Use the public resume method here, since this is just extending a
4032  // public resume.
4033  process_sp->PrivateResume();
4034  } else {
4035  bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4036  !process_sp->StateChangedIsHijackedForSynchronousResume();
4037 
4038  if (!hijacked) {
4039  // If we didn't restart, run the Stop Hooks here.
4040  // Don't do that if state changed events aren't hooked up to the
4041  // public (or SyncResume) broadcasters. StopHooks are just for
4042  // real public stops. They might also restart the target,
4043  // so watch for that.
4044  if (process_sp->GetTarget().RunStopHooks())
4045  SetRestarted(true);
4046  }
4047  }
4048 }
4049 
4051  ProcessSP process_sp(m_process_wp.lock());
4052 
4053  if (process_sp)
4054  s->Printf(" process = %p (pid = %" PRIu64 "), ",
4055  static_cast<void *>(process_sp.get()), process_sp->GetID());
4056  else
4057  s->PutCString(" process = NULL, ");
4058 
4059  s->Printf("state = %s", StateAsCString(GetState()));
4060 }
4061 
4064  if (event_ptr) {
4065  const EventData *event_data = event_ptr->GetData();
4066  if (event_data &&
4067  event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4068  return static_cast<const ProcessEventData *>(event_ptr->GetData());
4069  }
4070  return nullptr;
4071 }
4072 
4073 ProcessSP
4075  ProcessSP process_sp;
4076  const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4077  if (data)
4078  process_sp = data->GetProcessSP();
4079  return process_sp;
4080 }
4081 
4083  const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4084  if (data == nullptr)
4085  return eStateInvalid;
4086  else
4087  return data->GetState();
4088 }
4089 
4091  const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4092  if (data == nullptr)
4093  return false;
4094  else
4095  return data->GetRestarted();
4096 }
4097 
4099  bool new_value) {
4100  ProcessEventData *data =
4101  const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4102  if (data != nullptr)
4103  data->SetRestarted(new_value);
4104 }
4105 
4106 size_t
4108  ProcessEventData *data =
4109  const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4110  if (data != nullptr)
4111  return data->GetNumRestartedReasons();
4112  else
4113  return 0;
4114 }
4115 
4116 const char *
4118  size_t idx) {
4119  ProcessEventData *data =
4120  const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4121  if (data != nullptr)
4122  return data->GetRestartedReasonAtIndex(idx);
4123  else
4124  return nullptr;
4125 }
4126 
4128  const char *reason) {
4129  ProcessEventData *data =
4130  const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4131  if (data != nullptr)
4132  data->AddRestartedReason(reason);
4133 }
4134 
4136  const Event *event_ptr) {
4137  const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4138  if (data == nullptr)
4139  return false;
4140  else
4141  return data->GetInterrupted();
4142 }
4143 
4145  bool new_value) {
4146  ProcessEventData *data =
4147  const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4148  if (data != nullptr)
4149  data->SetInterrupted(new_value);
4150 }
4151 
4153  ProcessEventData *data =
4154  const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4155  if (data) {
4156  data->SetUpdateStateOnRemoval();
4157  return true;
4158  }
4159  return false;
4160 }
4161 
4162 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4163 
4165  exe_ctx.SetTargetPtr(&GetTarget());
4166  exe_ctx.SetProcessPtr(this);
4167  exe_ctx.SetThreadPtr(nullptr);
4168  exe_ctx.SetFramePtr(nullptr);
4169 }
4170 
4171 // uint32_t
4172 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4173 // std::vector<lldb::pid_t> &pids)
4174 //{
4175 // return 0;
4176 //}
4177 //
4178 // ArchSpec
4179 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4180 //{
4181 // return Host::GetArchSpecForExistingProcess (pid);
4182 //}
4183 //
4184 // ArchSpec
4185 // Process::GetArchSpecForExistingProcess (const char *process_name)
4186 //{
4187 // return Host::GetArchSpecForExistingProcess (process_name);
4188 //}
4189 
4190 void Process::AppendSTDOUT(const char *s, size_t len) {
4191  std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4192  m_stdout_data.append(s, len);
4194  new ProcessEventData(shared_from_this(), GetState()));
4195 }
4196 
4197 void Process::AppendSTDERR(const char *s, size_t len) {
4198  std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4199  m_stderr_data.append(s, len);
4201  new ProcessEventData(shared_from_this(), GetState()));
4202 }
4203 
4204 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4205  std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4206  m_profile_data.push_back(one_profile_data);
4208  new ProcessEventData(shared_from_this(), GetState()));
4209 }
4210 
4212  const StructuredDataPluginSP &plugin_sp) {
4215  new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp));
4216 }
4217 
4218 StructuredDataPluginSP
4220  auto find_it = m_structured_data_plugin_map.find(type_name);
4221  if (find_it != m_structured_data_plugin_map.end())
4222  return find_it->second;
4223  else
4224  return StructuredDataPluginSP();
4225 }
4226 
4227 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4228  std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4229  if (m_profile_data.empty())
4230  return 0;
4231 
4232  std::string &one_profile_data = m_profile_data.front();
4233  size_t bytes_available = one_profile_data.size();
4234  if (bytes_available > 0) {
4236  LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4237  static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4238  if (bytes_available > buf_size) {
4239  memcpy(buf, one_profile_data.c_str(), buf_size);
4240  one_profile_data.erase(0, buf_size);
4241  bytes_available = buf_size;
4242  } else {
4243  memcpy(buf, one_profile_data.c_str(), bytes_available);
4244  m_profile_data.erase(m_profile_data.begin());
4245  }
4246  }
4247  return bytes_available;
4248 }
4249 
4250 // Process STDIO
4251 
4252 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4253  std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4254  size_t bytes_available = m_stdout_data.size();
4255  if (bytes_available > 0) {
4257  LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4258  static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4259  if (bytes_available > buf_size) {
4260  memcpy(buf, m_stdout_data.c_str(), buf_size);
4261  m_stdout_data.erase(0, buf_size);
4262  bytes_available = buf_size;
4263  } else {
4264  memcpy(buf, m_stdout_data.c_str(), bytes_available);
4265  m_stdout_data.clear();
4266  }
4267  }
4268  return bytes_available;
4269 }
4270 
4271 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4272  std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4273  size_t bytes_available = m_stderr_data.size();
4274  if (bytes_available > 0) {
4276  LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4277  static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4278  if (bytes_available > buf_size) {
4279  memcpy(buf, m_stderr_data.c_str(), buf_size);
4280  m_stderr_data.erase(0, buf_size);
4281  bytes_available = buf_size;
4282  } else {
4283  memcpy(buf, m_stderr_data.c_str(), bytes_available);
4284  m_stderr_data.clear();
4285  }
4286  }
4287  return bytes_available;
4288 }
4289 
4290 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4291  size_t src_len) {
4292  Process *process = (Process *)baton;
4293  process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4294 }
4295 
4297 public:
4298  IOHandlerProcessSTDIO(Process *process, int write_fd)
4299  : IOHandler(process->GetTarget().GetDebugger(),
4300  IOHandler::Type::ProcessIO),
4301  m_process(process),
4302  m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4303  m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4304  m_pipe.CreateNew(false);
4305  }
4306 
4307  ~IOHandlerProcessSTDIO() override = default;
4308 
4309  // Each IOHandler gets to run until it is done. It should read data from the
4310  // "in" and place output into "out" and "err and return when done.
4311  void Run() override {
4312  if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4313  !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4314  SetIsDone(true);
4315  return;
4316  }
4317 
4318  SetIsDone(false);
4319  const int read_fd = m_read_file.GetDescriptor();
4320  Terminal terminal(read_fd);
4321  TerminalState terminal_state(terminal, false);
4322  // FIXME: error handling?
4323  llvm::consumeError(terminal.SetCanonical(false));
4324  llvm::consumeError(terminal.SetEcho(false));
4325 // FD_ZERO, FD_SET are not supported on windows
4326 #ifndef _WIN32
4327  const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4328  m_is_running = true;
4329  while (!GetIsDone()) {
4330  SelectHelper select_helper;
4331  select_helper.FDSetRead(read_fd);
4332  select_helper.FDSetRead(pipe_read_fd);
4333  Status error = select_helper.Select();
4334 
4335  if (error.Fail()) {
4336  SetIsDone(true);
4337  } else {
4338  char ch = 0;
4339  size_t n;
4340  if (select_helper.FDIsSetRead(read_fd)) {
4341  n = 1;
4342  if (m_read_file.Read(&ch, n).Success() && n == 1) {
4343  if (m_write_file.Write(&ch, n).Fail() || n != 1)
4344  SetIsDone(true);
4345  } else
4346  SetIsDone(true);
4347  }
4348  if (select_helper.FDIsSetRead(pipe_read_fd)) {
4349  size_t bytes_read;
4350  // Consume the interrupt byte
4351  Status error = m_pipe.Read(&ch, 1, bytes_read);
4352  if (error.Success()) {
4353  switch (ch) {
4354  case 'q':
4355  SetIsDone(true);
4356  break;
4357  case 'i':
4360  break;
4361  }
4362  }
4363  }
4364  }
4365  }
4366  m_is_running = false;
4367 #endif
4368  }
4369 
4370  void Cancel() override {
4371  SetIsDone(true);
4372  // Only write to our pipe to cancel if we are in
4373  // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4374  // is being run from the command interpreter:
4375  //
4376  // (lldb) step_process_thousands_of_times
4377  //
4378  // In this case the command interpreter will be in the middle of handling
4379  // the command and if the process pushes and pops the IOHandler thousands
4380  // of times, we can end up writing to m_pipe without ever consuming the
4381  // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4382  // deadlocking when the pipe gets fed up and blocks until data is consumed.
4383  if (m_is_running) {
4384  char ch = 'q'; // Send 'q' for quit
4385  size_t bytes_written = 0;
4386  m_pipe.Write(&ch, 1, bytes_written);
4387  }
4388  }
4389 
4390  bool Interrupt() override {
4391  // Do only things that are safe to do in an interrupt context (like in a
4392  // SIGINT handler), like write 1 byte to a file descriptor. This will
4393  // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4394  // that was written to the pipe and then call
4395  // m_process->SendAsyncInterrupt() from a much safer location in code.
4396  if (m_active) {
4397  char ch = 'i'; // Send 'i' for interrupt
4398  size_t bytes_written = 0;
4399  Status result = m_pipe.Write(&ch, 1, bytes_written);
4400  return result.Success();
4401  } else {
4402  // This IOHandler might be pushed on the stack, but not being run
4403  // currently so do the right thing if we aren't actively watching for
4404  // STDIN by sending the interrupt to the process. Otherwise the write to
4405  // the pipe above would do nothing. This can happen when the command
4406  // interpreter is running and gets a "expression ...". It will be on the
4407  // IOHandler thread and sending the input is complete to the delegate
4408  // which will cause the expression to run, which will push the process IO
4409  // handler, but not run it.
4410 
4413  return true;
4414  }
4415  }
4416  return false;
4417  }
4418 
4419  void GotEOF() override {}
4420 
4421 protected:
4423  NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB
4424  NativeFile m_write_file; // Write to this file (usually the primary pty for
4425  // getting io to debuggee)
4427  std::atomic<bool> m_is_running{false};
4428 };
4429 
4431  // First set up the Read Thread for reading/handling process I/O
4433  std::make_unique<ConnectionFileDescriptor>(fd, true));
4438 
4439  // Now read thread is set up, set up input reader.
4440 
4443  std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4444  }
4445 }
4446 
4448  IOHandlerSP io_handler_sp(m_process_input_reader);
4449  if (io_handler_sp)
4450  return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4451  return false;
4452 }
4454  IOHandlerSP io_handler_sp(m_process_input_reader);
4455  if (io_handler_sp) {
4457  LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4458 
4459  io_handler_sp->SetIsDone(false);
4460  // If we evaluate an utility function, then we don't cancel the current
4461  // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4462  // existing IOHandler that potentially provides the user interface (e.g.
4463  // the IOHandler for Editline).
4464  bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4465  GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4466  cancel_top_handler);
4467  return true;
4468  }
4469  return false;
4470 }
4471 
4473  IOHandlerSP io_handler_sp(m_process_input_reader);
4474  if (io_handler_sp)
4475  return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4476  return false;
4477 }
4478 
4479 // The process needs to know about installed plug-ins
4481 
4483 
4484 namespace {
4485 // RestorePlanState is used to record the "is private", "is controlling" and
4486 // "okay
4487 // to discard" fields of the plan we are running, and reset it on Clean or on
4488 // destruction. It will only reset the state once, so you can call Clean and
4489 // then monkey with the state and it won't get reset on you again.
4490 
4491 class RestorePlanState {
4492 public:
4493  RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4494  : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) {
4495  if (m_thread_plan_sp) {
4496  m_private = m_thread_plan_sp->GetPrivate();
4497  m_is_controlling = m_thread_plan_sp->IsControllingPlan();
4498  m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4499  }
4500  }
4501 
4502  ~RestorePlanState() { Clean(); }
4503 
4504  void Clean() {
4505  if (!m_already_reset && m_thread_plan_sp) {
4506  m_already_reset = true;
4507  m_thread_plan_sp->SetPrivate(m_private);
4508  m_thread_plan_sp->SetIsControllingPlan(m_is_controlling);
4509  m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4510  }
4511  }
4512 
4513 private:
4514  lldb::ThreadPlanSP m_thread_plan_sp;
4515  bool m_already_reset;
4516  bool m_private;
4517  bool m_is_controlling;
4518  bool m_okay_to_discard;
4519 };
4520 } // anonymous namespace
4521 
4522 static microseconds
4524  const milliseconds default_one_thread_timeout(250);
4525 
4526  // If the overall wait is forever, then we don't need to worry about it.
4527  if (!options.GetTimeout()) {
4528  return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4529  : default_one_thread_timeout;
4530  }
4531 
4532  // If the one thread timeout is set, use it.
4533  if (options.GetOneThreadTimeout())
4534  return *options.GetOneThreadTimeout();
4535 
4536  // Otherwise use half the total timeout, bounded by the
4537  // default_one_thread_timeout.
4538  return std::min<microseconds>(default_one_thread_timeout,
4539  *options.GetTimeout() / 2);
4540 }
4541 
4542 static Timeout<std::micro>
4544  bool before_first_timeout) {
4545  // If we are going to run all threads the whole time, or if we are only going
4546  // to run one thread, we can just return the overall timeout.
4547  if (!options.GetStopOthers() || !options.GetTryAllThreads())
4548  return options.GetTimeout();
4549 
4550  if (before_first_timeout)
4551  return GetOneThreadExpressionTimeout(options);
4552 
4553  if (!options.GetTimeout())
4554  return llvm::None;
4555  else
4556  return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4557 }
4558 
4559 static llvm::Optional<ExpressionResults>
4560 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4561  RestorePlanState &restorer, const EventSP &event_sp,
4562  EventSP &event_to_broadcast_sp,
4563  const EvaluateExpressionOptions &options,
4564  bool handle_interrupts) {
4566 
4567  ThreadSP thread_sp = thread_plan_sp->GetTarget()
4568  .GetProcessSP()
4569  ->GetThreadList()
4570  .FindThreadByID(thread_id);
4571  if (!thread_sp) {
4572  LLDB_LOG(log,
4573  "The thread on which we were running the "
4574  "expression: tid = {0}, exited while "
4575  "the expression was running.",
4576  thread_id);
4578  }
4579 
4580  ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4581  if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4582  LLDB_LOG(log, "execution completed successfully");
4583 
4584  // Restore the plan state so it will get reported as intended when we are
4585  // done.
4586  restorer.Clean();
4587  return eExpressionCompleted;
4588  }
4589 
4590  StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4591  if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4592  stop_info_sp->ShouldNotify(event_sp.get())) {
4593  LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4594  if (!options.DoesIgnoreBreakpoints()) {
4595  // Restore the plan state and then force Private to false. We are going
4596  // to stop because of this plan so we need it to become a public plan or
4597  // it won't report correctly when we continue to its termination later
4598  // on.
4599  restorer.Clean();
4600  thread_plan_sp->SetPrivate(false);
4601  event_to_broadcast_sp = event_sp;
4602  }
4603  return eExpressionHitBreakpoint;
4604  }
4605 
4606  if (!handle_interrupts &&
4608  return llvm::None;
4609 
4610  LLDB_LOG(log, "thread plan did not successfully complete");
4611  if (!options.DoesUnwindOnError())
4612  event_to_broadcast_sp = event_sp;
4613  return eExpressionInterrupted;
4614 }
4615 
4618  lldb::ThreadPlanSP &thread_plan_sp,
4619  const EvaluateExpressionOptions &options,
4620  DiagnosticManager &diagnostic_manager) {
4622 
4623  std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4624 
4625  if (!thread_plan_sp) {
4626  diagnostic_manager.PutString(
4628  "RunThreadPlan called with empty thread plan.");
4629  return eExpressionSetupError;
4630  }
4631 
4632  if (!thread_plan_sp->ValidatePlan(nullptr)) {
4633  diagnostic_manager.PutString(
4635  "RunThreadPlan called with an invalid thread plan.");
4636  return eExpressionSetupError;
4637  }
4638 
4639  if (exe_ctx.GetProcessPtr() != this) {
4640  diagnostic_manager.PutString(eDiagnosticSeverityError,
4641  "RunThreadPlan called on wrong process.");
4642  return eExpressionSetupError;
4643  }
4644 
4645  Thread *thread = exe_ctx.GetThreadPtr();
4646  if (thread == nullptr) {
4647  diagnostic_manager.PutString(eDiagnosticSeverityError,
4648  "RunThreadPlan called with invalid thread.");
4649  return eExpressionSetupError;
4650  }
4651 
4652  // Record the thread's id so we can tell when a thread we were using
4653  // to run the expression exits during the expression evaluation.
4654  lldb::tid_t expr_thread_id = thread->GetID();
4655 
4656  // We need to change some of the thread plan attributes for the thread plan
4657  // runner. This will restore them when we are done:
4658 
4659  RestorePlanState thread_plan_restorer(thread_plan_sp);
4660 
4661  // We rely on the thread plan we are running returning "PlanCompleted" if
4662  // when it successfully completes. For that to be true the plan can't be
4663  // private - since private plans suppress themselves in the GetCompletedPlan
4664  // call.
4665 
4666  thread_plan_sp->SetPrivate(false);
4667 
4668  // The plans run with RunThreadPlan also need to be terminal controlling plans
4669  // or when they are done we will end up asking the plan above us whether we
4670  // should stop, which may give the wrong answer.
4671 
4672  thread_plan_sp->SetIsControllingPlan(true);
4673  thread_plan_sp->SetOkayToDiscard(false);
4674 
4675  // If we are running some utility expression for LLDB, we now have to mark
4676  // this in the ProcesModID of this process. This RAII takes care of marking
4677  // and reverting the mark it once we are done running the expression.
4678  UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4679 
4681  diagnostic_manager.PutString(
4683  "RunThreadPlan called while the private state was not stopped.");
4684  return eExpressionSetupError;
4685  }
4686 
4687  // Save the thread & frame from the exe_ctx for restoration after we run
4688  const uint32_t thread_idx_id = thread->GetIndexID();
4689  StackFrameSP selected_frame_sp = thread->GetSelectedFrame();
4690  if (!selected_frame_sp) {
4691  thread->SetSelectedFrame(nullptr);
4692  selected_frame_sp = thread->GetSelectedFrame();
4693  if (!selected_frame_sp) {
4694  diagnostic_manager.Printf(
4696  "RunThreadPlan called without a selected frame on thread %d",
4697  thread_idx_id);
4698  return eExpressionSetupError;
4699  }
4700  }
4701 
4702  // Make sure the timeout values make sense. The one thread timeout needs to
4703  // be smaller than the overall timeout.
4704  if (options.GetOneThreadTimeout() && options.GetTimeout() &&
4705  *options.GetTimeout() < *options.GetOneThreadTimeout()) {
4706  diagnostic_manager.PutString(eDiagnosticSeverityError,
4707  "RunThreadPlan called with one thread "
4708  "timeout greater than total timeout");
4709  return eExpressionSetupError;
4710  }
4711 
4712  StackID ctx_frame_id = selected_frame_sp->GetStackID();
4713 
4714  // N.B. Running the target may unset the currently selected thread and frame.
4715  // We don't want to do that either, so we should arrange to reset them as
4716  // well.
4717 
4718  lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
4719 
4720  uint32_t selected_tid;
4721  StackID selected_stack_id;
4722  if (selected_thread_sp) {
4723  selected_tid = selected_thread_sp->GetIndexID();
4724  selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID();
4725  } else {
4726  selected_tid = LLDB_INVALID_THREAD_ID;
4727  }
4728 
4729  HostThread backup_private_state_thread;
4730  lldb::StateType old_state = eStateInvalid;
4731  lldb::ThreadPlanSP stopper_base_plan_sp;
4732 
4736  // Yikes, we are running on the private state thread! So we can't wait for
4737  // public events on this thread, since we are the thread that is generating
4738  // public events. The simplest thing to do is to spin up a temporary thread
4739  // to handle private state thread events while we are fielding public
4740  // events here.
4741  LLDB_LOGF(log, "Running thread plan on private state thread, spinning up "
4742  "another state thread to handle the events.");
4743 
4744  backup_private_state_thread = m_private_state_thread;
4745 
4746  // One other bit of business: we want to run just this thread plan and
4747  // anything it pushes, and then stop, returning control here. But in the
4748  // normal course of things, the plan above us on the stack would be given a
4749  // shot at the stop event before deciding to stop, and we don't want that.
4750  // So we insert a "stopper" base plan on the stack before the plan we want
4751  // to run. Since base plans always stop and return control to the user,
4752  // that will do just what we want.
4753  stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
4754  thread->QueueThreadPlan(stopper_base_plan_sp, false);
4755  // Have to make sure our public state is stopped, since otherwise the
4756  // reporting logic below doesn't work correctly.
4757  old_state = m_public_state.GetValue();
4759 
4760  // Now spin up the private state thread:
4762  }
4763 
4764  thread->QueueThreadPlan(
4765  thread_plan_sp, false); // This used to pass "true" does that make sense?
4766 
4767  if (options.GetDebug()) {
4768  // In this case, we aren't actually going to run, we just want to stop
4769  // right away. Flush this thread so we will refetch the stacks and show the
4770  // correct backtrace.
4771  // FIXME: To make this prettier we should invent some stop reason for this,
4772  // but that
4773  // is only cosmetic, and this functionality is only of use to lldb
4774  // developers who can live with not pretty...
4775  thread->Flush();
4777  }
4778 
4779  ListenerSP listener_sp(
4780  Listener::MakeListener("lldb.process.listener.run-thread-plan"));
4781 
4782  lldb::EventSP event_to_broadcast_sp;
4783 
4784  {
4785  // This process event hijacker Hijacks the Public events and its destructor
4786  // makes sure that the process events get restored on exit to the function.
4787  //
4788  // If the event needs to propagate beyond the hijacker (e.g., the process
4789  // exits during execution), then the event is put into
4790  // event_to_broadcast_sp for rebroadcasting.
4791 
4792  ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
4793 
4794  if (log) {
4795  StreamString s;
4796  thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
4797  LLDB_LOGF(log,
4798  "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
4799  " to run thread plan \"%s\".",
4800  thread_idx_id, expr_thread_id, s.GetData());
4801  }
4802 
4803  bool got_event;
4804  lldb::EventSP event_sp;
4805  lldb::StateType stop_state = lldb::eStateInvalid;
4806 
4807  bool before_first_timeout = true; // This is set to false the first time
4808  // that we have to halt the target.
4809  bool do_resume = true;
4810  bool handle_running_event = true;
4811 
4812  // This is just for accounting:
4813  uint32_t num_resumes = 0;
4814 
4815  // If we are going to run all threads the whole time, or if we are only
4816  // going to run one thread, then we don't need the first timeout. So we
4817  // pretend we are after the first timeout already.
4818  if (!options.GetStopOthers() || !options.GetTryAllThreads())
4819  before_first_timeout = false;
4820 
4821  LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n",
4822  options.GetStopOthers(), options.GetTryAllThreads(),
4823  before_first_timeout);
4824 
4825  // This isn't going to work if there are unfetched events on the queue. Are
4826  // there cases where we might want to run the remaining events here, and
4827  // then try to call the function? That's probably being too tricky for our
4828  // own good.
4829 
4830  Event *other_events = listener_sp->PeekAtNextEvent();
4831  if (other_events != nullptr) {
4832  diagnostic_manager.PutString(
4834  "RunThreadPlan called with pending events on the queue.");
4835  return eExpressionSetupError;
4836  }
4837 
4838  // We also need to make sure that the next event is delivered. We might be
4839  // calling a function as part of a thread plan, in which case the last
4840  // delivered event could be the running event, and we don't want event
4841  // coalescing to cause us to lose OUR running event...
4843 
4844 // This while loop must exit out the bottom, there's cleanup that we need to do
4845 // when we are done. So don't call return anywhere within it.
4846 
4847 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4848  // It's pretty much impossible to write test cases for things like: One
4849  // thread timeout expires, I go to halt, but the process already stopped on
4850  // the function call stop breakpoint. Turning on this define will make us
4851  // not fetch the first event till after the halt. So if you run a quick
4852  // function, it will have completed, and the completion event will be
4853  // waiting, when you interrupt for halt. The expression evaluation should
4854  // still succeed.
4855  bool miss_first_event = true;
4856 #endif
4857  while (true) {
4858  // We usually want to resume the process if we get to the top of the
4859  // loop. The only exception is if we get two running events with no
4860  // intervening stop, which can happen, we will just wait for then next
4861  // stop event.
4862  LLDB_LOGF(log,
4863  "Top of while loop: do_resume: %i handle_running_event: %i "
4864  "before_first_timeout: %i.",
4865  do_resume, handle_running_event, before_first_timeout);
4866 
4867  if (do_resume || handle_running_event) {
4868  // Do the initial resume and wait for the running event before going
4869  // further.
4870 
4871  if (do_resume) {
4872  num_resumes++;
4873  Status resume_error = PrivateResume();
4874  if (!resume_error.Success()) {
4875  diagnostic_manager.Printf(
4877  "couldn't resume inferior the %d time: \"%s\".", num_resumes,
4878  resume_error.AsCString());
4879  return_value = eExpressionSetupError;
4880  break;
4881  }
4882  }
4883 
4884  got_event =
4885  listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
4886  if (!got_event) {
4887  LLDB_LOGF(log,
4888  "Process::RunThreadPlan(): didn't get any event after "
4889  "resume %" PRIu32 ", exiting.",
4890  num_resumes);
4891 
4892  diagnostic_manager.Printf(eDiagnosticSeverityError,
4893  "didn't get any event after resume %" PRIu32
4894  ", exiting.",
4895  num_resumes);
4896  return_value = eExpressionSetupError;
4897  break;
4898  }
4899 
4900  stop_state =
4902 
4903  if (stop_state != eStateRunning) {
4904  bool restarted = false;
4905 
4906  if (stop_state == eStateStopped) {
4908  event_sp.get());
4909  LLDB_LOGF(
4910  log,
4911  "Process::RunThreadPlan(): didn't get running event after "
4912  "resume %d, got %s instead (restarted: %i, do_resume: %i, "
4913  "handle_running_event: %i).",
4914  num_resumes, StateAsCString(stop_state), restarted, do_resume,
4915  handle_running_event);
4916  }
4917 
4918  if (restarted) {
4919  // This is probably an overabundance of caution, I don't think I
4920  // should ever get a stopped & restarted event here. But if I do,
4921  // the best thing is to Halt and then get out of here.
4922  const bool clear_thread_plans = false;
4923  const bool use_run_lock = false;
4924  Halt(clear_thread_plans, use_run_lock);
4925  }
4926 
4927  diagnostic_manager.Printf(
4929  "didn't get running event after initial resume, got %s instead.",
4930  StateAsCString(stop_state));
4931  return_value = eExpressionSetupError;
4932  break;
4933  }
4934 
4935  if (log)
4936  log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
4937  // We need to call the function synchronously, so spin waiting for it
4938  // to return. If we get interrupted while executing, we're going to
4939  // lose our context, and won't be able to gather the result at this
4940  // point. We set the timeout AFTER the resume, since the resume takes
4941  // some time and we don't want to charge that to the timeout.
4942  } else {
4943  if (log)
4944  log->PutCString("Process::RunThreadPlan(): waiting for next event.");
4945  }
4946 
4947  do_resume = true;
4948  handle_running_event = true;
4949 
4950  // Now wait for the process to stop again:
4951  event_sp.reset();
4952 
4953  Timeout<std::micro> timeout =
4954  GetExpressionTimeout(options, before_first_timeout);
4955  if (log) {
4956  if (timeout) {
4957  auto now = system_clock::now();
4958  LLDB_LOGF(log,
4959  "Process::RunThreadPlan(): about to wait - now is %s - "
4960  "endpoint is %s",
4961  llvm::to_string(now).c_str(),
4962  llvm::to_string(now + *timeout).c_str());
4963  } else {
4964  LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever.");
4965  }
4966  }
4967 
4968 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4969  // See comment above...
4970  if (miss_first_event) {
4971  std::this_thread::sleep_for(std::chrono::milliseconds(1));
4972  miss_first_event = false;
4973  got_event = false;
4974  } else
4975 #endif
4976  got_event = listener_sp->GetEvent(event_sp, timeout);
4977 
4978  if (got_event) {
4979  if (event_sp) {
4980  bool keep_going = false;
4981  if (event_sp->GetType() == eBroadcastBitInterrupt) {
4982  const bool clear_thread_plans = false;
4983  const bool use_run_lock = false;
4984  Halt(clear_thread_plans, use_run_lock);
4985  return_value = eExpressionInterrupted;
4986  diagnostic_manager.PutString(eDiagnosticSeverityRemark,
4987  "execution halted by user interrupt.");
4988  LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by "
4989  "eBroadcastBitInterrupted, exiting.");
4990  break;
4991  } else {
4992  stop_state =
4994  LLDB_LOGF(log,
4995  "Process::RunThreadPlan(): in while loop, got event: %s.",
4996  StateAsCString(stop_state));
4997 
4998  switch (stop_state) {
4999  case lldb::eStateStopped: {
5001  event_sp.get())) {
5002  // If we were restarted, we just need to go back up to fetch
5003  // another event.
5004  LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and "
5005  "restart, so we'll continue waiting.");
5006  keep_going = true;
5007  do_resume = false;
5008  handle_running_event = true;
5009  } else {
5010  const bool handle_interrupts = true;
5011  return_value = *HandleStoppedEvent(
5012  expr_thread_id, thread_plan_sp, thread_plan_restorer,
5013  event_sp, event_to_broadcast_sp, options,
5014  handle_interrupts);
5015  if (return_value == eExpressionThreadVanished)
5016  keep_going = false;
5017  }
5018  } break;
5019 
5020  case lldb::eStateRunning:
5021  // This shouldn't really happen, but sometimes we do get two
5022  // running events without an intervening stop, and in that case
5023  // we should just go back to waiting for the stop.
5024  do_resume = false;
5025  keep_going = true;
5026  handle_running_event = false;
5027  break;
5028 
5029  default:
5030  LLDB_LOGF(log,
5031  "Process::RunThreadPlan(): execution stopped with "
5032  "unexpected state: %s.",
5033  StateAsCString(stop_state));
5034 
5035  if (stop_state == eStateExited)
5036  event_to_broadcast_sp = event_sp;
5037 
5038  diagnostic_manager.PutString(
5040  "execution stopped with unexpected state.");
5041  return_value = eExpressionInterrupted;
5042  break;
5043  }
5044  }
5045 
5046  if (keep_going)
5047  continue;
5048  else
5049  break;
5050  } else {
5051  if (log)
5052  log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5053  "the event pointer was null. How odd...");
5054  return_value = eExpressionInterrupted;
5055  break;
5056  }
5057  } else {
5058  // If we didn't get an event that means we've timed out... We will
5059  // interrupt the process here. Depending on what we were asked to do
5060  // we will either exit, or try with all threads running for the same
5061  // timeout.
5062 
5063  if (log) {
5064  if (options.GetTryAllThreads()) {
5065  if (before_first_timeout) {
5066  LLDB_LOG(log,
5067  "Running function with one thread timeout timed out.");
5068  } else
5069  LLDB_LOG(log, "Restarting function with all threads enabled and "
5070  "timeout: {0} timed out, abandoning execution.",
5071  timeout);
5072  } else
5073  LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5074  "abandoning execution.",
5075  timeout);
5076  }
5077 
5078  // It is possible that between the time we issued the Halt, and we get
5079  // around to calling Halt the target could have stopped. That's fine,
5080  // Halt will figure that out and send the appropriate Stopped event.
5081  // BUT it is also possible that we stopped & restarted (e.g. hit a
5082  // signal with "stop" set to false.) In
5083  // that case, we'll get the stopped & restarted event, and we should go
5084  // back to waiting for the Halt's stopped event. That's what this
5085  // while loop does.
5086 
5087  bool back_to_top = true;
5088  uint32_t try_halt_again = 0;
5089  bool do_halt = true;
5090  const uint32_t num_retries = 5;
5091  while (try_halt_again < num_retries) {
5092  Status halt_error;
5093  if (do_halt) {
5094  LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt.");
5095  const bool clear_thread_plans = false;
5096  const bool use_run_lock = false;
5097  Halt(clear_thread_plans, use_run_lock);
5098  }
5099  if (halt_error.Success()) {
5100  if (log)
5101  log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5102 
5103  got_event =
5104  listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5105 
5106  if (got_event) {
5107  stop_state =
5109  if (log) {
5110  LLDB_LOGF(log,
5111  "Process::RunThreadPlan(): Stopped with event: %s",
5112  StateAsCString(stop_state));
5113  if (stop_state == lldb::eStateStopped &&
5115  event_sp.get()))
5116  log->PutCString(" Event was the Halt interruption event.");
5117  }
5118 
5119  if (stop_state == lldb::eStateStopped) {
5121  event_sp.get())) {
5122  if (log)
5123  log->PutCString("Process::RunThreadPlan(): Went to halt "
5124  "but got a restarted event, there must be "
5125  "an un-restarted stopped event so try "
5126  "again... "
5127  "Exiting wait loop.");
5128  try_halt_again++;
5129  do_halt = false;
5130  continue;
5131  }
5132 
5133  // Between the time we initiated the Halt and the time we
5134  // delivered it, the process could have already finished its
5135  // job. Check that here:
5136  const bool handle_interrupts = false;
5137  if (auto result = HandleStoppedEvent(
5138  expr_thread_id, thread_plan_sp, thread_plan_restorer,
5139  event_sp, event_to_broadcast_sp, options,
5140  handle_interrupts)) {
5141  return_value = *result;
5142  back_to_top = false;
5143  break;
5144  }
5145 
5146  if (!options.GetTryAllThreads()) {
5147  if (log)
5148  log->PutCString("Process::RunThreadPlan(): try_all_threads "
5149  "was false, we stopped so now we're "
5150  "quitting.");
5151  return_value = eExpressionInterrupted;
5152  back_to_top = false;
5153  break;
5154  }
5155 
5156  if (before_first_timeout) {
5157  // Set all the other threads to run, and return to the top of
5158  // the loop, which will continue;
5159  before_first_timeout = false;
5160  thread_plan_sp->SetStopOthers(false);
5161  if (log)
5162  log->PutCString(
5163  "Process::RunThreadPlan(): about to resume.");
5164 
5165  back_to_top = true;
5166  break;
5167  } else {
5168  // Running all threads failed, so return Interrupted.
5169  if (log)
5170  log->PutCString("Process::RunThreadPlan(): running all "
5171  "threads timed out.");
5172  return_value = eExpressionInterrupted;
5173  back_to_top = false;
5174  break;
5175  }
5176  }
5177  } else {
5178  if (log)
5179  log->PutCString("Process::RunThreadPlan(): halt said it "
5180  "succeeded, but I got no event. "
5181  "I'm getting out of here passing Interrupted.");
5182  return_value = eExpressionInterrupted;
5183  back_to_top = false;
5184  break;
5185  }
5186  } else {
5187  try_halt_again++;
5188  continue;
5189  }
5190  }
5191 
5192  if (!back_to_top || try_halt_again > num_retries)
5193  break;
5194  else
5195  continue;
5196  }
5197  } // END WAIT LOOP
5198 
5199  // If we had to start up a temporary private state thread to run this
5200  // thread plan, shut it down now.
5201  if (backup_private_state_thread.IsJoinable()) {
5203  Status error;
5204  m_private_state_thread = backup_private_state_thread;
5205  if (stopper_base_plan_sp) {
5206  thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5207  }
5208  if (old_state != eStateInvalid)
5209  m_public_state.SetValueNoLock(old_state);
5210  }
5211 
5212  // If our thread went away on us, we need to get out of here without
5213  // doing any more work. We don't have to clean up the thread plan, that
5214  // will have happened when the Thread was destroyed.
5215  if (return_value == eExpressionThreadVanished) {
5216  return return_value;
5217  }
5218 
5219  if (return_value != eExpressionCompleted && log) {
5220  // Print a backtrace into the log so we can figure out where we are:
5221  StreamString s;
5222  s.PutCString("Thread state after unsuccessful completion: \n");
5223  thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5224  log->PutString(s.GetString());
5225  }
5226  // Restore the thread state if we are going to discard the plan execution.
5227  // There are three cases where this could happen: 1) The execution
5228  // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5229  // was true 3) We got some other error, and discard_on_error was true
5230  bool should_unwind = (return_value == eExpressionInterrupted &&
5231  options.DoesUnwindOnError()) ||
5232  (return_value == eExpressionHitBreakpoint &&
5233  options.DoesIgnoreBreakpoints());
5234 
5235  if (return_value == eExpressionCompleted || should_unwind) {
5236  thread_plan_sp->RestoreThreadState();
5237  }
5238 
5239  // Now do some processing on the results of the run:
5240  if (return_value == eExpressionInterrupted ||
5241  return_value == eExpressionHitBreakpoint) {
5242  if (log) {
5243  StreamString s;
5244  if (event_sp)
5245  event_sp->Dump(&s);
5246  else {
5247  log->PutCString("Process::RunThreadPlan(): Stop event that "
5248  "interrupted us is NULL.");
5249  }
5250 
5251  StreamString ts;
5252 
5253  const char *event_explanation = nullptr;
5254 
5255  do {
5256  if (!event_sp) {
5257  event_explanation = "<no event>";
5258  break;
5259  } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5260  event_explanation = "<user interrupt>";
5261  break;
5262  } else {
5263  const Process::ProcessEventData *event_data =
5265  event_sp.get());
5266 
5267  if (!event_data) {
5268  event_explanation = "<no event data>";
5269  break;
5270  }
5271 
5272  Process *process = event_data->GetProcessSP().get();
5273 
5274  if (!process) {
5275  event_explanation = "<no process>";
5276  break;
5277  }
5278 
5279  ThreadList &thread_list = process->GetThreadList();
5280 
5281  uint32_t num_threads = thread_list.GetSize();
5282  uint32_t thread_index;
5283 
5284  ts.Printf("<%u threads> ", num_threads);
5285 
5286  for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5287  Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5288 
5289  if (!thread) {
5290  ts.Printf("<?> ");
5291  continue;
5292  }
5293 
5294  ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5295  RegisterContext *register_context =
5296  thread->GetRegisterContext().get();
5297 
5298  if (register_context)
5299  ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5300  else
5301  ts.Printf("[ip unknown] ");
5302 
5303  // Show the private stop info here, the public stop info will be
5304  // from the last natural stop.
5305  lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5306  if (stop_info_sp) {
5307  const char *stop_desc = stop_info_sp->GetDescription();
5308  if (stop_desc)
5309  ts.PutCString(stop_desc);
5310  }
5311  ts.Printf(">");
5312  }
5313 
5314  event_explanation = ts.GetData();
5315  }
5316  } while (false);
5317 
5318  if (event_explanation)
5319  LLDB_LOGF(log,
5320  "Process::RunThreadPlan(): execution interrupted: %s %s",
5321  s.GetData(), event_explanation);
5322  else
5323  LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s",
5324  s.GetData());
5325  }
5326 
5327  if (should_unwind) {
5328  LLDB_LOGF(log,
5329  "Process::RunThreadPlan: ExecutionInterrupted - "
5330  "discarding thread plans up to %p.",
5331  static_cast<void *>(thread_plan_sp.get()));
5332  thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5333  } else {
5334  LLDB_LOGF(log,
5335  "Process::RunThreadPlan: ExecutionInterrupted - for "
5336  "plan: %p not discarding.",
5337  static_cast<void *>(thread_plan_sp.get()));
5338  }
5339  } else if (return_value == eExpressionSetupError) {
5340  if (log)
5341  log->PutCString("Process::RunThreadPlan(): execution set up error.");
5342 
5343  if (options.DoesUnwindOnError()) {
5344  thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5345  }
5346  } else {
5347  if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5348  if (log)
5349  log->PutCString("Process::RunThreadPlan(): thread plan is done");
5350  return_value = eExpressionCompleted;
5351  } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5352  if (log)
5353  log->PutCString(
5354  "Process::RunThreadPlan(): thread plan was discarded");
5355  return_value = eExpressionDiscarded;
5356  } else {
5357  if (log)
5358  log->PutCString(
5359  "Process::RunThreadPlan(): thread plan stopped in mid course");
5360  if (options.DoesUnwindOnError() && thread_plan_sp) {
5361  if (log)
5362  log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5363  "'cause unwind_on_error is set.");
5364  thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5365  }
5366  }
5367  }
5368 
5369  // Thread we ran the function in may have gone away because we ran the
5370  // target Check that it's still there, and if it is put it back in the
5371  // context. Also restore the frame in the context if it is still present.
5372  thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5373  if (thread) {
5374  exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5375  }
5376 
5377  // Also restore the current process'es selected frame & thread, since this
5378  // function calling may be done behind the user's back.
5379 
5380  if (selected_tid != LLDB_INVALID_THREAD_ID) {
5381  if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5382  selected_stack_id.