LLDB mainline
Process.cpp
Go to the documentation of this file.
1//===-- Process.cpp -------------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include <atomic>
10#include <memory>
11#include <mutex>
12#include <optional>
13
14#include "llvm/ADT/ScopeExit.h"
15#include "llvm/Support/ScopedPrinter.h"
16#include "llvm/Support/Threading.h"
17
20#include "lldb/Core/Debugger.h"
21#include "lldb/Core/Module.h"
24#include "lldb/Core/Progress.h"
31#include "lldb/Host/Host.h"
32#include "lldb/Host/HostInfo.h"
34#include "lldb/Host/Pipe.h"
35#include "lldb/Host/Terminal.h"
41#include "lldb/Symbol/Symbol.h"
42#include "lldb/Target/ABI.h"
54#include "lldb/Target/Process.h"
59#include "lldb/Target/Target.h"
61#include "lldb/Target/Thread.h"
69#include "lldb/Utility/Event.h"
71#include "lldb/Utility/Log.h"
75#include "lldb/Utility/State.h"
76#include "lldb/Utility/Timer.h"
77
78using namespace lldb;
79using namespace lldb_private;
80using namespace std::chrono;
81
82// Comment out line below to disable memory caching, overriding the process
83// setting target.process.disable-memory-cache
84#define ENABLE_MEMORY_CACHING
85
86#ifdef ENABLE_MEMORY_CACHING
87#define DISABLE_MEM_CACHE_DEFAULT false
88#else
89#define DISABLE_MEM_CACHE_DEFAULT true
90#endif
91
93 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> {
94public:
95 ProcessOptionValueProperties(llvm::StringRef name) : Cloneable(name) {}
96
97 const Property *
99 const ExecutionContext *exe_ctx) const override {
100 // When getting the value for a key from the process options, we will
101 // always try and grab the setting from the current process if there is
102 // one. Else we just use the one from this instance.
103 if (exe_ctx) {
104 Process *process = exe_ctx->GetProcessPtr();
105 if (process) {
106 ProcessOptionValueProperties *instance_properties =
107 static_cast<ProcessOptionValueProperties *>(
108 process->GetValueProperties().get());
109 if (this != instance_properties)
110 return instance_properties->ProtectedGetPropertyAtIndex(idx);
111 }
112 }
113 return ProtectedGetPropertyAtIndex(idx);
114 }
115};
116
118 {
120 "parent",
121 "Continue tracing the parent process and detach the child.",
122 },
123 {
125 "child",
126 "Trace the child process and detach the parent.",
127 },
128};
129
130#define LLDB_PROPERTIES_process
131#include "TargetProperties.inc"
132
133enum {
134#define LLDB_PROPERTIES_process
135#include "TargetPropertiesEnum.inc"
137};
138
139#define LLDB_PROPERTIES_process_experimental
140#include "TargetProperties.inc"
141
142enum {
143#define LLDB_PROPERTIES_process_experimental
144#include "TargetPropertiesEnum.inc"
145};
146
148 : public Cloneable<ProcessExperimentalOptionValueProperties,
149 OptionValueProperties> {
150public:
152 : Cloneable(Properties::GetExperimentalSettingsName()) {}
153};
154
158 m_collection_sp->Initialize(g_process_experimental_properties);
159}
160
162 : Properties(),
163 m_process(process) // Can be nullptr for global ProcessProperties
164{
165 if (process == nullptr) {
166 // Global process properties, set them up one time
167 m_collection_sp = std::make_shared<ProcessOptionValueProperties>("process");
168 m_collection_sp->Initialize(g_process_properties);
169 m_collection_sp->AppendProperty(
170 "thread", "Settings specific to threads.", true,
172 } else {
175 m_collection_sp->SetValueChangedCallback(
176 ePropertyPythonOSPluginPath,
177 [this] { m_process->LoadOperatingSystemPlugin(true); });
178 }
179
181 std::make_unique<ProcessExperimentalProperties>();
182 m_collection_sp->AppendProperty(
184 "Experimental settings - setting these won't produce "
185 "errors if the setting is not present.",
186 true, m_experimental_properties_up->GetValueProperties());
187}
188
190
192 const uint32_t idx = ePropertyDisableMemCache;
193 return GetPropertyAtIndexAs<bool>(
194 idx, g_process_properties[idx].default_uint_value != 0);
195}
196
198 const uint32_t idx = ePropertyMemCacheLineSize;
199 return GetPropertyAtIndexAs<uint64_t>(
200 idx, g_process_properties[idx].default_uint_value);
201}
202
204 Args args;
205 const uint32_t idx = ePropertyExtraStartCommand;
206 m_collection_sp->GetPropertyAtIndexAsArgs(idx, args);
207 return args;
208}
209
211 const uint32_t idx = ePropertyExtraStartCommand;
212 m_collection_sp->SetPropertyAtIndexFromArgs(idx, args);
213}
214
216 const uint32_t idx = ePropertyPythonOSPluginPath;
217 return GetPropertyAtIndexAs<FileSpec>(idx, {});
218}
219
221 const uint32_t idx = ePropertyVirtualAddressableBits;
222 return GetPropertyAtIndexAs<uint64_t>(
223 idx, g_process_properties[idx].default_uint_value);
224}
225
227 const uint32_t idx = ePropertyVirtualAddressableBits;
228 SetPropertyAtIndex(idx, static_cast<uint64_t>(bits));
229}
230
232 const uint32_t idx = ePropertyHighmemVirtualAddressableBits;
233 return GetPropertyAtIndexAs<uint64_t>(
234 idx, g_process_properties[idx].default_uint_value);
235}
236
238 const uint32_t idx = ePropertyHighmemVirtualAddressableBits;
239 SetPropertyAtIndex(idx, static_cast<uint64_t>(bits));
240}
241
243 const uint32_t idx = ePropertyPythonOSPluginPath;
244 SetPropertyAtIndex(idx, file);
245}
246
248 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
249 return GetPropertyAtIndexAs<bool>(
250 idx, g_process_properties[idx].default_uint_value != 0);
251}
252
254 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions;
255 SetPropertyAtIndex(idx, ignore);
256}
257
259 const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
260 return GetPropertyAtIndexAs<bool>(
261 idx, g_process_properties[idx].default_uint_value != 0);
262}
263
265 const uint32_t idx = ePropertyUnwindOnErrorInExpressions;
266 SetPropertyAtIndex(idx, ignore);
267}
268
270 const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
271 return GetPropertyAtIndexAs<bool>(
272 idx, g_process_properties[idx].default_uint_value != 0);
273}
274
276 const uint32_t idx = ePropertyStopOnSharedLibraryEvents;
277 SetPropertyAtIndex(idx, stop);
278}
279
281 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
282 return GetPropertyAtIndexAs<bool>(
283 idx, g_process_properties[idx].default_uint_value != 0);
284}
285
287 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans;
288 SetPropertyAtIndex(idx, disable);
289 m_process->Flush();
290}
291
293 const uint32_t idx = ePropertyDetachKeepsStopped;
294 return GetPropertyAtIndexAs<bool>(
295 idx, g_process_properties[idx].default_uint_value != 0);
296}
297
299 const uint32_t idx = ePropertyDetachKeepsStopped;
300 SetPropertyAtIndex(idx, stop);
301}
302
304 const uint32_t idx = ePropertyWarningOptimization;
305 return GetPropertyAtIndexAs<bool>(
306 idx, g_process_properties[idx].default_uint_value != 0);
307}
308
310 const uint32_t idx = ePropertyWarningUnsupportedLanguage;
311 return GetPropertyAtIndexAs<bool>(
312 idx, g_process_properties[idx].default_uint_value != 0);
313}
314
316 const uint32_t idx = ePropertyStopOnExec;
317 return GetPropertyAtIndexAs<bool>(
318 idx, g_process_properties[idx].default_uint_value != 0);
319}
320
322 const uint32_t idx = ePropertyUtilityExpressionTimeout;
323 uint64_t value = GetPropertyAtIndexAs<uint64_t>(
324 idx, g_process_properties[idx].default_uint_value);
325 return std::chrono::seconds(value);
326}
327
328std::chrono::seconds ProcessProperties::GetInterruptTimeout() const {
329 const uint32_t idx = ePropertyInterruptTimeout;
330 uint64_t value = GetPropertyAtIndexAs<uint64_t>(
331 idx, g_process_properties[idx].default_uint_value);
332 return std::chrono::seconds(value);
333}
334
336 const uint32_t idx = ePropertySteppingRunsAllThreads;
337 return GetPropertyAtIndexAs<bool>(
338 idx, g_process_properties[idx].default_uint_value != 0);
339}
340
342 const bool fail_value = true;
343 const Property *exp_property =
344 m_collection_sp->GetPropertyAtIndex(ePropertyExperimental);
345 OptionValueProperties *exp_values =
346 exp_property->GetValue()->GetAsProperties();
347 if (!exp_values)
348 return fail_value;
349
350 return exp_values
351 ->GetPropertyAtIndexAs<bool>(ePropertyOSPluginReportsAllThreads)
352 .value_or(fail_value);
353}
354
356 const Property *exp_property =
357 m_collection_sp->GetPropertyAtIndex(ePropertyExperimental);
358 OptionValueProperties *exp_values =
359 exp_property->GetValue()->GetAsProperties();
360 if (exp_values)
361 exp_values->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads,
362 does_report);
363}
364
366 const uint32_t idx = ePropertyFollowForkMode;
367 return GetPropertyAtIndexAs<FollowForkMode>(
368 idx, static_cast<FollowForkMode>(
369 g_process_properties[idx].default_uint_value));
370}
371
373 llvm::StringRef plugin_name,
374 ListenerSP listener_sp,
375 const FileSpec *crash_file_path,
376 bool can_connect) {
377 static uint32_t g_process_unique_id = 0;
378
379 ProcessSP process_sp;
380 ProcessCreateInstance create_callback = nullptr;
381 if (!plugin_name.empty()) {
382 create_callback =
384 if (create_callback) {
385 process_sp = create_callback(target_sp, listener_sp, crash_file_path,
386 can_connect);
387 if (process_sp) {
388 if (process_sp->CanDebug(target_sp, true)) {
389 process_sp->m_process_unique_id = ++g_process_unique_id;
390 } else
391 process_sp.reset();
392 }
393 }
394 } else {
395 for (uint32_t idx = 0;
396 (create_callback =
398 ++idx) {
399 process_sp = create_callback(target_sp, listener_sp, crash_file_path,
400 can_connect);
401 if (process_sp) {
402 if (process_sp->CanDebug(target_sp, false)) {
403 process_sp->m_process_unique_id = ++g_process_unique_id;
404 break;
405 } else
406 process_sp.reset();
407 }
408 }
409 }
410 return process_sp;
411}
412
414 static constexpr llvm::StringLiteral class_name("lldb.process");
415 return class_name;
416}
417
419 : Process(target_sp, listener_sp, UnixSignals::CreateForHost()) {
420 // This constructor just delegates to the full Process constructor,
421 // defaulting to using the Host's UnixSignals.
422}
423
425 const UnixSignalsSP &unix_signals_sp)
426 : ProcessProperties(this),
427 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
428 Process::GetStaticBroadcasterClass().str()),
429 m_target_wp(target_sp), m_public_state(eStateUnloaded),
430 m_private_state(eStateUnloaded),
431 m_private_state_broadcaster(nullptr,
432 "lldb.process.internal_state_broadcaster"),
433 m_private_state_control_broadcaster(
434 nullptr, "lldb.process.internal_state_control_broadcaster"),
435 m_private_state_listener_sp(
436 Listener::MakeListener("lldb.process.internal_state_listener")),
437 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
438 m_thread_id_to_index_id_map(), m_exit_status(-1),
439 m_thread_list_real(*this), m_thread_list(*this), m_thread_plans(*this),
440 m_extended_thread_list(*this), m_extended_thread_stop_id(0),
441 m_queue_list(this), m_queue_list_stop_id(0),
442 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
443 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
444 m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
445 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
446 m_memory_cache(*this), m_allocated_memory_cache(*this),
447 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
448 m_private_run_lock(), m_currently_handling_do_on_removals(false),
449 m_resume_requested(false), m_interrupt_tid(LLDB_INVALID_THREAD_ID),
450 m_finalizing(false), m_destructing(false),
451 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
452 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
453 m_can_interpret_function_calls(false), m_run_thread_plan_lock(),
454 m_can_jit(eCanJITDontKnow),
455 m_crash_info_dict_sp(new StructuredData::Dictionary()) {
457
458 Log *log = GetLog(LLDBLog::Object);
459 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this));
460
462 m_unix_signals_sp = std::make_shared<UnixSignals>();
463
464 SetEventName(eBroadcastBitStateChanged, "state-changed");
466 SetEventName(eBroadcastBitSTDOUT, "stdout-available");
467 SetEventName(eBroadcastBitSTDERR, "stderr-available");
468 SetEventName(eBroadcastBitProfileData, "profile-data-available");
469 SetEventName(eBroadcastBitStructuredData, "structured-data-available");
470
472 eBroadcastInternalStateControlStop, "control-stop");
474 eBroadcastInternalStateControlPause, "control-pause");
476 eBroadcastInternalStateControlResume, "control-resume");
477
478 // The listener passed into process creation is the primary listener:
479 // It always listens for all the event bits for Process:
480 SetPrimaryListener(listener_sp);
481
482 m_private_state_listener_sp->StartListeningForEvents(
485
486 m_private_state_listener_sp->StartListeningForEvents(
490 // We need something valid here, even if just the default UnixSignalsSP.
491 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
492
493 // Allow the platform to override the default cache line size
494 OptionValueSP value_sp =
495 m_collection_sp->GetPropertyAtIndex(ePropertyMemCacheLineSize)
496 ->GetValue();
497 uint64_t platform_cache_line_size =
498 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
499 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
500 value_sp->SetValueAs(platform_cache_line_size);
501
502 // FIXME: Frame recognizer registration should not be done in Target.
503 // We should have a plugin do the registration instead, for example, a
504 // common C LanguageRuntime plugin.
507}
508
510 Log *log = GetLog(LLDBLog::Object);
511 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this));
513
514 // ThreadList::Clear() will try to acquire this process's mutex, so
515 // explicitly clear the thread list here to ensure that the mutex is not
516 // destroyed before the thread list.
518}
519
521 // NOTE: intentional leak so we don't crash if global destructor chain gets
522 // called as other threads still use the result of this function
523 static ProcessProperties *g_settings_ptr =
524 new ProcessProperties(nullptr);
525 return *g_settings_ptr;
526}
527
528void Process::Finalize(bool destructing) {
529 if (m_finalizing.exchange(true))
530 return;
531 if (destructing)
532 m_destructing.exchange(true);
533
534 // Destroy the process. This will call the virtual function DoDestroy under
535 // the hood, giving our derived class a chance to do the ncessary tear down.
536 DestroyImpl(false);
537
538 // Clear our broadcaster before we proceed with destroying
540
541 // Do any cleanup needed prior to being destructed... Subclasses that
542 // override this method should call this superclass method as well.
543
544 // We need to destroy the loader before the derived Process class gets
545 // destroyed since it is very likely that undoing the loader will require
546 // access to the real process.
547 m_dynamic_checkers_up.reset();
548 m_abi_sp.reset();
549 m_os_up.reset();
550 m_system_runtime_up.reset();
551 m_dyld_up.reset();
552 m_jit_loaders_up.reset();
560 std::vector<Notifications> empty_notifications;
561 m_notifications.swap(empty_notifications);
562 m_image_tokens.clear();
564 m_allocated_memory_cache.Clear(/*deallocate_memory=*/true);
565 {
566 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
567 m_language_runtimes.clear();
568 }
571 // Clear the last natural stop ID since it has a strong reference to this
572 // process
574 // We have to be very careful here as the m_private_state_listener might
575 // contain events that have ProcessSP values in them which can keep this
576 // process around forever. These events need to be cleared out.
578 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
580 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
583}
584
586 m_notifications.push_back(callbacks);
587 if (callbacks.initialize != nullptr)
588 callbacks.initialize(callbacks.baton, this);
589}
590
592 std::vector<Notifications>::iterator pos, end = m_notifications.end();
593 for (pos = m_notifications.begin(); pos != end; ++pos) {
594 if (pos->baton == callbacks.baton &&
595 pos->initialize == callbacks.initialize &&
596 pos->process_state_changed == callbacks.process_state_changed) {
597 m_notifications.erase(pos);
598 return true;
599 }
600 }
601 return false;
602}
603
605 std::vector<Notifications>::iterator notification_pos,
606 notification_end = m_notifications.end();
607 for (notification_pos = m_notifications.begin();
608 notification_pos != notification_end; ++notification_pos) {
609 if (notification_pos->process_state_changed)
610 notification_pos->process_state_changed(notification_pos->baton, this,
611 state);
612 }
613}
614
615// FIXME: We need to do some work on events before the general Listener sees
616// them.
617// For instance if we are continuing from a breakpoint, we need to ensure that
618// we do the little "insert real insn, step & stop" trick. But we can't do
619// that when the event is delivered by the broadcaster - since that is done on
620// the thread that is waiting for new events, so if we needed more than one
621// event for our handling, we would stall. So instead we do it when we fetch
622// the event off of the queue.
623//
624
626 StateType state = eStateInvalid;
627
628 if (GetPrimaryListener()->GetEventForBroadcaster(this, event_sp,
629 std::chrono::seconds(0)) &&
630 event_sp)
631 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
632
633 return state;
634}
635
636void Process::SyncIOHandler(uint32_t iohandler_id,
637 const Timeout<std::micro> &timeout) {
638 // don't sync (potentially context switch) in case where there is no process
639 // IO
641 return;
642
643 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
644
646 if (Result) {
647 LLDB_LOG(
648 log,
649 "waited from m_iohandler_sync to change from {0}. New value is {1}.",
650 iohandler_id, *Result);
651 } else {
652 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
653 iohandler_id);
654 }
655}
656
658 const Timeout<std::micro> &timeout, EventSP *event_sp_ptr, bool wait_always,
659 ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock,
660 SelectMostRelevant select_most_relevant) {
661 // We can't just wait for a "stopped" event, because the stopped event may
662 // have restarted the target. We have to actually check each event, and in
663 // the case of a stopped event check the restarted flag on the event.
664 if (event_sp_ptr)
665 event_sp_ptr->reset();
666 StateType state = GetState();
667 // If we are exited or detached, we won't ever get back to any other valid
668 // state...
669 if (state == eStateDetached || state == eStateExited)
670 return state;
671
673 LLDB_LOG(log, "timeout = {0}", timeout);
674
675 if (!wait_always && StateIsStoppedState(state, true) &&
677 LLDB_LOGF(log,
678 "Process::%s returning without waiting for events; process "
679 "private and public states are already 'stopped'.",
680 __FUNCTION__);
681 // We need to toggle the run lock as this won't get done in
682 // SetPublicState() if the process is hijacked.
683 if (hijack_listener_sp && use_run_lock)
685 return state;
686 }
687
688 while (state != eStateInvalid) {
689 EventSP event_sp;
690 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
691 if (event_sp_ptr && event_sp)
692 *event_sp_ptr = event_sp;
693
694 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
696 event_sp, stream, select_most_relevant, pop_process_io_handler);
697
698 switch (state) {
699 case eStateCrashed:
700 case eStateDetached:
701 case eStateExited:
702 case eStateUnloaded:
703 // We need to toggle the run lock as this won't get done in
704 // SetPublicState() if the process is hijacked.
705 if (hijack_listener_sp && use_run_lock)
707 return state;
708 case eStateStopped:
710 continue;
711 else {
712 // We need to toggle the run lock as this won't get done in
713 // SetPublicState() if the process is hijacked.
714 if (hijack_listener_sp && use_run_lock)
716 return state;
717 }
718 default:
719 continue;
720 }
721 }
722 return state;
723}
724
726 const EventSP &event_sp, Stream *stream,
727 SelectMostRelevant select_most_relevant,
728 bool &pop_process_io_handler) {
729 const bool handle_pop = pop_process_io_handler;
730
731 pop_process_io_handler = false;
732 ProcessSP process_sp =
734
735 if (!process_sp)
736 return false;
737
738 StateType event_state =
740 if (event_state == eStateInvalid)
741 return false;
742
743 switch (event_state) {
744 case eStateInvalid:
745 case eStateUnloaded:
746 case eStateAttaching:
747 case eStateLaunching:
748 case eStateStepping:
749 case eStateDetached:
750 if (stream)
751 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
752 StateAsCString(event_state));
753 if (event_state == eStateDetached)
754 pop_process_io_handler = true;
755 break;
756
757 case eStateConnected:
758 case eStateRunning:
759 // Don't be chatty when we run...
760 break;
761
762 case eStateExited:
763 if (stream)
764 process_sp->GetStatus(*stream);
765 pop_process_io_handler = true;
766 break;
767
768 case eStateStopped:
769 case eStateCrashed:
770 case eStateSuspended:
771 // Make sure the program hasn't been auto-restarted:
773 if (stream) {
774 size_t num_reasons =
776 if (num_reasons > 0) {
777 // FIXME: Do we want to report this, or would that just be annoyingly
778 // chatty?
779 if (num_reasons == 1) {
780 const char *reason =
782 event_sp.get(), 0);
783 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
784 process_sp->GetID(),
785 reason ? reason : "<UNKNOWN REASON>");
786 } else {
787 stream->Printf("Process %" PRIu64
788 " stopped and restarted, reasons:\n",
789 process_sp->GetID());
790
791 for (size_t i = 0; i < num_reasons; i++) {
792 const char *reason =
794 event_sp.get(), i);
795 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
796 }
797 }
798 }
799 }
800 } else {
801 StopInfoSP curr_thread_stop_info_sp;
802 // Lock the thread list so it doesn't change on us, this is the scope for
803 // the locker:
804 {
805 ThreadList &thread_list = process_sp->GetThreadList();
806 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
807
808 ThreadSP curr_thread(thread_list.GetSelectedThread());
809 ThreadSP thread;
810 StopReason curr_thread_stop_reason = eStopReasonInvalid;
811 bool prefer_curr_thread = false;
812 if (curr_thread && curr_thread->IsValid()) {
813 curr_thread_stop_reason = curr_thread->GetStopReason();
814 switch (curr_thread_stop_reason) {
815 case eStopReasonNone:
817 // Don't prefer the current thread if it didn't stop for a reason.
818 break;
819 case eStopReasonSignal: {
820 // We need to do the same computation we do for other threads
821 // below in case the current thread happens to be the one that
822 // stopped for the no-stop signal.
823 uint64_t signo = curr_thread->GetStopInfo()->GetValue();
824 if (process_sp->GetUnixSignals()->GetShouldStop(signo))
825 prefer_curr_thread = true;
826 } break;
827 default:
828 prefer_curr_thread = true;
829 break;
830 }
831 curr_thread_stop_info_sp = curr_thread->GetStopInfo();
832 }
833
834 if (!prefer_curr_thread) {
835 // Prefer a thread that has just completed its plan over another
836 // thread as current thread.
837 ThreadSP plan_thread;
838 ThreadSP other_thread;
839
840 const size_t num_threads = thread_list.GetSize();
841 size_t i;
842 for (i = 0; i < num_threads; ++i) {
843 thread = thread_list.GetThreadAtIndex(i);
844 StopReason thread_stop_reason = thread->GetStopReason();
845 switch (thread_stop_reason) {
847 case eStopReasonNone:
848 break;
849
850 case eStopReasonSignal: {
851 // Don't select a signal thread if we weren't going to stop at
852 // that signal. We have to have had another reason for stopping
853 // here, and the user doesn't want to see this thread.
854 uint64_t signo = thread->GetStopInfo()->GetValue();
855 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
856 if (!other_thread)
857 other_thread = thread;
858 }
859 break;
860 }
861 case eStopReasonTrace:
865 case eStopReasonExec:
866 case eStopReasonFork:
867 case eStopReasonVFork:
873 if (!other_thread)
874 other_thread = thread;
875 break;
877 if (!plan_thread)
878 plan_thread = thread;
879 break;
880 }
881 }
882 if (plan_thread)
883 thread_list.SetSelectedThreadByID(plan_thread->GetID());
884 else if (other_thread)
885 thread_list.SetSelectedThreadByID(other_thread->GetID());
886 else {
887 if (curr_thread && curr_thread->IsValid())
888 thread = curr_thread;
889 else
890 thread = thread_list.GetThreadAtIndex(0);
891
892 if (thread)
893 thread_list.SetSelectedThreadByID(thread->GetID());
894 }
895 }
896 }
897 // Drop the ThreadList mutex by here, since GetThreadStatus below might
898 // have to run code, e.g. for Data formatters, and if we hold the
899 // ThreadList mutex, then the process is going to have a hard time
900 // restarting the process.
901 if (stream) {
902 Debugger &debugger = process_sp->GetTarget().GetDebugger();
903 if (debugger.GetTargetList().GetSelectedTarget().get() ==
904 &process_sp->GetTarget()) {
905 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread();
906
907 if (!thread_sp || !thread_sp->IsValid())
908 return false;
909
910 const bool only_threads_with_stop_reason = true;
911 const uint32_t start_frame =
912 thread_sp->GetSelectedFrameIndex(select_most_relevant);
913 const uint32_t num_frames = 1;
914 const uint32_t num_frames_with_source = 1;
915 const bool stop_format = true;
916
917 process_sp->GetStatus(*stream);
918 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
919 start_frame, num_frames,
920 num_frames_with_source,
921 stop_format);
922 if (curr_thread_stop_info_sp) {
923 lldb::addr_t crashing_address;
925 curr_thread_stop_info_sp, &crashing_address);
926 if (valobj_sp) {
930 stream->PutCString("Likely cause: ");
931 valobj_sp->GetExpressionPath(*stream, format);
932 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
933 }
934 }
935 } else {
936 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
937 process_sp->GetTarget().shared_from_this());
938 if (target_idx != UINT32_MAX)
939 stream->Printf("Target %d: (", target_idx);
940 else
941 stream->Printf("Target <unknown index>: (");
942 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
943 stream->Printf(") stopped.\n");
944 }
945 }
946
947 // Pop the process IO handler
948 pop_process_io_handler = true;
949 }
950 break;
951 }
952
953 if (handle_pop && pop_process_io_handler)
954 process_sp->PopProcessIOHandler();
955
956 return true;
957}
958
960 if (listener_sp) {
961 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
963 } else
964 return false;
965}
966
968
970 const Timeout<std::micro> &timeout,
971 ListenerSP hijack_listener_sp) {
973 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
974
975 ListenerSP listener_sp = hijack_listener_sp;
976 if (!listener_sp)
977 listener_sp = GetPrimaryListener();
978
979 StateType state = eStateInvalid;
980 if (listener_sp->GetEventForBroadcasterWithType(
982 timeout)) {
983 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
984 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
985 else
986 LLDB_LOG(log, "got no event or was interrupted.");
987 }
988
989 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
990 return state;
991}
992
995
996 LLDB_LOGF(log, "Process::%s...", __FUNCTION__);
997
998 Event *event_ptr;
999 event_ptr = GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType(
1001 if (log) {
1002 if (event_ptr) {
1003 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__,
1005 } else {
1006 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__);
1007 }
1008 }
1009 return event_ptr;
1010}
1011
1014 const Timeout<std::micro> &timeout) {
1015 Log *log = GetLog(LLDBLog::Process);
1016 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1017
1018 StateType state = eStateInvalid;
1019 if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1022 timeout))
1023 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1024 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1025
1026 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1027 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1028 return state;
1029}
1030
1032 const Timeout<std::micro> &timeout,
1033 bool control_only) {
1034 Log *log = GetLog(LLDBLog::Process);
1035 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1036
1037 if (control_only)
1038 return m_private_state_listener_sp->GetEventForBroadcaster(
1039 &m_private_state_control_broadcaster, event_sp, timeout);
1040 else
1041 return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1042}
1043
1046}
1047
1049 std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1050
1052 return m_exit_status;
1053 return -1;
1054}
1055
1057 std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1058
1060 return m_exit_string.c_str();
1061 return nullptr;
1062}
1063
1064bool Process::SetExitStatus(int status, llvm::StringRef exit_string) {
1065 // Use a mutex to protect setting the exit status.
1066 std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1067
1069 LLDB_LOG(log, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")",
1070 GetPluginName(), status, exit_string);
1071
1072 // We were already in the exited state
1074 LLDB_LOG(
1075 log,
1076 "(plugin = {0}) ignoring exit status because state was already set "
1077 "to eStateExited",
1078 GetPluginName());
1079 return false;
1080 }
1081
1082 m_exit_status = status;
1083 if (!exit_string.empty())
1084 m_exit_string = exit_string.str();
1085 else
1086 m_exit_string.clear();
1087
1088 // Clear the last natural stop ID since it has a strong reference to this
1089 // process
1091
1093
1094 // Allow subclasses to do some cleanup
1095 DidExit();
1096
1097 return true;
1098}
1099
1101 switch (m_private_state.GetValue()) {
1102 case eStateConnected:
1103 case eStateAttaching:
1104 case eStateLaunching:
1105 case eStateStopped:
1106 case eStateRunning:
1107 case eStateStepping:
1108 case eStateCrashed:
1109 case eStateSuspended:
1110 return true;
1111 default:
1112 return false;
1113 }
1114}
1115
1116// This static callback can be used to watch for local child processes on the
1117// current host. The child process exits, the process will be found in the
1118// global target list (we want to be completely sure that the
1119// lldb_private::Process doesn't go away before we can deliver the signal.
1121 lldb::pid_t pid, bool exited,
1122 int signo, // Zero for no signal
1123 int exit_status // Exit value of process if signal is zero
1124 ) {
1125 Log *log = GetLog(LLDBLog::Process);
1126 LLDB_LOGF(log,
1127 "Process::SetProcessExitStatus (pid=%" PRIu64
1128 ", exited=%i, signal=%i, exit_status=%i)\n",
1129 pid, exited, signo, exit_status);
1130
1131 if (exited) {
1133 if (target_sp) {
1134 ProcessSP process_sp(target_sp->GetProcessSP());
1135 if (process_sp) {
1136 llvm::StringRef signal_str =
1137 process_sp->GetUnixSignals()->GetSignalAsStringRef(signo);
1138 process_sp->SetExitStatus(exit_status, signal_str);
1139 }
1140 }
1141 return true;
1142 }
1143 return false;
1144}
1145
1147 ThreadList &new_thread_list) {
1149 return DoUpdateThreadList(old_thread_list, new_thread_list);
1150}
1151
1153 const uint32_t stop_id = GetStopID();
1154 if (m_thread_list.GetSize(false) == 0 ||
1155 stop_id != m_thread_list.GetStopID()) {
1156 bool clear_unused_threads = true;
1157 const StateType state = GetPrivateState();
1158 if (StateIsStoppedState(state, true)) {
1159 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1160 m_thread_list.SetStopID(stop_id);
1161
1162 // m_thread_list does have its own mutex, but we need to hold onto the
1163 // mutex between the call to UpdateThreadList(...) and the
1164 // os->UpdateThreadList(...) so it doesn't change on us
1165 ThreadList &old_thread_list = m_thread_list;
1166 ThreadList real_thread_list(*this);
1167 ThreadList new_thread_list(*this);
1168 // Always update the thread list with the protocol specific thread list,
1169 // but only update if "true" is returned
1170 if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1171 // Don't call into the OperatingSystem to update the thread list if we
1172 // are shutting down, since that may call back into the SBAPI's,
1173 // requiring the API lock which is already held by whoever is shutting
1174 // us down, causing a deadlock.
1176 if (os && !m_destroy_in_process) {
1177 // Clear any old backing threads where memory threads might have been
1178 // backed by actual threads from the lldb_private::Process subclass
1179 size_t num_old_threads = old_thread_list.GetSize(false);
1180 for (size_t i = 0; i < num_old_threads; ++i)
1181 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1182 // See if the OS plugin reports all threads. If it does, then
1183 // it is safe to clear unseen thread's plans here. Otherwise we
1184 // should preserve them in case they show up again:
1185 clear_unused_threads = GetOSPluginReportsAllThreads();
1186
1187 // Turn off dynamic types to ensure we don't run any expressions.
1188 // Objective-C can run an expression to determine if a SBValue is a
1189 // dynamic type or not and we need to avoid this. OperatingSystem
1190 // plug-ins can't run expressions that require running code...
1191
1192 Target &target = GetTarget();
1193 const lldb::DynamicValueType saved_prefer_dynamic =
1194 target.GetPreferDynamicValue();
1195 if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1197
1198 // Now let the OperatingSystem plug-in update the thread list
1199
1200 os->UpdateThreadList(
1201 old_thread_list, // Old list full of threads created by OS plug-in
1202 real_thread_list, // The actual thread list full of threads
1203 // created by each lldb_private::Process
1204 // subclass
1205 new_thread_list); // The new thread list that we will show to the
1206 // user that gets filled in
1207
1208 if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1209 target.SetPreferDynamicValue(saved_prefer_dynamic);
1210 } else {
1211 // No OS plug-in, the new thread list is the same as the real thread
1212 // list.
1213 new_thread_list = real_thread_list;
1214 }
1215
1216 m_thread_list_real.Update(real_thread_list);
1217 m_thread_list.Update(new_thread_list);
1218 m_thread_list.SetStopID(stop_id);
1219
1221 // Clear any extended threads that we may have accumulated previously
1224
1227 }
1228 }
1229 // Now update the plan stack map.
1230 // If we do have an OS plugin, any absent real threads in the
1231 // m_thread_list have already been removed from the ThreadPlanStackMap.
1232 // So any remaining threads are OS Plugin threads, and those we want to
1233 // preserve in case they show up again.
1234 m_thread_plans.Update(m_thread_list, clear_unused_threads);
1235 }
1236 }
1237}
1238
1240 return m_thread_plans.Find(tid);
1241}
1242
1244 return m_thread_plans.PrunePlansForTID(tid);
1245}
1246
1248 m_thread_plans.Update(GetThreadList(), true, false);
1249}
1250
1252 lldb::DescriptionLevel desc_level,
1253 bool internal, bool condense_trivial,
1254 bool skip_unreported_plans) {
1256 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans);
1257}
1259 bool internal, bool condense_trivial,
1260 bool skip_unreported_plans) {
1261 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial,
1262 skip_unreported_plans);
1263}
1264
1266 if (m_system_runtime_up) {
1267 if (m_queue_list.GetSize() == 0 ||
1269 const StateType state = GetPrivateState();
1270 if (StateIsStoppedState(state, true)) {
1271 m_system_runtime_up->PopulateQueueList(m_queue_list);
1273 }
1274 }
1275 }
1276}
1277
1280 if (os)
1281 return os->CreateThread(tid, context);
1282 return ThreadSP();
1283}
1284
1285uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) {
1286 return AssignIndexIDToThread(thread_id);
1287}
1288
1289bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1290 return (m_thread_id_to_index_id_map.find(thread_id) !=
1292}
1293
1294uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) {
1295 uint32_t result = 0;
1296 std::map<uint64_t, uint32_t>::iterator iterator =
1297 m_thread_id_to_index_id_map.find(thread_id);
1298 if (iterator == m_thread_id_to_index_id_map.end()) {
1299 result = ++m_thread_index_id;
1300 m_thread_id_to_index_id_map[thread_id] = result;
1301 } else {
1302 result = iterator->second;
1303 }
1304
1305 return result;
1306}
1307
1310 return m_private_state.GetValue();
1311 else
1312 return m_public_state.GetValue();
1313}
1314
1315void Process::SetPublicState(StateType new_state, bool restarted) {
1316 const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1317 if (new_state_is_stopped) {
1318 // This will only set the time if the public stop time has no value, so
1319 // it is ok to call this multiple times. With a public stop we can't look
1320 // at the stop ID because many private stops might have happened, so we
1321 // can't check for a stop ID of zero. This allows the "statistics" command
1322 // to dump the time it takes to reach somewhere in your code, like a
1323 // breakpoint you set.
1325 }
1326
1328 LLDB_LOGF(log, "(plugin = %s, state = %s, restarted = %i)",
1329 GetPluginName().data(), StateAsCString(new_state), restarted);
1330 const StateType old_state = m_public_state.GetValue();
1331 m_public_state.SetValue(new_state);
1332
1333 // On the transition from Run to Stopped, we unlock the writer end of the run
1334 // lock. The lock gets locked in Resume, which is the public API to tell the
1335 // program to run.
1337 if (new_state == eStateDetached) {
1338 LLDB_LOGF(log,
1339 "(plugin = %s, state = %s) -- unlocking run lock for detach",
1340 GetPluginName().data(), StateAsCString(new_state));
1342 } else {
1343 const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1344 if ((old_state_is_stopped != new_state_is_stopped)) {
1345 if (new_state_is_stopped && !restarted) {
1346 LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock",
1347 GetPluginName().data(), StateAsCString(new_state));
1349 }
1350 }
1351 }
1352 }
1353}
1354
1357 LLDB_LOGF(log, "(plugin = %s) -- locking run lock", GetPluginName().data());
1359 LLDB_LOGF(log, "(plugin = %s) -- TrySetRunning failed, not resuming.",
1360 GetPluginName().data());
1362 "Resume request failed - process still running.");
1363 }
1365 if (!error.Success()) {
1366 // Undo running state change
1368 }
1369 return error;
1370}
1371
1374 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock");
1376 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming.");
1378 "Resume request failed - process still running.");
1379 }
1380
1381 ListenerSP listener_sp(
1383 HijackProcessEvents(listener_sp);
1384
1386 if (error.Success()) {
1387 StateType state =
1388 WaitForProcessToStop(std::nullopt, nullptr, true, listener_sp, stream,
1389 true /* use_run_lock */, SelectMostRelevantFrame);
1390 const bool must_be_alive =
1391 false; // eStateExited is ok, so this must be false
1392 if (!StateIsStoppedState(state, must_be_alive))
1394 "process not in stopped state after synchronous resume: %s",
1395 StateAsCString(state));
1396 } else {
1397 // Undo running state change
1399 }
1400
1401 // Undo the hijacking of process events...
1403
1404 return error;
1405}
1406
1409 llvm::StringRef hijacking_name = GetHijackingListenerName();
1410 if (!hijacking_name.starts_with("lldb.internal"))
1411 return true;
1412 }
1413 return false;
1414}
1415
1418 llvm::StringRef hijacking_name = GetHijackingListenerName();
1419 if (hijacking_name == ResumeSynchronousHijackListenerName)
1420 return true;
1421 }
1422 return false;
1423}
1424
1426
1428 // Use m_destructing not m_finalizing here. If we are finalizing a process
1429 // that we haven't started tearing down, we'd like to be able to nicely
1430 // detach if asked, but that requires the event system be live. That will
1431 // not be true for an in-the-middle-of-being-destructed Process, since the
1432 // event system relies on Process::shared_from_this, which may have already
1433 // been destroyed.
1434 if (m_destructing)
1435 return;
1436
1438 bool state_changed = false;
1439
1440 LLDB_LOGF(log, "(plugin = %s, state = %s)", GetPluginName().data(),
1441 StateAsCString(new_state));
1442
1443 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1444 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1445
1446 const StateType old_state = m_private_state.GetValueNoLock();
1447 state_changed = old_state != new_state;
1448
1449 const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1450 const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1451 if (old_state_is_stopped != new_state_is_stopped) {
1452 if (new_state_is_stopped)
1454 else
1456 }
1457
1458 if (state_changed) {
1460 EventSP event_sp(
1462 new ProcessEventData(shared_from_this(), new_state)));
1463 if (StateIsStoppedState(new_state, false)) {
1464 // Note, this currently assumes that all threads in the list stop when
1465 // the process stops. In the future we will want to support a debugging
1466 // model where some threads continue to run while others are stopped.
1467 // When that happens we will either need a way for the thread list to
1468 // identify which threads are stopping or create a special thread list
1469 // containing only threads which actually stopped.
1470 //
1471 // The process plugin is responsible for managing the actual behavior of
1472 // the threads and should have stopped any threads that are going to stop
1473 // before we get here.
1475
1476 if (m_mod_id.BumpStopID() == 0)
1478
1482 LLDB_LOGF(log, "(plugin = %s, state = %s, stop_id = %u",
1483 GetPluginName().data(), StateAsCString(new_state),
1485 }
1486
1488 } else {
1489 LLDB_LOGF(log, "(plugin = %s, state = %s) state didn't change. Ignoring...",
1490 GetPluginName().data(), StateAsCString(new_state));
1491 }
1492}
1493
1496}
1497
1500}
1501
1503
1505 if (!m_abi_sp)
1506 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1507 return m_abi_sp;
1508}
1509
1510std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() {
1511 std::vector<LanguageRuntime *> language_runtimes;
1512
1513 if (m_finalizing)
1514 return language_runtimes;
1515
1516 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1517 // Before we pass off a copy of the language runtimes, we must make sure that
1518 // our collection is properly populated. It's possible that some of the
1519 // language runtimes were not loaded yet, either because nobody requested it
1520 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so
1521 // hadn't been loaded).
1522 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) {
1523 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type))
1524 language_runtimes.emplace_back(runtime);
1525 }
1526
1527 return language_runtimes;
1528}
1529
1531 if (m_finalizing)
1532 return nullptr;
1533
1534 LanguageRuntime *runtime = nullptr;
1535
1536 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex);
1537 LanguageRuntimeCollection::iterator pos;
1538 pos = m_language_runtimes.find(language);
1539 if (pos == m_language_runtimes.end() || !pos->second) {
1540 lldb::LanguageRuntimeSP runtime_sp(
1541 LanguageRuntime::FindPlugin(this, language));
1542
1543 m_language_runtimes[language] = runtime_sp;
1544 runtime = runtime_sp.get();
1545 } else
1546 runtime = pos->second.get();
1547
1548 if (runtime)
1549 // It's possible that a language runtime can support multiple LanguageTypes,
1550 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus,
1551 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the
1552 // primary language type and make sure that our runtime supports it.
1553 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language));
1554
1555 return runtime;
1556}
1557
1559 if (m_finalizing)
1560 return false;
1561
1562 if (in_value.IsDynamic())
1563 return false;
1564 LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1565
1566 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1567 LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1568 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1569 }
1570
1571 for (LanguageRuntime *runtime : GetLanguageRuntimes()) {
1572 if (runtime->CouldHaveDynamicValue(in_value))
1573 return true;
1574 }
1575
1576 return false;
1577}
1578
1580 m_dynamic_checkers_up.reset(dynamic_checkers);
1581}
1582
1585}
1586
1590}
1591
1593 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1594 // bp_site->SetEnabled(true);
1595 DisableBreakpointSite(bp_site);
1596 });
1597}
1598
1601
1602 if (error.Success())
1604
1605 return error;
1606}
1607
1609 Status error;
1610 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1611 if (bp_site_sp) {
1612 if (bp_site_sp->IsEnabled())
1613 error = DisableBreakpointSite(bp_site_sp.get());
1614 } else {
1616 "invalid breakpoint site ID: %" PRIu64, break_id);
1617 }
1618
1619 return error;
1620}
1621
1623 Status error;
1624 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1625 if (bp_site_sp) {
1626 if (!bp_site_sp->IsEnabled())
1627 error = EnableBreakpointSite(bp_site_sp.get());
1628 } else {
1630 "invalid breakpoint site ID: %" PRIu64, break_id);
1631 }
1632 return error;
1633}
1634
1637 bool use_hardware) {
1638 addr_t load_addr = LLDB_INVALID_ADDRESS;
1639
1640 bool show_error = true;
1641 switch (GetState()) {
1642 case eStateInvalid:
1643 case eStateUnloaded:
1644 case eStateConnected:
1645 case eStateAttaching:
1646 case eStateLaunching:
1647 case eStateDetached:
1648 case eStateExited:
1649 show_error = false;
1650 break;
1651
1652 case eStateStopped:
1653 case eStateRunning:
1654 case eStateStepping:
1655 case eStateCrashed:
1656 case eStateSuspended:
1657 show_error = IsAlive();
1658 break;
1659 }
1660
1661 // Reset the IsIndirect flag here, in case the location changes from pointing
1662 // to a indirect symbol to a regular symbol.
1663 constituent->SetIsIndirect(false);
1664
1665 if (constituent->ShouldResolveIndirectFunctions()) {
1666 Symbol *symbol = constituent->GetAddress().CalculateSymbolContextSymbol();
1667 if (symbol && symbol->IsIndirect()) {
1668 Status error;
1669 Address symbol_address = symbol->GetAddress();
1670 load_addr = ResolveIndirectFunction(&symbol_address, error);
1671 if (!error.Success() && show_error) {
1673 "warning: failed to resolve indirect function at 0x%" PRIx64
1674 " for breakpoint %i.%i: %s\n",
1675 symbol->GetLoadAddress(&GetTarget()),
1676 constituent->GetBreakpoint().GetID(), constituent->GetID(),
1677 error.AsCString() ? error.AsCString() : "unknown error");
1678 return LLDB_INVALID_BREAK_ID;
1679 }
1680 Address resolved_address(load_addr);
1681 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1682 constituent->SetIsIndirect(true);
1683 } else
1684 load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1685 } else
1686 load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1687
1688 if (load_addr != LLDB_INVALID_ADDRESS) {
1689 BreakpointSiteSP bp_site_sp;
1690
1691 // Look up this breakpoint site. If it exists, then add this new
1692 // constituent, otherwise create a new breakpoint site and add it.
1693
1694 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1695
1696 if (bp_site_sp) {
1697 bp_site_sp->AddConstituent(constituent);
1698 constituent->SetBreakpointSite(bp_site_sp);
1699 return bp_site_sp->GetID();
1700 } else {
1701 bp_site_sp.reset(
1702 new BreakpointSite(constituent, load_addr, use_hardware));
1703 if (bp_site_sp) {
1704 Status error = EnableBreakpointSite(bp_site_sp.get());
1705 if (error.Success()) {
1706 constituent->SetBreakpointSite(bp_site_sp);
1707 return m_breakpoint_site_list.Add(bp_site_sp);
1708 } else {
1709 if (show_error || use_hardware) {
1710 // Report error for setting breakpoint...
1712 "warning: failed to set breakpoint site at 0x%" PRIx64
1713 " for breakpoint %i.%i: %s\n",
1714 load_addr, constituent->GetBreakpoint().GetID(),
1715 constituent->GetID(),
1716 error.AsCString() ? error.AsCString() : "unknown error");
1717 }
1718 }
1719 }
1720 }
1721 }
1722 // We failed to enable the breakpoint
1723 return LLDB_INVALID_BREAK_ID;
1724}
1725
1727 lldb::user_id_t constituent_id, lldb::user_id_t constituent_loc_id,
1728 BreakpointSiteSP &bp_site_sp) {
1729 uint32_t num_constituents =
1730 bp_site_sp->RemoveConstituent(constituent_id, constituent_loc_id);
1731 if (num_constituents == 0) {
1732 // Don't try to disable the site if we don't have a live process anymore.
1733 if (IsAlive())
1734 DisableBreakpointSite(bp_site_sp.get());
1735 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1736 }
1737}
1738
1740 uint8_t *buf) const {
1741 size_t bytes_removed = 0;
1742 StopPointSiteList<BreakpointSite> bp_sites_in_range;
1743
1744 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1745 bp_sites_in_range)) {
1746 bp_sites_in_range.ForEach([bp_addr, size,
1747 buf](BreakpointSite *bp_site) -> void {
1748 if (bp_site->GetType() == BreakpointSite::eSoftware) {
1749 addr_t intersect_addr;
1750 size_t intersect_size;
1751 size_t opcode_offset;
1752 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1753 &intersect_size, &opcode_offset)) {
1754 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1755 assert(bp_addr < intersect_addr + intersect_size &&
1756 intersect_addr + intersect_size <= bp_addr + size);
1757 assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1758 size_t buf_offset = intersect_addr - bp_addr;
1759 ::memcpy(buf + buf_offset,
1760 bp_site->GetSavedOpcodeBytes() + opcode_offset,
1761 intersect_size);
1762 }
1763 }
1764 });
1765 }
1766 return bytes_removed;
1767}
1768
1770 PlatformSP platform_sp(GetTarget().GetPlatform());
1771 if (platform_sp)
1772 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1773 return 0;
1774}
1775
1777 Status error;
1778 assert(bp_site != nullptr);
1780 const addr_t bp_addr = bp_site->GetLoadAddress();
1781 LLDB_LOGF(
1782 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1783 bp_site->GetID(), (uint64_t)bp_addr);
1784 if (bp_site->IsEnabled()) {
1785 LLDB_LOGF(
1786 log,
1787 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1788 " -- already enabled",
1789 bp_site->GetID(), (uint64_t)bp_addr);
1790 return error;
1791 }
1792
1793 if (bp_addr == LLDB_INVALID_ADDRESS) {
1795 "BreakpointSite contains an invalid load address.");
1796 return error;
1797 }
1798 // Ask the lldb::Process subclass to fill in the correct software breakpoint
1799 // trap for the breakpoint site
1800 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1801
1802 if (bp_opcode_size == 0) {
1804 "Process::GetSoftwareBreakpointTrapOpcode() "
1805 "returned zero, unable to get breakpoint "
1806 "trap for address 0x%" PRIx64,
1807 bp_addr);
1808 } else {
1809 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1810
1811 if (bp_opcode_bytes == nullptr) {
1813 "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1814 return error;
1815 }
1816
1817 // Save the original opcode by reading it
1818 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1819 error) == bp_opcode_size) {
1820 // Write a software breakpoint in place of the original opcode
1821 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1822 bp_opcode_size) {
1823 uint8_t verify_bp_opcode_bytes[64];
1824 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1825 error) == bp_opcode_size) {
1826 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1827 bp_opcode_size) == 0) {
1828 bp_site->SetEnabled(true);
1830 LLDB_LOGF(log,
1831 "Process::EnableSoftwareBreakpoint (site_id = %d) "
1832 "addr = 0x%" PRIx64 " -- SUCCESS",
1833 bp_site->GetID(), (uint64_t)bp_addr);
1834 } else
1836 "failed to verify the breakpoint trap in memory.");
1837 } else
1839 "Unable to read memory to verify breakpoint trap.");
1840 } else
1842 "Unable to write breakpoint trap to memory.");
1843 } else
1845 "Unable to read memory at breakpoint address.");
1846 }
1847 if (log && error.Fail())
1848 LLDB_LOGF(
1849 log,
1850 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1851 " -- FAILED: %s",
1852 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1853 return error;
1854}
1855
1857 Status error;
1858 assert(bp_site != nullptr);
1860 addr_t bp_addr = bp_site->GetLoadAddress();
1861 lldb::user_id_t breakID = bp_site->GetID();
1862 LLDB_LOGF(log,
1863 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1864 ") addr = 0x%" PRIx64,
1865 breakID, (uint64_t)bp_addr);
1866
1867 if (bp_site->IsHardware()) {
1868 error =
1869 Status::FromErrorString("Breakpoint site is a hardware breakpoint.");
1870 } else if (bp_site->IsEnabled()) {
1871 const size_t break_op_size = bp_site->GetByteSize();
1872 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1873 if (break_op_size > 0) {
1874 // Clear a software breakpoint instruction
1875 uint8_t curr_break_op[8];
1876 assert(break_op_size <= sizeof(curr_break_op));
1877 bool break_op_found = false;
1878
1879 // Read the breakpoint opcode
1880 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1881 break_op_size) {
1882 bool verify = false;
1883 // Make sure the breakpoint opcode exists at this address
1884 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1885 break_op_found = true;
1886 // We found a valid breakpoint opcode at this address, now restore
1887 // the saved opcode.
1888 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1889 break_op_size, error) == break_op_size) {
1890 verify = true;
1891 } else
1893 "Memory write failed when restoring original opcode.");
1894 } else {
1896 "Original breakpoint trap is no longer in memory.");
1897 // Set verify to true and so we can check if the original opcode has
1898 // already been restored
1899 verify = true;
1900 }
1901
1902 if (verify) {
1903 uint8_t verify_opcode[8];
1904 assert(break_op_size < sizeof(verify_opcode));
1905 // Verify that our original opcode made it back to the inferior
1906 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1907 break_op_size) {
1908 // compare the memory we just read with the original opcode
1909 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1910 break_op_size) == 0) {
1911 // SUCCESS
1912 bp_site->SetEnabled(false);
1913 LLDB_LOGF(log,
1914 "Process::DisableSoftwareBreakpoint (site_id = %d) "
1915 "addr = 0x%" PRIx64 " -- SUCCESS",
1916 bp_site->GetID(), (uint64_t)bp_addr);
1917 return error;
1918 } else {
1919 if (break_op_found)
1921 "Failed to restore original opcode.");
1922 }
1923 } else
1924 error =
1925 Status::FromErrorString("Failed to read memory to verify that "
1926 "breakpoint trap was restored.");
1927 }
1928 } else
1930 "Unable to read memory that should contain the breakpoint trap.");
1931 }
1932 } else {
1933 LLDB_LOGF(
1934 log,
1935 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1936 " -- already disabled",
1937 bp_site->GetID(), (uint64_t)bp_addr);
1938 return error;
1939 }
1940
1941 LLDB_LOGF(
1942 log,
1943 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1944 " -- FAILED: %s",
1945 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1946 return error;
1947}
1948
1949// Uncomment to verify memory caching works after making changes to caching
1950// code
1951//#define VERIFY_MEMORY_READS
1952
1953size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1954 if (ABISP abi_sp = GetABI())
1955 addr = abi_sp->FixAnyAddress(addr);
1956
1957 error.Clear();
1958 if (!GetDisableMemoryCache()) {
1959#if defined(VERIFY_MEMORY_READS)
1960 // Memory caching is enabled, with debug verification
1961
1962 if (buf && size) {
1963 // Uncomment the line below to make sure memory caching is working.
1964 // I ran this through the test suite and got no assertions, so I am
1965 // pretty confident this is working well. If any changes are made to
1966 // memory caching, uncomment the line below and test your changes!
1967
1968 // Verify all memory reads by using the cache first, then redundantly
1969 // reading the same memory from the inferior and comparing to make sure
1970 // everything is exactly the same.
1971 std::string verify_buf(size, '\0');
1972 assert(verify_buf.size() == size);
1973 const size_t cache_bytes_read =
1974 m_memory_cache.Read(this, addr, buf, size, error);
1975 Status verify_error;
1976 const size_t verify_bytes_read =
1977 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1978 verify_buf.size(), verify_error);
1979 assert(cache_bytes_read == verify_bytes_read);
1980 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1981 assert(verify_error.Success() == error.Success());
1982 return cache_bytes_read;
1983 }
1984 return 0;
1985#else // !defined(VERIFY_MEMORY_READS)
1986 // Memory caching is enabled, without debug verification
1987
1988 return m_memory_cache.Read(addr, buf, size, error);
1989#endif // defined (VERIFY_MEMORY_READS)
1990 } else {
1991 // Memory caching is disabled
1992
1993 return ReadMemoryFromInferior(addr, buf, size, error);
1994 }
1995}
1996
1998 const uint8_t *buf, size_t size,
1999 AddressRanges &matches, size_t alignment,
2000 size_t max_matches) {
2001 // Inputs are already validated in FindInMemory() functions.
2002 assert(buf != nullptr);
2003 assert(size > 0);
2004 assert(alignment > 0);
2005 assert(max_matches > 0);
2006 assert(start_addr != LLDB_INVALID_ADDRESS);
2007 assert(end_addr != LLDB_INVALID_ADDRESS);
2008 assert(start_addr < end_addr);
2009
2010 lldb::addr_t start = llvm::alignTo(start_addr, alignment);
2011 while (matches.size() < max_matches && (start + size) < end_addr) {
2012 const lldb::addr_t found_addr = FindInMemory(start, end_addr, buf, size);
2013 if (found_addr == LLDB_INVALID_ADDRESS)
2014 break;
2015
2016 if (found_addr % alignment) {
2017 // We need to check the alignment because the FindInMemory uses a special
2018 // algorithm to efficiently search mememory but doesn't support alignment.
2019 start = llvm::alignTo(start + 1, alignment);
2020 continue;
2021 }
2022
2023 matches.emplace_back(found_addr, size);
2024 start = found_addr + alignment;
2025 }
2026}
2027
2028AddressRanges Process::FindRangesInMemory(const uint8_t *buf, uint64_t size,
2029 const AddressRanges &ranges,
2030 size_t alignment, size_t max_matches,
2031 Status &error) {
2032 AddressRanges matches;
2033 if (buf == nullptr) {
2034 error = Status::FromErrorString("buffer is null");
2035 return matches;
2036 }
2037 if (size == 0) {
2038 error = Status::FromErrorString("buffer size is zero");
2039 return matches;
2040 }
2041 if (ranges.empty()) {
2042 error = Status::FromErrorString("empty ranges");
2043 return matches;
2044 }
2045 if (alignment == 0) {
2046 error = Status::FromErrorString("alignment must be greater than zero");
2047 return matches;
2048 }
2049 if (max_matches == 0) {
2050 error = Status::FromErrorString("max_matches must be greater than zero");
2051 return matches;
2052 }
2053
2054 int resolved_ranges = 0;
2055 Target &target = GetTarget();
2056 for (size_t i = 0; i < ranges.size(); ++i) {
2057 if (matches.size() >= max_matches)
2058 break;
2059 const AddressRange &range = ranges[i];
2060 if (range.IsValid() == false)
2061 continue;
2062
2063 const lldb::addr_t start_addr =
2064 range.GetBaseAddress().GetLoadAddress(&target);
2065 if (start_addr == LLDB_INVALID_ADDRESS)
2066 continue;
2067
2068 ++resolved_ranges;
2069 const lldb::addr_t end_addr = start_addr + range.GetByteSize();
2070 DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment,
2071 max_matches);
2072 }
2073
2074 if (resolved_ranges > 0)
2075 error.Clear();
2076 else
2077 error = Status::FromErrorString("unable to resolve any ranges");
2078
2079 return matches;
2080}
2081
2082lldb::addr_t Process::FindInMemory(const uint8_t *buf, uint64_t size,
2083 const AddressRange &range, size_t alignment,
2084 Status &error) {
2085 if (buf == nullptr) {
2086 error = Status::FromErrorString("buffer is null");
2087 return LLDB_INVALID_ADDRESS;
2088 }
2089 if (size == 0) {
2090 error = Status::FromErrorString("buffer size is zero");
2091 return LLDB_INVALID_ADDRESS;
2092 }
2093 if (!range.IsValid()) {
2094 error = Status::FromErrorString("range is invalid");
2095 return LLDB_INVALID_ADDRESS;
2096 }
2097 if (alignment == 0) {
2098 error = Status::FromErrorString("alignment must be greater than zero");
2099 return LLDB_INVALID_ADDRESS;
2100 }
2101
2102 Target &target = GetTarget();
2103 const lldb::addr_t start_addr =
2104 range.GetBaseAddress().GetLoadAddress(&target);
2105 if (start_addr == LLDB_INVALID_ADDRESS) {
2106 error = Status::FromErrorString("range load address is invalid");
2107 return LLDB_INVALID_ADDRESS;
2108 }
2109 const lldb::addr_t end_addr = start_addr + range.GetByteSize();
2110
2111 AddressRanges matches;
2112 DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, 1);
2113 if (matches.empty())
2114 return LLDB_INVALID_ADDRESS;
2115
2116 error.Clear();
2117 return matches[0].GetBaseAddress().GetLoadAddress(&target);
2118}
2119
2120size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
2121 Status &error) {
2122 char buf[256];
2123 out_str.clear();
2124 addr_t curr_addr = addr;
2125 while (true) {
2126 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
2127 if (length == 0)
2128 break;
2129 out_str.append(buf, length);
2130 // If we got "length - 1" bytes, we didn't get the whole C string, we need
2131 // to read some more characters
2132 if (length == sizeof(buf) - 1)
2133 curr_addr += length;
2134 else
2135 break;
2136 }
2137 return out_str.size();
2138}
2139
2140// Deprecated in favor of ReadStringFromMemory which has wchar support and
2141// correct code to find null terminators.
2143 size_t dst_max_len,
2144 Status &result_error) {
2145 size_t total_cstr_len = 0;
2146 if (dst && dst_max_len) {
2147 result_error.Clear();
2148 // NULL out everything just to be safe
2149 memset(dst, 0, dst_max_len);
2150 addr_t curr_addr = addr;
2151 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2152 size_t bytes_left = dst_max_len - 1;
2153 char *curr_dst = dst;
2154
2155 while (bytes_left > 0) {
2156 addr_t cache_line_bytes_left =
2157 cache_line_size - (curr_addr % cache_line_size);
2158 addr_t bytes_to_read =
2159 std::min<addr_t>(bytes_left, cache_line_bytes_left);
2160 Status error;
2161 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2162
2163 if (bytes_read == 0) {
2164 result_error = std::move(error);
2165 dst[total_cstr_len] = '\0';
2166 break;
2167 }
2168 const size_t len = strlen(curr_dst);
2169
2170 total_cstr_len += len;
2171
2172 if (len < bytes_to_read)
2173 break;
2174
2175 curr_dst += bytes_read;
2176 curr_addr += bytes_read;
2177 bytes_left -= bytes_read;
2178 }
2179 } else {
2180 if (dst == nullptr)
2181 result_error = Status::FromErrorString("invalid arguments");
2182 else
2183 result_error.Clear();
2184 }
2185 return total_cstr_len;
2186}
2187
2188size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2189 Status &error) {
2191
2192 if (ABISP abi_sp = GetABI())
2193 addr = abi_sp->FixAnyAddress(addr);
2194
2195 if (buf == nullptr || size == 0)
2196 return 0;
2197
2198 size_t bytes_read = 0;
2199 uint8_t *bytes = (uint8_t *)buf;
2200
2201 while (bytes_read < size) {
2202 const size_t curr_size = size - bytes_read;
2203 const size_t curr_bytes_read =
2204 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2205 bytes_read += curr_bytes_read;
2206 if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2207 break;
2208 }
2209
2210 // Replace any software breakpoint opcodes that fall into this range back
2211 // into "buf" before we return
2212 if (bytes_read > 0)
2213 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2214 return bytes_read;
2215}
2216
2218 size_t integer_byte_size,
2219 uint64_t fail_value,
2220 Status &error) {
2221 Scalar scalar;
2222 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2223 error))
2224 return scalar.ULongLong(fail_value);
2225 return fail_value;
2226}
2227
2229 size_t integer_byte_size,
2230 int64_t fail_value,
2231 Status &error) {
2232 Scalar scalar;
2233 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2234 error))
2235 return scalar.SLongLong(fail_value);
2236 return fail_value;
2237}
2238
2240 Scalar scalar;
2241 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2242 error))
2243 return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2244 return LLDB_INVALID_ADDRESS;
2245}
2246
2248 Status &error) {
2249 Scalar scalar;
2250 const uint32_t addr_byte_size = GetAddressByteSize();
2251 if (addr_byte_size <= 4)
2252 scalar = (uint32_t)ptr_value;
2253 else
2254 scalar = ptr_value;
2255 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2256 addr_byte_size;
2257}
2258
2259size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2260 Status &error) {
2261 size_t bytes_written = 0;
2262 const uint8_t *bytes = (const uint8_t *)buf;
2263
2264 while (bytes_written < size) {
2265 const size_t curr_size = size - bytes_written;
2266 const size_t curr_bytes_written = DoWriteMemory(
2267 addr + bytes_written, bytes + bytes_written, curr_size, error);
2268 bytes_written += curr_bytes_written;
2269 if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2270 break;
2271 }
2272 return bytes_written;
2273}
2274
2275size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2276 Status &error) {
2277 if (ABISP abi_sp = GetABI())
2278 addr = abi_sp->FixAnyAddress(addr);
2279
2280#if defined(ENABLE_MEMORY_CACHING)
2281 m_memory_cache.Flush(addr, size);
2282#endif
2283
2284 if (buf == nullptr || size == 0)
2285 return 0;
2286
2288
2289 // We need to write any data that would go where any current software traps
2290 // (enabled software breakpoints) any software traps (breakpoints) that we
2291 // may have placed in our tasks memory.
2292
2293 StopPointSiteList<BreakpointSite> bp_sites_in_range;
2294 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2295 return WriteMemoryPrivate(addr, buf, size, error);
2296
2297 // No breakpoint sites overlap
2298 if (bp_sites_in_range.IsEmpty())
2299 return WriteMemoryPrivate(addr, buf, size, error);
2300
2301 const uint8_t *ubuf = (const uint8_t *)buf;
2302 uint64_t bytes_written = 0;
2303
2304 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2305 &error](BreakpointSite *bp) -> void {
2306 if (error.Fail())
2307 return;
2308
2310 return;
2311
2312 addr_t intersect_addr;
2313 size_t intersect_size;
2314 size_t opcode_offset;
2315 const bool intersects = bp->IntersectsRange(
2316 addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2317 UNUSED_IF_ASSERT_DISABLED(intersects);
2318 assert(intersects);
2319 assert(addr <= intersect_addr && intersect_addr < addr + size);
2320 assert(addr < intersect_addr + intersect_size &&
2321 intersect_addr + intersect_size <= addr + size);
2322 assert(opcode_offset + intersect_size <= bp->GetByteSize());
2323
2324 // Check for bytes before this breakpoint
2325 const addr_t curr_addr = addr + bytes_written;
2326 if (intersect_addr > curr_addr) {
2327 // There are some bytes before this breakpoint that we need to just
2328 // write to memory
2329 size_t curr_size = intersect_addr - curr_addr;
2330 size_t curr_bytes_written =
2331 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2332 bytes_written += curr_bytes_written;
2333 if (curr_bytes_written != curr_size) {
2334 // We weren't able to write all of the requested bytes, we are
2335 // done looping and will return the number of bytes that we have
2336 // written so far.
2337 if (error.Success())
2338 error = Status::FromErrorString("could not write all bytes");
2339 }
2340 }
2341 // Now write any bytes that would cover up any software breakpoints
2342 // directly into the breakpoint opcode buffer
2343 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2344 intersect_size);
2345 bytes_written += intersect_size;
2346 });
2347
2348 // Write any remaining bytes after the last breakpoint if we have any left
2349 if (bytes_written < size)
2350 bytes_written +=
2351 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2352 size - bytes_written, error);
2353
2354 return bytes_written;
2355}
2356
2357size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2358 size_t byte_size, Status &error) {
2359 if (byte_size == UINT32_MAX)
2360 byte_size = scalar.GetByteSize();
2361 if (byte_size > 0) {
2362 uint8_t buf[32];
2363 const size_t mem_size =
2364 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2365 if (mem_size > 0)
2366 return WriteMemory(addr, buf, mem_size, error);
2367 else
2368 error = Status::FromErrorString("failed to get scalar as memory data");
2369 } else {
2370 error = Status::FromErrorString("invalid scalar value");
2371 }
2372 return 0;
2373}
2374
2375size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size,
2376 bool is_signed, Scalar &scalar,
2377 Status &error) {
2378 uint64_t uval = 0;
2379 if (byte_size == 0) {
2380 error = Status::FromErrorString("byte size is zero");
2381 } else if (byte_size & (byte_size - 1)) {
2383 "byte size %u is not a power of 2", byte_size);
2384 } else if (byte_size <= sizeof(uval)) {
2385 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2386 if (bytes_read == byte_size) {
2387 DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2389 lldb::offset_t offset = 0;
2390 if (byte_size <= 4)
2391 scalar = data.GetMaxU32(&offset, byte_size);
2392 else
2393 scalar = data.GetMaxU64(&offset, byte_size);
2394 if (is_signed)
2395 scalar.SignExtend(byte_size * 8);
2396 return bytes_read;
2397 }
2398 } else {
2400 "byte size of %u is too large for integer scalar type", byte_size);
2401 }
2402 return 0;
2403}
2404
2405Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2406 Status error;
2407 for (const auto &Entry : entries) {
2408 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2409 error);
2410 if (!error.Success())
2411 break;
2412 }
2413 return error;
2414}
2415
2416#define USE_ALLOCATE_MEMORY_CACHE 1
2417addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2418 Status &error) {
2419 if (GetPrivateState() != eStateStopped) {
2421 "cannot allocate memory while process is running");
2422 return LLDB_INVALID_ADDRESS;
2423 }
2424
2425#if defined(USE_ALLOCATE_MEMORY_CACHE)
2426 return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2427#else
2428 addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2429 Log *log = GetLog(LLDBLog::Process);
2430 LLDB_LOGF(log,
2431 "Process::AllocateMemory(size=%" PRIu64
2432 ", permissions=%s) => 0x%16.16" PRIx64
2433 " (m_stop_id = %u m_memory_id = %u)",
2434 (uint64_t)size, GetPermissionsAsCString(permissions),
2435 (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2437 return allocated_addr;
2438#endif
2439}
2440
2441addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2442 Status &error) {
2443 addr_t return_addr = AllocateMemory(size, permissions, error);
2444 if (error.Success()) {
2445 std::string buffer(size, 0);
2446 WriteMemory(return_addr, buffer.c_str(), size, error);
2447 }
2448 return return_addr;
2449}
2450
2452 if (m_can_jit == eCanJITDontKnow) {
2453 Log *log = GetLog(LLDBLog::Process);
2454 Status err;
2455
2456 uint64_t allocated_memory = AllocateMemory(
2457 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2458 err);
2459
2460 if (err.Success()) {
2462 LLDB_LOGF(log,
2463 "Process::%s pid %" PRIu64
2464 " allocation test passed, CanJIT () is true",
2465 __FUNCTION__, GetID());
2466 } else {
2468 LLDB_LOGF(log,
2469 "Process::%s pid %" PRIu64
2470 " allocation test failed, CanJIT () is false: %s",
2471 __FUNCTION__, GetID(), err.AsCString());
2472 }
2473
2474 DeallocateMemory(allocated_memory);
2475 }
2476
2477 return m_can_jit == eCanJITYes;
2478}
2479
2480void Process::SetCanJIT(bool can_jit) {
2481 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2482}
2483
2484void Process::SetCanRunCode(bool can_run_code) {
2485 SetCanJIT(can_run_code);
2486 m_can_interpret_function_calls = can_run_code;
2487}
2488
2490 Status error;
2491#if defined(USE_ALLOCATE_MEMORY_CACHE)
2494 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2495 }
2496#else
2498
2499 Log *log = GetLog(LLDBLog::Process);
2500 LLDB_LOGF(log,
2501 "Process::DeallocateMemory(addr=0x%16.16" PRIx64
2502 ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2503 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2505#endif
2506 return error;
2507}
2508
2510 if (std::optional<bool> subclass_override = DoGetWatchpointReportedAfter())
2511 return *subclass_override;
2512
2513 bool reported_after = true;
2514 const ArchSpec &arch = GetTarget().GetArchitecture();
2515 if (!arch.IsValid())
2516 return reported_after;
2517 llvm::Triple triple = arch.GetTriple();
2518
2519 if (triple.isMIPS() || triple.isPPC64() || triple.isRISCV() ||
2520 triple.isAArch64() || triple.isArmMClass() || triple.isARM() ||
2521 triple.isLoongArch())
2522 reported_after = false;
2523
2524 return reported_after;
2525}
2526
2528 lldb::addr_t header_addr,
2529 size_t size_to_read) {
2530 Log *log = GetLog(LLDBLog::Host);
2531 if (log) {
2532 LLDB_LOGF(log,
2533 "Process::ReadModuleFromMemory reading %s binary from memory",
2534 file_spec.GetPath().c_str());
2535 }
2536 ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2537 if (module_sp) {
2538 Status error;
2539 std::unique_ptr<Progress> progress_up;
2540 // Reading an ObjectFile from a local corefile is very fast,
2541 // only print a progress update if we're reading from a
2542 // live session which might go over gdb remote serial protocol.
2543 if (IsLiveDebugSession())
2544 progress_up = std::make_unique<Progress>(
2545 "Reading binary from memory", file_spec.GetFilename().GetString());
2546
2547 ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2548 shared_from_this(), header_addr, error, size_to_read);
2549 if (objfile)
2550 return module_sp;
2551 }
2552 return ModuleSP();
2553}
2554
2556 uint32_t &permissions) {
2557 MemoryRegionInfo range_info;
2558 permissions = 0;
2559 Status error(GetMemoryRegionInfo(load_addr, range_info));
2560 if (!error.Success())
2561 return false;
2562 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2563 range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2565 return false;
2566 }
2567 permissions = range_info.GetLLDBPermissions();
2568 return true;
2569}
2570
2572 Status error;
2573 error = Status::FromErrorString("watchpoints are not supported");
2574 return error;
2575}
2576
2578 Status error;
2579 error = Status::FromErrorString("watchpoints are not supported");
2580 return error;
2581}
2582
2585 const Timeout<std::micro> &timeout) {
2586 StateType state;
2587
2588 while (true) {
2589 event_sp.reset();
2590 state = GetStateChangedEventsPrivate(event_sp, timeout);
2591
2592 if (StateIsStoppedState(state, false))
2593 break;
2594
2595 // If state is invalid, then we timed out
2596 if (state == eStateInvalid)
2597 break;
2598
2599 if (event_sp)
2600 HandlePrivateEvent(event_sp);
2601 }
2602 return state;
2603}
2604
2606 std::lock_guard<std::recursive_mutex> guard(m_thread_mutex);
2607 if (flush)
2609 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2610 if (flush)
2611 Flush();
2612}
2613
2615 StateType state_after_launch = eStateInvalid;
2616 EventSP first_stop_event_sp;
2617 Status status =
2618 LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp);
2619 if (status.Fail())
2620 return status;
2621
2622 if (state_after_launch != eStateStopped &&
2623 state_after_launch != eStateCrashed)
2624 return Status();
2625
2626 // Note, the stop event was consumed above, but not handled. This
2627 // was done to give DidLaunch a chance to run. The target is either
2628 // stopped or crashed. Directly set the state. This is done to
2629 // prevent a stop message with a bunch of spurious output on thread
2630 // status, as well as not pop a ProcessIOHandler.
2631 SetPublicState(state_after_launch, false);
2632
2635 else
2637
2638 // Target was stopped at entry as was intended. Need to notify the
2639 // listeners about it.
2640 if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2641 HandlePrivateEvent(first_stop_event_sp);
2642
2643 return Status();
2644}
2645
2647 EventSP &event_sp) {
2648 Status error;
2649 m_abi_sp.reset();
2650 m_dyld_up.reset();
2651 m_jit_loaders_up.reset();
2652 m_system_runtime_up.reset();
2653 m_os_up.reset();
2654
2655 {
2656 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
2657 m_process_input_reader.reset();
2658 }
2659
2661
2662 // The "remote executable path" is hooked up to the local Executable
2663 // module. But we should be able to debug a remote process even if the
2664 // executable module only exists on the remote. However, there needs to
2665 // be a way to express this path, without actually having a module.
2666 // The way to do that is to set the ExecutableFile in the LaunchInfo.
2667 // Figure that out here:
2668
2669 FileSpec exe_spec_to_use;
2670 if (!exe_module) {
2671 if (!launch_info.GetExecutableFile() && !launch_info.IsScriptedProcess()) {
2672 error = Status::FromErrorString("executable module does not exist");
2673 return error;
2674 }
2675 exe_spec_to_use = launch_info.GetExecutableFile();
2676 } else
2677 exe_spec_to_use = exe_module->GetFileSpec();
2678
2679 if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2680 // Install anything that might need to be installed prior to launching.
2681 // For host systems, this will do nothing, but if we are connected to a
2682 // remote platform it will install any needed binaries
2683 error = GetTarget().Install(&launch_info);
2684 if (error.Fail())
2685 return error;
2686 }
2687
2688 // Listen and queue events that are broadcasted during the process launch.
2689 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack"));
2690 HijackProcessEvents(listener_sp);
2691 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); });
2692
2695
2696 error = WillLaunch(exe_module);
2697 if (error.Fail()) {
2698 std::string local_exec_file_path = exe_spec_to_use.GetPath();
2699 return Status::FromErrorStringWithFormat("file doesn't exist: '%s'",
2700 local_exec_file_path.c_str());
2701 }
2702
2703 const bool restarted = false;
2704 SetPublicState(eStateLaunching, restarted);
2705 m_should_detach = false;
2706
2708 // Now launch using these arguments.
2709 error = DoLaunch(exe_module, launch_info);
2710 } else {
2711 // This shouldn't happen
2712 error = Status::FromErrorString("failed to acquire process run lock");
2713 }
2714
2715 if (error.Fail()) {
2716 if (GetID() != LLDB_INVALID_PROCESS_ID) {
2718 const char *error_string = error.AsCString();
2719 if (error_string == nullptr)
2720 error_string = "launch failed";
2721 SetExitStatus(-1, error_string);
2722 }
2723 return error;
2724 }
2725
2726 // Now wait for the process to launch and return control to us, and then
2727 // call DidLaunch:
2728 state = WaitForProcessStopPrivate(event_sp, seconds(10));
2729
2730 if (state == eStateInvalid || !event_sp) {
2731 // We were able to launch the process, but we failed to catch the
2732 // initial stop.
2733 error = Status::FromErrorString("failed to catch stop after launch");
2734 SetExitStatus(0, error.AsCString());
2735 Destroy(false);
2736 return error;
2737 }
2738
2739 if (state == eStateExited) {
2740 // We exited while trying to launch somehow. Don't call DidLaunch
2741 // as that's not likely to work, and return an invalid pid.
2742 HandlePrivateEvent(event_sp);
2743 return Status();
2744 }
2745
2746 if (state == eStateStopped || state == eStateCrashed) {
2747 DidLaunch();
2748
2749 // Now that we know the process type, update its signal responses from the
2750 // ones stored in the Target:
2751 if (m_unix_signals_sp) {
2754 }
2755
2757 if (dyld)
2758 dyld->DidLaunch();
2759
2761
2762 SystemRuntime *system_runtime = GetSystemRuntime();
2763 if (system_runtime)
2764 system_runtime->DidLaunch();
2765
2766 if (!m_os_up)
2768
2769 // We successfully launched the process and stopped, now it the
2770 // right time to set up signal filters before resuming.
2772 return Status();
2773 }
2774
2776 "Unexpected process state after the launch: %s, expected %s, "
2777 "%s, %s or %s",
2781}
2782
2785 if (error.Success()) {
2786 ListenerSP listener_sp(
2787 Listener::MakeListener("lldb.process.load_core_listener"));
2788 HijackProcessEvents(listener_sp);
2789
2792 else
2794
2796 if (dyld)
2797 dyld->DidAttach();
2798
2800
2801 SystemRuntime *system_runtime = GetSystemRuntime();
2802 if (system_runtime)
2803 system_runtime->DidAttach();
2804
2805 if (!m_os_up)
2807
2808 // We successfully loaded a core file, now pretend we stopped so we can
2809 // show all of the threads in the core file and explore the crashed state.
2811
2812 // Wait for a stopped event since we just posted one above...
2813 lldb::EventSP event_sp;
2814 StateType state =
2815 WaitForProcessToStop(std::nullopt, &event_sp, true, listener_sp,
2816 nullptr, true, SelectMostRelevantFrame);
2817
2818 if (!StateIsStoppedState(state, false)) {
2819 Log *log = GetLog(LLDBLog::Process);
2820 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s",
2821 StateAsCString(state));
2823 "Did not get stopped event after loading the core file.");
2824 }
2826 }
2827 return error;
2828}
2829
2831 if (!m_dyld_up)
2832 m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
2833 return m_dyld_up.get();
2834}
2835
2837 m_dyld_up = std::move(dyld_up);
2838}
2839
2841
2842llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) {
2843 return false;
2844}
2845
2847 if (!m_jit_loaders_up) {
2848 m_jit_loaders_up = std::make_unique<JITLoaderList>();
2850 }
2851 return *m_jit_loaders_up;
2852}
2853
2857 return m_system_runtime_up.get();
2858}
2859
2861 uint32_t exec_count)
2862 : NextEventAction(process), m_exec_count(exec_count) {
2863 Log *log = GetLog(LLDBLog::Process);
2864 LLDB_LOGF(
2865 log,
2866 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2867 __FUNCTION__, static_cast<void *>(process), exec_count);
2868}
2869
2872 Log *log = GetLog(LLDBLog::Process);
2873
2874 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2875 LLDB_LOGF(log,
2876 "Process::AttachCompletionHandler::%s called with state %s (%d)",
2877 __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2878
2879 switch (state) {
2880 case eStateAttaching:
2881 return eEventActionSuccess;
2882
2883 case eStateRunning:
2884 case eStateConnected:
2885 return eEventActionRetry;
2886
2887 case eStateStopped:
2888 case eStateCrashed:
2889 // During attach, prior to sending the eStateStopped event,
2890 // lldb_private::Process subclasses must set the new process ID.
2892 // We don't want these events to be reported, so go set the
2893 // ShouldReportStop here:
2895
2896 if (m_exec_count > 0) {
2897 --m_exec_count;
2898
2899 LLDB_LOGF(log,
2900 "Process::AttachCompletionHandler::%s state %s: reduced "
2901 "remaining exec count to %" PRIu32 ", requesting resume",
2902 __FUNCTION__, StateAsCString(state), m_exec_count);
2903
2904 RequestResume();
2905 return eEventActionRetry;
2906 } else {
2907 LLDB_LOGF(log,
2908 "Process::AttachCompletionHandler::%s state %s: no more "
2909 "execs expected to start, continuing with attach",
2910 __FUNCTION__, StateAsCString(state));
2911
2913 return eEventActionSuccess;
2914 }
2915 break;
2916
2917 default:
2918 case eStateExited:
2919 case eStateInvalid:
2920 break;
2921 }
2922
2923 m_exit_string.assign("No valid Process");
2924 return eEventActionExit;
2925}
2926
2929 return eEventActionSuccess;
2930}
2931
2933 return m_exit_string.c_str();
2934}
2935
2937 if (m_listener_sp)
2938 return m_listener_sp;
2939 else
2940 return debugger.GetListener();
2941}
2942
2944 return DoWillLaunch(module);
2945}
2946
2948 return DoWillAttachToProcessWithID(pid);
2949}
2950
2952 bool wait_for_launch) {
2953 return DoWillAttachToProcessWithName(process_name, wait_for_launch);
2954}
2955
2957 m_abi_sp.reset();
2958 {
2959 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
2960 m_process_input_reader.reset();
2961 }
2962 m_dyld_up.reset();
2963 m_jit_loaders_up.reset();
2964 m_system_runtime_up.reset();
2965 m_os_up.reset();
2966
2967 lldb::pid_t attach_pid = attach_info.GetProcessID();
2968 Status error;
2969 if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2970 char process_name[PATH_MAX];
2971
2972 if (attach_info.GetExecutableFile().GetPath(process_name,
2973 sizeof(process_name))) {
2974 const bool wait_for_launch = attach_info.GetWaitForLaunch();
2975
2976 if (wait_for_launch) {
2977 error = WillAttachToProcessWithName(process_name, wait_for_launch);
2978 if (error.Success()) {
2980 m_should_detach = true;
2981 const bool restarted = false;
2982 SetPublicState(eStateAttaching, restarted);
2983 // Now attach using these arguments.
2984 error = DoAttachToProcessWithName(process_name, attach_info);
2985 } else {
2986 // This shouldn't happen
2987 error =
2988 Status::FromErrorString("failed to acquire process run lock");
2989 }
2990
2991 if (error.Fail()) {
2992 if (GetID() != LLDB_INVALID_PROCESS_ID) {
2994 if (error.AsCString() == nullptr)
2995 error = Status::FromErrorString("attach failed");
2996
2997 SetExitStatus(-1, error.AsCString());
2998 }
2999 } else {
3001 this, attach_info.GetResumeCount()));
3003 }
3004 return error;
3005 }
3006 } else {
3007 ProcessInstanceInfoList process_infos;
3008 PlatformSP platform_sp(GetTarget().GetPlatform());
3009
3010 if (platform_sp) {
3011 ProcessInstanceInfoMatch match_info;
3012 match_info.GetProcessInfo() = attach_info;
3014 platform_sp->FindProcesses(match_info, process_infos);
3015 const uint32_t num_matches = process_infos.size();
3016 if (num_matches == 1) {
3017 attach_pid = process_infos[0].GetProcessID();
3018 // Fall through and attach using the above process ID
3019 } else {
3021 process_name, sizeof(process_name));
3022 if (num_matches > 1) {
3023 StreamString s;
3025 for (size_t i = 0; i < num_matches; i++) {
3026 process_infos[i].DumpAsTableRow(
3027 s, platform_sp->GetUserIDResolver(), true, false);
3028 }
3030 "more than one process named %s:\n%s", process_name,
3031 s.GetData());
3032 } else
3034 "could not find a process named %s", process_name);
3035 }
3036 } else {
3038 "invalid platform, can't find processes by name");
3039 return error;
3040 }
3041 }
3042 } else {
3043 error = Status::FromErrorString("invalid process name");
3044 }
3045 }
3046
3047 if (attach_pid != LLDB_INVALID_PROCESS_ID) {
3048 error = WillAttachToProcessWithID(attach_pid);
3049 if (error.Success()) {
3050
3052 // Now attach using these arguments.
3053 m_should_detach = true;
3054 const bool restarted = false;
3055 SetPublicState(eStateAttaching, restarted);
3056 error = DoAttachToProcessWithID(attach_pid, attach_info);
3057 } else {
3058 // This shouldn't happen
3059 error = Status::FromErrorString("failed to acquire process run lock");
3060 }
3061
3062 if (error.Success()) {
3064 this, attach_info.GetResumeCount()));
3066 } else {
3069
3070 const char *error_string = error.AsCString();
3071 if (error_string == nullptr)
3072 error_string = "attach failed";
3073
3074 SetExitStatus(-1, error_string);
3075 }
3076 }
3077 }
3078 return error;
3079}
3080
3083 LLDB_LOGF(log, "Process::%s()", __FUNCTION__);
3084
3085 // Let the process subclass figure out at much as it can about the process
3086 // before we go looking for a dynamic loader plug-in.
3087 ArchSpec process_arch;
3088 DidAttach(process_arch);
3089
3090 if (process_arch.IsValid()) {
3091 LLDB_LOG(log,
3092 "Process::{0} replacing process architecture with DidAttach() "
3093 "architecture: \"{1}\"",
3094 __FUNCTION__, process_arch.GetTriple().getTriple());
3095 GetTarget().SetArchitecture(process_arch);
3096 }
3097
3098 // We just attached. If we have a platform, ask it for the process
3099 // architecture, and if it isn't the same as the one we've already set,
3100 // switch architectures.
3101 PlatformSP platform_sp(GetTarget().GetPlatform());
3102 assert(platform_sp);
3103 ArchSpec process_host_arch = GetSystemArchitecture();
3104 if (platform_sp) {
3105 const ArchSpec &target_arch = GetTarget().GetArchitecture();
3106 if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture(
3107 target_arch, process_host_arch,
3108 ArchSpec::CompatibleMatch, nullptr)) {
3109 ArchSpec platform_arch;
3111 target_arch, process_host_arch, &platform_arch);
3112 if (platform_sp) {
3113 GetTarget().SetPlatform(platform_sp);
3114 GetTarget().SetArchitecture(platform_arch);
3115 LLDB_LOG(log,
3116 "switching platform to {0} and architecture to {1} based on "
3117 "info from attach",
3118 platform_sp->GetName(), platform_arch.GetTriple().getTriple());
3119 }
3120 } else if (!process_arch.IsValid()) {
3121 ProcessInstanceInfo process_info;
3122 GetProcessInfo(process_info);
3123 const ArchSpec &process_arch = process_info.GetArchitecture();
3124 const ArchSpec &target_arch = GetTarget().GetArchitecture();
3125 if (process_arch.IsValid() &&
3126 target_arch.IsCompatibleMatch(process_arch) &&
3127 !target_arch.IsExactMatch(process_arch)) {
3128 GetTarget().SetArchitecture(process_arch);
3129 LLDB_LOGF(log,
3130 "Process::%s switching architecture to %s based on info "
3131 "the platform retrieved for pid %" PRIu64,
3132 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(),
3133 GetID());
3134 }
3135 }
3136 }
3137 // Now that we know the process type, update its signal responses from the
3138 // ones stored in the Target:
3139 if (m_unix_signals_sp) {
3142 }
3143
3144 // We have completed the attach, now it is time to find the dynamic loader
3145 // plug-in
3147 if (dyld) {
3148 dyld->DidAttach();
3149 if (log) {
3150 ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3151 LLDB_LOG(log,
3152 "after DynamicLoader::DidAttach(), target "
3153 "executable is {0} (using {1} plugin)",
3154 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
3155 dyld->GetPluginName());
3156 }
3157 }
3158
3160
3161 SystemRuntime *system_runtime = GetSystemRuntime();
3162 if (system_runtime) {
3163 system_runtime->DidAttach();
3164 if (log) {
3165 ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3166 LLDB_LOG(log,
3167 "after SystemRuntime::DidAttach(), target "
3168 "executable is {0} (using {1} plugin)",
3169 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(),
3170 system_runtime->GetPluginName());
3171 }
3172 }
3173
3174 if (!m_os_up) {
3176 if (m_os_up) {
3177 // Somebody might have gotten threads before now, but we need to force the
3178 // update after we've loaded the OperatingSystem plugin or it won't get a
3179 // chance to process the threads.
3182 }
3183 }
3184 // Figure out which one is the executable, and set that in our target:
3185 ModuleSP new_executable_module_sp;
3186 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) {
3187 if (module_sp && module_sp->IsExecutable()) {
3188 if (GetTarget().GetExecutableModulePointer() != module_sp.get())
3189 new_executable_module_sp = module_sp;
3190 break;
3191 }
3192 }
3193 if (new_executable_module_sp) {
3194 GetTarget().SetExecutableModule(new_executable_module_sp,
3196 if (log) {
3197 ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3198 LLDB_LOGF(
3199 log,
3200 "Process::%s after looping through modules, target executable is %s",
3201 __FUNCTION__,
3202 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
3203 : "<none>");
3204 }
3205 }
3206}
3207
3208Status Process::ConnectRemote(llvm::StringRef remote_url) {
3209 m_abi_sp.reset();
3210 {
3211 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
3212 m_process_input_reader.reset();
3213 }
3214
3215 // Find the process and its architecture. Make sure it matches the
3216 // architecture of the current Target, and if not adjust it.
3217
3218 Status error(DoConnectRemote(remote_url));
3219 if (error.Success()) {
3220 if (GetID() != LLDB_INVALID_PROCESS_ID) {
3221 EventSP event_sp;
3222 StateType state = WaitForProcessStopPrivate(event_sp, std::nullopt);
3223
3224 if (state == eStateStopped || state == eStateCrashed) {
3225 // If we attached and actually have a process on the other end, then
3226 // this ended up being the equivalent of an attach.
3228
3229 // This delays passing the stopped event to listeners till
3230 // CompleteAttach gets a chance to complete...
3231 HandlePrivateEvent(event_sp);
3232 }
3233 }
3234
3237 else
3239 }
3240 return error;
3241}
3242
3245 LLDB_LOGF(log,
3246 "Process::PrivateResume() m_stop_id = %u, public state: %s "
3247 "private state: %s",
3250
3251 // If signals handing status changed we might want to update our signal
3252 // filters before resuming.
3254 // Clear any crash info we accumulated for this stop, but don't do so if we
3255 // are running functions; we don't want to wipe out the real stop's info.
3256 if (!GetModID().IsLastResumeForUserExpression())
3258
3260 // Tell the process it is about to resume before the thread list
3261 if (error.Success()) {
3262 // Now let the thread list know we are about to resume so it can let all of
3263 // our threads know that they are about to be resumed. Threads will each be
3264 // called with Thread::WillResume(StateType) where StateType contains the
3265 // state that they are supposed to have when the process is resumed
3266 // (suspended/running/stepping). Threads should also check their resume
3267 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3268 // start back up with a signal.
3269 if (m_thread_list.WillResume()) {
3270 // Last thing, do the PreResumeActions.
3271 if (!RunPreResumeActions()) {
3273 "Process::PrivateResume PreResumeActions failed, not resuming.");
3274 } else {
3276 error = DoResume();
3277 if (error.Success()) {
3278 DidResume();
3280 LLDB_LOGF(log, "Process thinks the process has resumed.");
3281 } else {
3282 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed.");
3283 return error;
3284 }
3285 }
3286 } else {
3287 // Somebody wanted to run without running (e.g. we were faking a step
3288 // from one frame of a set of inlined frames that share the same PC to
3289 // another.) So generate a continue & a stopped event, and let the world
3290 // handle them.
3291 LLDB_LOGF(log,
3292 "Process::PrivateResume() asked to simulate a start & stop.");
3293
3296 }
3297 } else
3298 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".",
3299 error.AsCString("<unknown error>"));
3300 return error;
3301}
3302
3303Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3305 return Status::FromErrorString("Process is not running.");
3306
3307 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3308 // case it was already set and some thread plan logic calls halt on its own.
3309 m_clear_thread_plans_on_stop |= clear_thread_plans;
3310
3311 ListenerSP halt_listener_sp(
3312 Listener::MakeListener("lldb.process.halt_listener"));
3313 HijackProcessEvents(halt_listener_sp);
3314
3315 EventSP event_sp;
3316
3318
3320 // Don't hijack and eat the eStateExited as the code that was doing the
3321 // attach will be waiting for this event...
3323 Destroy(false);
3324 SetExitStatus(SIGKILL, "Cancelled async attach.");
3325 return Status();
3326 }
3327
3328 // Wait for the process halt timeout seconds for the process to stop.
3329 // If we are going to use the run lock, that means we're stopping out to the
3330 // user, so we should also select the most relevant frame.
3331 SelectMostRelevant select_most_relevant =
3333 StateType state = WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true,
3334 halt_listener_sp, nullptr,
3335 use_run_lock, select_most_relevant);
3337
3338 if (state == eStateInvalid || !event_sp) {
3339 // We timed out and didn't get a stop event...
3340 return Status::FromErrorStringWithFormat("Halt timed out. State = %s",
3342 }
3343
3344 BroadcastEvent(event_sp);
3345
3346 return Status();
3347}
3348
3350 const uint8_t *buf, size_t size) {
3351 const size_t region_size = high - low;
3352
3353 if (region_size < size)
3354 return LLDB_INVALID_ADDRESS;
3355
3356 // See "Boyer-Moore string search algorithm".
3357 std::vector<size_t> bad_char_heuristic(256, size);
3358 for (size_t idx = 0; idx < size - 1; idx++) {
3359 decltype(bad_char_heuristic)::size_type bcu_idx = buf[idx];
3360 bad_char_heuristic[bcu_idx] = size - idx - 1;
3361 }
3362
3363 // Memory we're currently searching through.
3364 llvm::SmallVector<uint8_t, 0> mem;
3365 // Position of the memory buffer.
3366 addr_t mem_pos = low;
3367 // Maximum number of bytes read (and buffered). We need to read at least
3368 // `size` bytes for a successful match.
3369 const size_t max_read_size = std::max<size_t>(size, 0x10000);
3370
3371 for (addr_t cur_addr = low; cur_addr <= (high - size);) {
3372 if (cur_addr + size > mem_pos + mem.size()) {
3373 // We need to read more data. We don't attempt to reuse the data we've
3374 // already read (up to `size-1` bytes from `cur_addr` to
3375 // `mem_pos+mem.size()`). This is fine for patterns much smaller than
3376 // max_read_size. For very
3377 // long patterns we may need to do something more elaborate.
3378 mem.resize_for_overwrite(max_read_size);
3379 Status error;
3380 mem.resize(ReadMemory(cur_addr, mem.data(),
3381 std::min<addr_t>(mem.size(), high - cur_addr),
3382 error));
3383 mem_pos = cur_addr;
3384 if (size > mem.size()) {
3385 // We didn't read enough data. Skip to the next memory region.
3386 MemoryRegionInfo info;
3387 error = GetMemoryRegionInfo(mem_pos + mem.size(), info);
3388 if (error.Fail())
3389 break;
3390 cur_addr = info.GetRange().GetRangeEnd();
3391 continue;
3392 }
3393 }
3394 int64_t j = size - 1;
3395 while (j >= 0 && buf[j] == mem[cur_addr + j - mem_pos])
3396 j--;
3397 if (j < 0)
3398 return cur_addr; // We have a match.
3399 cur_addr += bad_char_heuristic[mem[cur_addr + size - 1 - mem_pos]];
3400 }
3401
3402 return LLDB_INVALID_ADDRESS;
3403}
3404
3406 Status error;
3407
3408 // Check both the public & private states here. If we're hung evaluating an
3409 // expression, for instance, then the public state will be stopped, but we
3410 // still need to interrupt.
3413 Log *log = GetLog(LLDBLog::Process);
3414 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__);
3415
3416 ListenerSP listener_sp(
3417 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3418 HijackProcessEvents(listener_sp);
3419
3421
3422 // Consume the interrupt event.
3424 &exit_event_sp, true, listener_sp);
3425
3427
3428 // If the process exited while we were waiting for it to stop, put the
3429 // exited event into the shared pointer passed in and return. Our caller
3430 // doesn't need to do anything else, since they don't have a process
3431 // anymore...
3432
3433 if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3434 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.",
3435 __FUNCTION__);
3436 return error;
3437 } else
3438 exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3439
3440 if (state != eStateStopped) {
3441 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__,
3442 StateAsCString(state));
3443 // If we really couldn't stop the process then we should just error out
3444 // here, but if the lower levels just bobbled sending the event and we
3445 // really are stopped, then continue on.
3446 StateType private_state = m_private_state.GetValue();
3447 if (private_state != eStateStopped) {
3449 "Attempt to stop the target in order to detach timed out. "
3450 "State = %s",
3452 }
3453 }
3454 }
3455 return error;
3456}
3457
3458Status Process::Detach(bool keep_stopped) {
3459 EventSP exit_event_sp;
3460 Status error;
3461 m_destroy_in_process = true;
3462
3463 error = WillDetach();
3464
3465 if (error.Success()) {
3466 if (DetachRequiresHalt()) {
3467 error = StopForDestroyOrDetach(exit_event_sp);
3468 if (!error.Success()) {
3469 m_destroy_in_process = false;
3470 return error;
3471 } else if (exit_event_sp) {
3472 // We shouldn't need to do anything else here. There's no process left
3473 // to detach from...
3475 m_destroy_in_process = false;
3476 return error;
3477 }
3478 }
3479
3482
3483 error = DoDetach(keep_stopped);
3484 if (error.Success()) {
3485 DidDetach();
3487 } else {
3488 return error;
3489 }
3490 }
3491 m_destroy_in_process = false;
3492
3493 // If we exited when we were waiting for a process to stop, then forward the
3494 // event here so we don't lose the event
3495 if (exit_event_sp) {
3496 // Directly broadcast our exited event because we shut down our private
3497 // state thread above
3498 BroadcastEvent(exit_event_sp);
3499 }
3500
3501 // If we have been interrupted (to kill us) in the middle of running, we may
3502 // not end up propagating the last events through the event system, in which
3503 // case we might strand the write lock. Unlock it here so when we do to tear
3504 // down the process we don't get an error destroying the lock.
3505
3507 return error;
3508}
3509
3510Status Process::Destroy(bool force_kill) {
3511 // If we've already called Process::Finalize then there's nothing useful to
3512 // be done here. Finalize has actually called Destroy already.
3513 if (m_finalizing)
3514 return {};
3515 return DestroyImpl(force_kill);
3516}
3517
3519 // Tell ourselves we are in the process of destroying the process, so that we
3520 // don't do any unnecessary work that might hinder the destruction. Remember
3521 // to set this back to false when we are done. That way if the attempt
3522 // failed and the process stays around for some reason it won't be in a
3523 // confused state.
3524
3525 if (force_kill)
3526 m_should_detach = false;
3527
3528 if (GetShouldDetach()) {
3529 // FIXME: This will have to be a process setting:
3530 bool keep_stopped = false;
3531 Detach(keep_stopped);
3532 }
3533
3534 m_destroy_in_process = true;
3535
3537 if (error.Success()) {
3538 EventSP exit_event_sp;
3539 if (DestroyRequiresHalt()) {
3540 error = StopForDestroyOrDetach(exit_event_sp);
3541 }
3542
3544 // Ditch all thread plans, and remove all our breakpoints: in case we
3545 // have to restart the target to kill it, we don't want it hitting a
3546 // breakpoint... Only do this if we've stopped, however, since if we
3547 // didn't manage to halt it above, then we're not going to have much luck
3548 // doing this now.
3551 }
3552
3553 error = DoDestroy();
3554 if (error.Success()) {
3555 DidDestroy();
3557 }
3560 m_stdin_forward = false;
3561
3562 {
3563 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
3565 m_process_input_reader->SetIsDone(true);
3566 m_process_input_reader->Cancel();
3567 m_process_input_reader.reset();
3568 }
3569 }
3570
3571 // If we exited when we were waiting for a process to stop, then forward
3572 // the event here so we don't lose the event
3573 if (exit_event_sp) {
3574 // Directly broadcast our exited event because we shut down our private
3575 // state thread above
3576 BroadcastEvent(exit_event_sp);
3577 }
3578
3579 // If we have been interrupted (to kill us) in the middle of running, we
3580 // may not end up propagating the last events through the event system, in
3581 // which case we might strand the write lock. Unlock it here so when we do
3582 // to tear down the process we don't get an error destroying the lock.
3584 }
3585
3586 m_destroy_in_process = false;
3587
3588 return error;
3589}
3590
3593 if (error.Success()) {
3594 error = DoSignal(signal);
3595 if (error.Success())
3596 DidSignal();
3597 }
3598 return error;
3599}
3600
3602 assert(signals_sp && "null signals_sp");
3603 m_unix_signals_sp = std::move(signals_sp);
3604}
3605
3607 assert(m_unix_signals_sp && "null m_unix_signals_sp");
3608 return m_unix_signals_sp;
3609}
3610
3613}
3614
3617}
3618
3620 const StateType state =
3622 bool return_value = true;
3624
3625 switch (state) {
3626 case eStateDetached:
3627 case eStateExited:
3628 case eStateUnloaded:
3632 m_stdin_forward = false;
3633
3634 [[fallthrough]];
3635 case eStateConnected:
3636 case eStateAttaching:
3637 case eStateLaunching:
3638 // These events indicate changes in the state of the debugging session,
3639 // always report them.
3640 return_value = true;
3641 break;
3642 case eStateInvalid:
3643 // We stopped for no apparent reason, don't report it.
3644 return_value = false;
3645 break;
3646 case eStateRunning:
3647 case eStateStepping:
3648 // If we've started the target running, we handle the cases where we are
3649 // already running and where there is a transition from stopped to running
3650 // differently. running -> running: Automatically suppress extra running
3651 // events stopped -> running: Report except when there is one or more no
3652 // votes
3653 // and no yes votes.
3656 return_value = true;
3657 else {
3658 switch (m_last_broadcast_state) {
3659 case eStateRunning:
3660 case eStateStepping:
3661 // We always suppress multiple runnings with no PUBLIC stop in between.
3662 return_value = false;
3663 break;
3664 default:
3665 // TODO: make this work correctly. For now always report
3666 // run if we aren't running so we don't miss any running events. If I
3667 // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3668 // and hit the breakpoints on multiple threads, then somehow during the
3669 // stepping over of all breakpoints no run gets reported.
3670
3671 // This is a transition from stop to run.
3672 switch (m_thread_list.ShouldReportRun(event_ptr)) {
3673 case eVoteYes:
3674 case eVoteNoOpinion:
3675 return_value = true;
3676 break;
3677 case eVoteNo:
3678 return_value = false;
3679 break;
3680 }
3681 break;
3682 }
3683 }
3684 break;
3685 case eStateStopped:
3686 case eStateCrashed:
3687 case eStateSuspended:
3688 // We've stopped. First see if we're going to restart the target. If we
3689 // are going to stop, then we always broadcast the event. If we aren't
3690 // going to stop, let the thread plans decide if we're going to report this
3691 // event. If no thread has an opinion, we don't report it.
3692
3696 LLDB_LOGF(log,
3697 "Process::ShouldBroadcastEvent (%p) stopped due to an "
3698 "interrupt, state: %s",
3699 static_cast<void *>(event_ptr), StateAsCString(state));
3700 // Even though we know we are going to stop, we should let the threads
3701 // have a look at the stop, so they can properly set their state.
3702 m_thread_list.ShouldStop(event_ptr);
3703 return_value = true;
3704 } else {
3705 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3706 bool should_resume = false;
3707
3708 // It makes no sense to ask "ShouldStop" if we've already been
3709 // restarted... Asking the thread list is also not likely to go well,
3710 // since we are running again. So in that case just report the event.
3711
3712 if (!was_restarted)
3713 should_resume = !m_thread_list.ShouldStop(event_ptr);
3714
3715 if (was_restarted || should_resume || m_resume_requested) {
3716 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3717 LLDB_LOGF(log,
3718 "Process::ShouldBroadcastEvent: should_resume: %i state: "
3719 "%s was_restarted: %i report_stop_vote: %d.",
3720 should_resume, StateAsCString(state), was_restarted,
3721 report_stop_vote);
3722
3723 switch (report_stop_vote) {
3724 case eVoteYes:
3725 return_value = true;
3726 break;
3727 case eVoteNoOpinion:
3728 case eVoteNo:
3729 return_value = false;
3730 break;
3731 }
3732
3733 if (!was_restarted) {
3734 LLDB_LOGF(log,
3735 "Process::ShouldBroadcastEvent (%p) Restarting process "
3736 "from state: %s",
3737 static_cast<void *>(event_ptr), StateAsCString(state));
3739 PrivateResume();
3740 }
3741 } else {
3742 return_value = true;
3744 }
3745 }
3746 break;
3747 }
3748
3749 // Forcing the next event delivery is a one shot deal. So reset it here.
3751
3752 // We do some coalescing of events (for instance two consecutive running
3753 // events get coalesced.) But we only coalesce against events we actually
3754 // broadcast. So we use m_last_broadcast_state to track that. NB - you
3755 // can't use "m_public_state.GetValue()" for that purpose, as was originally
3756 // done, because the PublicState reflects the last event pulled off the
3757 // queue, and there may be several events stacked up on the queue unserviced.
3758 // So the PublicState may not reflect the last broadcasted event yet.
3759 // m_last_broadcast_state gets updated here.
3760
3761 if (return_value)
3762 m_last_broadcast_state = state;
3763
3764 LLDB_LOGF(log,
3765 "Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3766 "broadcast state: %s - %s",
3767 static_cast<void *>(event_ptr), StateAsCString(state),
3769 return_value ? "YES" : "NO");
3770 return return_value;
3771}
3772
3773bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3774 Log *log = GetLog(LLDBLog::Events);
3775
3776 bool already_running = PrivateStateThreadIsValid();
3777 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__,
3778 already_running ? " already running"
3779 : " starting private state thread");
3780
3781 if (!is_secondary_thread && already_running)
3782 return true;
3783
3784 // Create a thread that watches our internal state and controls which events
3785 // make it to clients (into the DCProcess event queue).
3786 char thread_name[1024];
3787 uint32_t max_len = llvm::get_max_thread_name_length();
3788 if (max_len > 0 && max_len <= 30) {
3789 // On platforms with abbreviated thread name lengths, choose thread names
3790 // that fit within the limit.
3791 if (already_running)
3792 snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3793 else
3794 snprintf(thread_name, sizeof(thread_name), "intern-state");
3795 } else {
3796 if (already_running)
3797 snprintf(thread_name, sizeof(thread_name),
3798 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3799 GetID());
3800 else
3801 snprintf(thread_name, sizeof(thread_name),
3802 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3803 }
3804
3805 llvm::Expected<HostThread> private_state_thread =
3807 thread_name,
3808 [this, is_secondary_thread] {
3809 return RunPrivateStateThread(is_secondary_thread);
3810 },
3811 8 * 1024 * 1024);
3812 if (!private_state_thread) {
3813 LLDB_LOG_ERROR(GetLog(LLDBLog::Host), private_state_thread.takeError(),
3814 "failed to launch host thread: {0}");
3815 return false;
3816 }
3817
3818 assert(private_state_thread->IsJoinable());
3819 m_private_state_thread = *private_state_thread;
3821 return true;
3822}
3823
3826}
3827
3830}
3831
3835 else {
3836 Log *log = GetLog(LLDBLog::Process);
3837 LLDB_LOGF(
3838 log,
3839 "Went to stop the private state thread, but it was already invalid.");
3840 }
3841}
3842
3844 Log *log = GetLog(LLDBLog::Process);
3845
3846 assert(signal == eBroadcastInternalStateControlStop ||
3849
3850 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal);
3851
3852 // Signal the private state thread
3854 // Broadcast the event.
3855 // It is important to do this outside of the if below, because it's
3856 // possible that the thread state is invalid but that the thread is waiting
3857 // on a control event instead of simply being on its way out (this should
3858 // not happen, but it apparently can).
3859 LLDB_LOGF(log, "Sending control event of type: %d.", signal);
3860 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3862 event_receipt_sp);
3863
3864 // Wait for the event receipt or for the private state thread to exit
3865 bool receipt_received = false;
3867 while (!receipt_received) {
3868 // Check for a receipt for n seconds and then check if the private
3869 // state thread is still around.
3870 receipt_received =
3871 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3872 if (!receipt_received) {
3873 // Check if the private state thread is still around. If it isn't
3874 // then we are done waiting
3876 break; // Private state thread exited or is exiting, we are done
3877 }
3878 }
3879 }
3880
3881 if (signal == eBroadcastInternalStateControlStop) {
3882 thread_result_t result = {};
3885 }
3886 } else {
3887 LLDB_LOGF(
3888 log,
3889 "Private state thread already dead, no need to signal it to stop.");
3890 }
3891}
3892
3894 if (thread != nullptr)
3895 m_interrupt_tid = thread->GetProtocolID();
3896 else
3900 nullptr);
3901 else
3903}
3904
3906 Log *log = GetLog(LLDBLog::Process);
3907 m_resume_requested = false;
3908
3909 const StateType new_state =
3911
3912 // First check to see if anybody wants a shot at this event:
3915 m_next_event_action_up->PerformAction(event_sp);
3916 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result);
3917
3918 switch (action_result) {
3920 SetNextEventAction(nullptr);
3921 break;
3922
3924 break;
3925
3927 // Handle Exiting Here. If we already got an exited event, we should
3928 // just propagate it. Otherwise, swallow this event, and set our state
3929 // to exit so the next event will kill us.
3930 if (new_state != eStateExited) {
3931 // FIXME: should cons up an exited event, and discard this one.
3932 SetExitStatus(0, m_next_event_action_up->GetExitString());
3933 SetNextEventAction(nullptr);
3934 return;
3935 }
3936 SetNextEventAction(nullptr);
3937 break;
3938 }
3939 }
3940
3941 // See if we should broadcast this state to external clients?
3942 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3943
3944 if (should_broadcast) {
3945 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3946 if (log) {
3947 LLDB_LOGF(log,
3948 "Process::%s (pid = %" PRIu64
3949 ") broadcasting new state %s (old state %s) to %s",
3950 __FUNCTION__, GetID(), StateAsCString(new_state),
3952 is_hijacked ? "hijacked" : "public");
3953 }
3955 if (StateIsRunningState(new_state)) {
3956 // Only push the input handler if we aren't fowarding events, as this
3957 // means the curses GUI is in use... Or don't push it if we are launching
3958 // since it will come up stopped.
3959 if (!GetTarget().GetDebugger().IsForwardingEvents() &&
3960 new_state != eStateLaunching && new_state != eStateAttaching) {
3964 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d",
3965 __FUNCTION__, m_iohandler_sync.GetValue());
3966 }
3967 } else if (StateIsStoppedState(new_state, false)) {
3969 // If the lldb_private::Debugger is handling the events, we don't want
3970 // to pop the process IOHandler here, we want to do it when we receive
3971 // the stopped event so we can carefully control when the process
3972 // IOHandler is popped because when we stop we want to display some
3973 // text stating how and why we stopped, then maybe some
3974 // process/thread/frame info, and then we want the "(lldb) " prompt to
3975 // show up. If we pop the process IOHandler here, then we will cause
3976 // the command interpreter to become the top IOHandler after the
3977 // process pops off and it will update its prompt right away... See the
3978 // Debugger.cpp file where it calls the function as
3979 // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3980 // Otherwise we end up getting overlapping "(lldb) " prompts and
3981 // garbled output.
3982 //
3983 // If we aren't handling the events in the debugger (which is indicated
3984 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3985 // we are hijacked, then we always pop the process IO handler manually.
3986 // Hijacking happens when the internal process state thread is running
3987 // thread plans, or when commands want to run in synchronous mode and
3988 // they call "process->WaitForProcessToStop()". An example of something
3989 // that will hijack the events is a simple expression:
3990 //
3991 // (lldb) expr (int)puts("hello")
3992 //
3993 // This will cause the internal process state thread to resume and halt
3994 // the process (and _it_ will hijack the eBroadcastBitStateChanged
3995 // events) and we do need the IO handler to be pushed and popped
3996 // correctly.
3997
3998 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
4000 }
4001 }
4002
4003 BroadcastEvent(event_sp);
4004 } else {
4005 if (log) {
4006 LLDB_LOGF(
4007 log,
4008 "Process::%s (pid = %" PRIu64
4009 ") suppressing state %s (old state %s): should_broadcast == false",
4010 __FUNCTION__, GetID(), StateAsCString(new_state),
4012 }
4013 }
4014}
4015
4017 EventSP event_sp;
4019 if (error.Fail())
4020 return error;
4021
4022 // Ask the process subclass to actually halt our process
4023 bool caused_stop;
4024 error = DoHalt(caused_stop);
4025
4026 DidHalt();
4027 return error;
4028}
4029
4031 bool control_only = true;
4032
4033 Log *log = GetLog(LLDBLog::Process);
4034 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
4035 __FUNCTION__, static_cast<void *>(this), GetID());
4036
4037 bool exit_now = false;
4038 bool interrupt_requested = false;
4039 while (!exit_now) {
4040 EventSP event_sp;
4041 GetEventsPrivate(event_sp, std::nullopt, control_only);
4042 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
4043 LLDB_LOGF(log,
4044 "Process::%s (arg = %p, pid = %" PRIu64
4045 ") got a control event: %d",
4046 __FUNCTION__, static_cast<void *>(this), GetID(),
4047 event_sp->GetType());
4048
4049 switch (event_sp->GetType()) {
4051 exit_now = true;
4052 break; // doing any internal state management below
4053
4055 control_only = true;
4056 break;
4057
4059 control_only = false;
4060 break;
4061 }
4062
4063 continue;
4064 } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
4066 LLDB_LOGF(log,
4067 "Process::%s (arg = %p, pid = %" PRIu64
4068 ") woke up with an interrupt while attaching - "
4069 "forwarding interrupt.",
4070 __FUNCTION__, static_cast<void *>(this), GetID());
4071 // The server may be spinning waiting for a process to appear, in which
4072 // case we should tell it to stop doing that. Normally, we don't NEED
4073 // to do that because we will next close the communication to the stub
4074 // and that will get it to shut down. But there are remote debugging
4075 // cases where relying on that side-effect causes the shutdown to be
4076 // flakey, so we should send a positive signal to interrupt the wait.
4080 LLDB_LOGF(log,
4081 "Process::%s (arg = %p, pid = %" PRIu64
4082 ") woke up with an interrupt - Halting.",
4083 __FUNCTION__, static_cast<void *>(this), GetID());
4085 if (error.Fail() && log)
4086 LLDB_LOGF(log,
4087 "Process::%s (arg = %p, pid = %" PRIu64
4088 ") failed to halt the process: %s",
4089 __FUNCTION__, static_cast<void *>(this), GetID(),
4090 error.AsCString());
4091 // Halt should generate a stopped event. Make a note of the fact that
4092 // we were doing the interrupt, so we can set the interrupted flag
4093 // after we receive the event. We deliberately set this to true even if
4094 // HaltPrivate failed, so that we can interrupt on the next natural
4095 // stop.
4096 interrupt_requested = true;
4097 } else {
4098 // This can happen when someone (e.g. Process::Halt) sees that we are
4099 // running and sends an interrupt request, but the process actually
4100 // stops before we receive it. In that case, we can just ignore the
4101 // request. We use m_last_broadcast_state, because the Stopped event
4102 // may not have been popped of the event queue yet, which is when the
4103 // public state gets updated.
4104 LLDB_LOGF(log,
4105 "Process::%s ignoring interrupt as we have already stopped.",
4106 __FUNCTION__);
4107 }
4108 continue;
4109 }
4110
4111 const StateType internal_state =
4113
4114 if (internal_state != eStateInvalid) {
4116 StateIsStoppedState(internal_state, true)) {
4119 }
4120
4121 if (interrupt_requested) {
4122 if (StateIsStoppedState(internal_state, true)) {
4123 // Only mark interrupt event if it is not thread specific async
4124 // interrupt.
4126 // We requested the interrupt, so mark this as such in the stop
4127 // event so clients can tell an interrupted process from a natural
4128 // stop
4129 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
4130 }
4131 interrupt_requested = false;
4132 } else if (log) {
4133 LLDB_LOGF(log,
4134 "Process::%s interrupt_requested, but a non-stopped "
4135 "state '%s' received.",
4136 __FUNCTION__, StateAsCString(internal_state));
4137 }
4138 }
4139
4140 HandlePrivateEvent(event_sp);
4141 }
4142
4143 if (internal_state == eStateInvalid || internal_state == eStateExited ||
4144 internal_state == eStateDetached) {
4145 LLDB_LOGF(log,
4146 "Process::%s (arg = %p, pid = %" PRIu64
4147 ") about to exit with internal state %s...",
4148 __FUNCTION__, static_cast<void *>(this), GetID(),
4149 StateAsCString(internal_state));
4150
4151 break;
4152 }
4153 }
4154
4155 // Verify log is still enabled before attempting to write to it...
4156 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
4157 __FUNCTION__, static_cast<void *>(this), GetID());
4158
4159 // If we are a secondary thread, then the primary thread we are working for
4160 // will have already acquired the public_run_lock, and isn't done with what
4161 // it was doing yet, so don't try to change it on the way out.
4162 if (!is_secondary_thread)
4164 return {};
4165}
4166
4167// Process Event Data
4168
4170
4172 StateType state)
4173 : EventData(), m_process_wp(), m_state(state) {
4174 if (process_sp)
4175 m_process_wp = process_sp;
4176}
4177
4179
4181 return "Process::ProcessEventData";
4182}
4183
4186}
4187
4189 bool &found_valid_stopinfo) {
4190 found_valid_stopinfo = false;
4191
4192 ProcessSP process_sp(m_process_wp.lock());
4193 if (!process_sp)
4194 return false;
4195
4196 ThreadList &curr_thread_list = process_sp->GetThreadList();
4197 uint32_t num_threads = curr_thread_list.GetSize();
4198
4199 // The actions might change one of the thread's stop_info's opinions about
4200 // whether we should stop the process, so we need to query that as we go.
4201
4202 // One other complication here, is that we try to catch any case where the
4203 // target has run (except for expressions) and immediately exit, but if we
4204 // get that wrong (which is possible) then the thread list might have
4205 // changed, and that would cause our iteration here to crash. We could
4206 // make a copy of the thread list, but we'd really like to also know if it
4207 // has changed at all, so we store the original thread ID's of all threads and
4208 // check what we get back against this list & bag out if anything differs.
4209 std::vector<std::pair<ThreadSP, size_t>> not_suspended_threads;
4210 for (uint32_t idx = 0; idx < num_threads; ++idx) {
4211 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
4212
4213 /*
4214 Filter out all suspended threads, they could not be the reason
4215 of stop and no need to perform any actions on them.
4216 */
4217 if (thread_sp->GetResumeState() != eStateSuspended)
4218 not_suspended_threads.emplace_back(thread_sp, thread_sp->GetIndexID());
4219 }
4220
4221 // Use this to track whether we should continue from here. We will only
4222 // continue the target running if no thread says we should stop. Of course
4223 // if some thread's PerformAction actually sets the target running, then it
4224 // doesn't matter what the other threads say...
4225
4226 bool still_should_stop = false;
4227
4228 // Sometimes - for instance if we have a bug in the stub we are talking to,
4229 // we stop but no thread has a valid stop reason. In that case we should
4230 // just stop, because we have no way of telling what the right thing to do
4231 // is, and it's better to let the user decide than continue behind their
4232 // backs.
4233
4234 for (auto [thread_sp, thread_index] : not_suspended_threads) {
4235 if (curr_thread_list.GetSize() != num_threads) {
4237 LLDB_LOGF(
4238 log,
4239 "Number of threads changed from %u to %u while processing event.",
4240 num_threads, curr_thread_list.GetSize());
4241 break;
4242 }
4243
4244 if (thread_sp->GetIndexID() != thread_index) {
4246 LLDB_LOG(log,
4247 "The thread {0} changed from {1} to {2} while processing event.",
4248 thread_sp.get(), thread_index, thread_sp->GetIndexID());
4249 break;
4250 }
4251
4252 StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4253 if (stop_info_sp && stop_info_sp->IsValid()) {
4254 found_valid_stopinfo = true;
4255 bool this_thread_wants_to_stop;
4256 if (stop_info_sp->GetOverrideShouldStop()) {
4257 this_thread_wants_to_stop =
4258 stop_info_sp->GetOverriddenShouldStopValue();
4259 } else {
4260 stop_info_sp->PerformAction(event_ptr);
4261 // The stop action might restart the target. If it does, then we
4262 // want to mark that in the event so that whoever is receiving it
4263 // will know to wait for the running event and reflect that state
4264 // appropriately. We also need to stop processing actions, since they
4265 // aren't expecting the target to be running.
4266
4267 // FIXME: we might have run.
4268 if (stop_info_sp->HasTargetRunSinceMe()) {
4269 SetRestarted(true);
4270 break;
4271 }
4272
4273 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
4274 }
4275
4276 if (!still_should_stop)
4277 still_should_stop = this_thread_wants_to_stop;
4278 }
4279 }
4280
4281 return still_should_stop;
4282}
4283
4285 Event *event_ptr) {
4286 // STDIO and the other async event notifications should always be forwarded.
4287 if (event_ptr->GetType() != Process::eBroadcastBitStateChanged)
4288 return true;
4289
4290 // For state changed events, if the update state is zero, we are handling
4291 // this on the private state thread. We should wait for the public event.
4292 return m_update_state == 1;
4293}
4294
4296 // We only have work to do for state changed events:
4297 if (event_ptr->GetType() != Process::eBroadcastBitStateChanged)
4298 return;
4299
4300 ProcessSP process_sp(m_process_wp.lock());
4301
4302 if (!process_sp)
4303 return;
4304
4305 // This function gets called twice for each event, once when the event gets
4306 // pulled off of the private process event queue, and then any number of
4307 // times, first when it gets pulled off of the public event queue, then other
4308 // times when we're pretending that this is where we stopped at the end of
4309 // expression evaluation. m_update_state is used to distinguish these three
4310 // cases; it is 0 when we're just pulling it off for private handling, and >
4311 // 1 for expression evaluation, and we don't want to do the breakpoint
4312 // command handling then.
4313 if (m_update_state != 1)
4314 return;
4315
4316 process_sp->SetPublicState(
4318
4319 if (m_state == eStateStopped && !m_restarted) {
4320 // Let process subclasses know we are about to do a public stop and do
4321 // anything they might need to in order to speed up register and memory
4322 // accesses.
4323 process_sp->WillPublicStop();
4324 }
4325
4326 // If this is a halt event, even if the halt stopped with some reason other
4327 // than a plain interrupt (e.g. we had already stopped for a breakpoint when
4328 // the halt request came through) don't do the StopInfo actions, as they may
4329 // end up restarting the process.
4330 if (m_interrupted)
4331 return;
4332
4333 // If we're not stopped or have restarted, then skip the StopInfo actions:
4334 if (m_state != eStateStopped || m_restarted) {
4335 return;
4336 }
4337
4338 bool does_anybody_have_an_opinion = false;
4339 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion);
4340
4341 if (GetRestarted()) {
4342 return;
4343 }
4344
4345 if (!still_should_stop && does_anybody_have_an_opinion) {
4346 // We've been asked to continue, so do that here.
4347 SetRestarted(true);
4348 // Use the private resume method here, since we aren't changing the run
4349 // lock state.
4350 process_sp->PrivateResume();
4351 } else {
4352 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) &&
4353 !process_sp->StateChangedIsHijackedForSynchronousResume();
4354
4355 if (!hijacked) {
4356 // If we didn't restart, run the Stop Hooks here.
4357 // Don't do that if state changed events aren't hooked up to the
4358 // public (or SyncResume) broadcasters. StopHooks are just for
4359 // real public stops. They might also restart the target,
4360 // so watch for that.
4361 if (process_sp->GetTarget().RunStopHooks())
4362 SetRestarted(true);
4363 }
4364 }
4365}
4366
4368 ProcessSP process_sp(m_process_wp.lock());
4369
4370 if (process_sp)
4371 s->Printf(" process = %p (pid = %" PRIu64 "), ",
4372 static_cast<void *>(process_sp.get()), process_sp->GetID());
4373 else
4374 s->PutCString(" process = NULL, ");
4375
4376 s->Printf("state = %s", StateAsCString(GetState()));
4377}
4378
4381 if (event_ptr) {
4382 const EventData *event_data = event_ptr->GetData();
4383 if (event_data &&
4385 return static_cast<const ProcessEventData *>(event_ptr->GetData());
4386 }
4387 return nullptr;
4388}
4389
4392 ProcessSP process_sp;
4393 const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4394 if (data)
4395 process_sp = data->GetProcessSP();
4396 return process_sp;
4397}
4398
4400 const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4401 if (data == nullptr)
4402 return eStateInvalid;
4403 else
4404 return data->GetState();
4405}
4406
4408 const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4409 if (data == nullptr)
4410 return false;
4411 else
4412 return data->GetRestarted();
4413}
4414
4416 bool new_value) {
4417 ProcessEventData *data =
4418 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4419 if (data != nullptr)
4420 data->SetRestarted(new_value);
4421}
4422
4423size_t
4425 ProcessEventData *data =
4426 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4427 if (data != nullptr)
4428 return data->GetNumRestartedReasons();
4429 else
4430 return 0;
4431}
4432
4433const char *
4435 size_t idx) {
4436 ProcessEventData *data =
4437 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4438 if (data != nullptr)
4439 return data->GetRestartedReasonAtIndex(idx);
4440 else
4441 return nullptr;
4442}
4443
4445 const char *reason) {
4446 ProcessEventData *data =
4447 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4448 if (data != nullptr)
4449 data->AddRestartedReason(reason);
4450}
4451
4453 const Event *event_ptr) {
4454 const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4455 if (data == nullptr)
4456 return false;
4457 else
4458 return data->GetInterrupted();
4459}
4460
4462 bool new_value) {
4463 ProcessEventData *data =
4464 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4465 if (data != nullptr)
4466 data->SetInterrupted(new_value);
4467}
4468
4470 ProcessEventData *data =
4471 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4472 if (data) {
4474 return true;
4475 }
4476 return false;
4477}
4478
4480
4482 exe_ctx.SetTargetPtr(&GetTarget());
4483 exe_ctx.SetProcessPtr(this);
4484 exe_ctx.SetThreadPtr(nullptr);
4485 exe_ctx.SetFramePtr(nullptr);
4486}
4487
4488// uint32_t
4489// Process::ListProcessesMatchingName (const char *name, StringList &matches,
4490// std::vector<lldb::pid_t> &pids)
4491//{
4492// return 0;
4493//}
4494//
4495// ArchSpec
4496// Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4497//{
4498// return Host::GetArchSpecForExistingProcess (pid);
4499//}
4500//
4501// ArchSpec
4502// Process::GetArchSpecForExistingProcess (const char *process_name)
4503//{
4504// return Host::GetArchSpecForExistingProcess (process_name);
4505//}
4506
4508 auto event_data_sp =
4509 std::make_shared<ProcessEventData>(shared_from_this(), GetState());
4510 return std::make_shared<Event>(event_type, event_data_sp);
4511}
4512
4513void Process::AppendSTDOUT(const char *s, size_t len) {
4514 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4515 m_stdout_data.append(s, len);
4517 BroadcastEventIfUnique(event_sp);
4518}
4519
4520void Process::AppendSTDERR(const char *s, size_t len) {
4521 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4522 m_stderr_data.append(s, len);
4524 BroadcastEventIfUnique(event_sp);
4525}
4526
4527void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4528 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4529 m_profile_data.push_back(one_profile_data);
4531 BroadcastEventIfUnique(event_sp);
4532}
4533
4535 const StructuredDataPluginSP &plugin_sp) {
4536 auto data_sp = std::make_shared<EventDataStructuredData>(
4537 shared_from_this(), object_sp, plugin_sp);
4539}
4540
4542Process::GetStructuredDataPlugin(llvm::StringRef type_name) const {
4543 auto find_it = m_structured_data_plugin_map.find(type_name);
4544 if (find_it != m_structured_data_plugin_map.end())
4545 return find_it->second;
4546 else
4547 return StructuredDataPluginSP();
4548}
4549
4550size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4551 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4552 if (m_profile_data.empty())
4553 return 0;
4554
4555 std::string &one_profile_data = m_profile_data.front();
4556 size_t bytes_available = one_profile_data.size();
4557 if (bytes_available > 0) {
4558 Log *log = GetLog(LLDBLog::Process);
4559 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4560 static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4561 if (bytes_available > buf_size) {
4562 memcpy(buf, one_profile_data.c_str(), buf_size);
4563 one_profile_data.erase(0, buf_size);
4564 bytes_available = buf_size;
4565 } else {
4566 memcpy(buf, one_profile_data.c_str(), bytes_available);
4567 m_profile_data.erase(m_profile_data.begin());
4568 }
4569 }
4570 return bytes_available;
4571}
4572
4573// Process STDIO
4574
4575size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4576 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4577 size_t bytes_available = m_stdout_data.size();
4578 if (bytes_available > 0) {
4579 Log *log = GetLog(LLDBLog::Process);
4580 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4581 static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4582 if (bytes_available > buf_size) {
4583 memcpy(buf, m_stdout_data.c_str(), buf_size);
4584 m_stdout_data.erase(0, buf_size);
4585 bytes_available = buf_size;
4586 } else {
4587 memcpy(buf, m_stdout_data.c_str(), bytes_available);
4588 m_stdout_data.clear();
4589 }
4590 }
4591 return bytes_available;
4592}
4593
4594size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4595 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4596 size_t bytes_available = m_stderr_data.size();
4597 if (bytes_available > 0) {
4598 Log *log = GetLog(LLDBLog::Process);
4599 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4600 static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4601 if (bytes_available > buf_size) {
4602 memcpy(buf, m_stderr_data.c_str(), buf_size);
4603 m_stderr_data.erase(0, buf_size);
4604 bytes_available = buf_size;
4605 } else {
4606 memcpy(buf, m_stderr_data.c_str(), bytes_available);
4607 m_stderr_data.clear();
4608 }
4609 }
4610 return bytes_available;
4611}
4612
4613void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4614 size_t src_len) {
4615 Process *process = (Process *)baton;
4616 process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4617}
4618
4620public:
4621 IOHandlerProcessSTDIO(Process *process, int write_fd)
4622 : IOHandler(process->GetTarget().GetDebugger(),
4623 IOHandler::Type::ProcessIO),
4624 m_process(process),
4625 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false),
4626 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) {
4627 m_pipe.CreateNew(false);
4628 }
4629
4630 ~IOHandlerProcessSTDIO() override = default;
4631
4632 void SetIsRunning(bool running) {
4633 std::lock_guard<std::mutex> guard(m_mutex);
4634 SetIsDone(!running);
4635 m_is_running = running;
4636 }
4637
4638 // Each IOHandler gets to run until it is done. It should read data from the
4639 // "in" and place output into "out" and "err and return when done.
4640 void Run() override {
4641 if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4642 !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4643 SetIsDone(true);
4644 return;
4645 }
4646
4647 SetIsDone(false);
4648 const int read_fd = m_read_file.GetDescriptor();
4649 Terminal terminal(read_fd);
4650 TerminalState terminal_state(terminal, false);
4651 // FIXME: error handling?
4652 llvm::consumeError(terminal.SetCanonical(false));
4653 llvm::consumeError(terminal.SetEcho(false));
4654// FD_ZERO, FD_SET are not supported on windows
4655#ifndef _WIN32
4656 const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4657 SetIsRunning(true);
4658 while (true) {
4659 {
4660 std::lock_guard<std::mutex> guard(m_mutex);
4661 if (GetIsDone())
4662 break;
4663 }
4664
4665 SelectHelper select_helper;
4666 select_helper.FDSetRead(read_fd);
4667 select_helper.FDSetRead(pipe_read_fd);
4668 Status error = select_helper.Select();
4669
4670 if (error.Fail())
4671 break;
4672
4673 char ch = 0;
4674 size_t n;
4675 if (select_helper.FDIsSetRead(read_fd)) {
4676 n = 1;
4677 if (m_read_file.Read(&ch, n).Success() && n == 1) {
4678 if (m_write_file.Write(&ch, n).Fail() || n != 1)
4679 break;
4680 } else
4681 break;
4682 }
4683
4684 if (select_helper.FDIsSetRead(pipe_read_fd)) {
4685 size_t bytes_read;
4686 // Consume the interrupt byte
4687 Status error = m_pipe.Read(&ch, 1, bytes_read);
4688 if (error.Success()) {
4689 if (ch == 'q')
4690 break;
4691 if (ch == 'i')
4692 if (StateIsRunningState(m_process->GetState()))
4693 m_process->SendAsyncInterrupt();
4694 }
4695 }
4696 }
4697 SetIsRunning(false);
4698#endif
4699 }
4700
4701 void Cancel() override {
4702 std::lock_guard<std::mutex> guard(m_mutex);
4703 SetIsDone(true);
4704 // Only write to our pipe to cancel if we are in
4705 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4706 // is being run from the command interpreter:
4707 //
4708 // (lldb) step_process_thousands_of_times
4709 //
4710 // In this case the command interpreter will be in the middle of handling
4711 // the command and if the process pushes and pops the IOHandler thousands
4712 // of times, we can end up writing to m_pipe without ever consuming the
4713 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4714 // deadlocking when the pipe gets fed up and blocks until data is consumed.
4715 if (m_is_running) {
4716 char ch = 'q'; // Send 'q' for quit
4717 size_t bytes_written = 0;
4718 m_pipe.Write(&ch, 1, bytes_written);
4719 }
4720 }
4721
4722 bool Interrupt() override {
4723 // Do only things that are safe to do in an interrupt context (like in a
4724 // SIGINT handler), like write 1 byte to a file descriptor. This will
4725 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4726 // that was written to the pipe and then call
4727 // m_process->SendAsyncInterrupt() from a much safer location in code.
4728 if (m_active) {
4729 char ch = 'i'; // Send 'i' for interrupt
4730 size_t bytes_written = 0;
4731 Status result = m_pipe.Write(&ch, 1, bytes_written);
4732 return result.Success();
4733 } else {
4734 // This IOHandler might be pushed on the stack, but not being run
4735 // currently so do the right thing if we aren't actively watching for
4736 // STDIN by sending the interrupt to the process. Otherwise the write to
4737 // the pipe above would do nothing. This can happen when the command
4738 // interpreter is running and gets a "expression ...". It will be on the
4739 // IOHandler thread and sending the input is complete to the delegate
4740 // which will cause the expression to run, which will push the process IO
4741 // handler, but not run it.
4742
4743 if (StateIsRunningState(m_process->GetState())) {
4744 m_process->SendAsyncInterrupt();
4745 return true;
4746 }
4747 }
4748 return false;
4749 }
4750
4751 void GotEOF() override {}
4752
4753protected:
4755 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB
4756 NativeFile m_write_file; // Write to this file (usually the primary pty for
4757 // getting io to debuggee)
4759 std::mutex m_mutex;
4760 bool m_is_running = false;
4761};
4762
4764 // First set up the Read Thread for reading/handling process I/O
4766 std::make_unique<ConnectionFileDescriptor>(fd, true));
4771
4772 // Now read thread is set up, set up input reader.
4773 {
4774 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4777 std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4778 }
4779 }
4780}
4781
4783 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4784 IOHandlerSP io_handler_sp(m_process_input_reader);
4785 if (io_handler_sp)
4786 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4787 return false;
4788}
4789
4791 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4792 IOHandlerSP io_handler_sp(m_process_input_reader);
4793 if (io_handler_sp) {
4794 Log *log = GetLog(LLDBLog::Process);
4795 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__);
4796
4797 io_handler_sp->SetIsDone(false);
4798 // If we evaluate an utility function, then we don't cancel the current
4799 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4800 // existing IOHandler that potentially provides the user interface (e.g.
4801 // the IOHandler for Editline).
4802 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4803 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp,
4804 cancel_top_handler);
4805 return true;
4806 }
4807 return false;
4808}
4809
4811 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex);
4812 IOHandlerSP io_handler_sp(m_process_input_reader);
4813 if (io_handler_sp)
4814 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp);
4815 return false;
4816}
4817
4818// The process needs to know about installed plug-ins
4820
4822
4823namespace {
4824// RestorePlanState is used to record the "is private", "is controlling" and
4825// "okay
4826// to discard" fields of the plan we are running, and reset it on Clean or on
4827// destruction. It will only reset the state once, so you can call Clean and
4828// then monkey with the state and it won't get reset on you again.
4829
4830class RestorePlanState {
4831public:
4832 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4833 : m_thread_plan_sp(thread_plan_sp) {
4834 if (m_thread_plan_sp) {
4835 m_private = m_thread_plan_sp->GetPrivate();
4836 m_is_controlling = m_thread_plan_sp->IsControllingPlan();
4837 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4838 }
4839 }
4840
4841 ~RestorePlanState() { Clean(); }
4842
4843 void Clean() {
4844 if (!m_already_reset && m_thread_plan_sp) {
4845 m_already_reset = true;
4846 m_thread_plan_sp->SetPrivate(m_private);
4847 m_thread_plan_sp->SetIsControllingPlan(m_is_controlling);
4848 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4849 }
4850 }
4851
4852private:
4853 lldb::ThreadPlanSP m_thread_plan_sp;
4854 bool m_already_reset = false;
4855 bool m_private = false;
4856 bool m_is_controlling = false;
4857 bool m_okay_to_discard = false;
4858};
4859} // anonymous namespace
4860
4861static microseconds
4863 const milliseconds default_one_thread_timeout(250);
4864
4865 // If the overall wait is forever, then we don't need to worry about it.
4866 if (!options.GetTimeout()) {
4867 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4868 : default_one_thread_timeout;
4869 }
4870
4871 // If the one thread timeout is set, use it.
4872 if (options.GetOneThreadTimeout())
4873 return *options.GetOneThreadTimeout();
4874
4875 // Otherwise use half the total timeout, bounded by the
4876 // default_one_thread_timeout.
4877 return std::min<microseconds>(default_one_thread_timeout,
4878 *options.GetTimeout() / 2);
4879}
4880
4883 bool before_first_timeout) {
4884 // If we are going to run all threads the whole time, or if we are only going
4885 // to run one thread, we can just return the overall timeout.
4886 if (!options.GetStopOthers() || !options.GetTryAllThreads())
4887 return options.GetTimeout();
4888
4889 if (before_first_timeout)
4890 return GetOneThreadExpressionTimeout(options);
4891
4892 if (!options.GetTimeout())
4893 return std::nullopt;
4894 else
4895 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4896}
4897
4898static std::optional<ExpressionResults>
4899HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp,
4900 RestorePlanState &restorer, const EventSP &event_sp,
4901 EventSP &event_to_broadcast_sp,
4902 const EvaluateExpressionOptions &options,
4903 bool handle_interrupts) {
4905
4906 ThreadSP thread_sp = thread_plan_sp->GetTarget()
4907 .GetProcessSP()
4908 ->GetThreadList()
4909 .FindThreadByID(thread_id);
4910 if (!thread_sp) {
4911 LLDB_LOG(log,
4912 "The thread on which we were running the "
4913 "expression: tid = {0}, exited while "
4914 "the expression was running.",
4915 thread_id);
4917 }
4918
4919 ThreadPlanSP plan = thread_sp->GetCompletedPlan();
4920 if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4921 LLDB_LOG(log, "execution completed successfully");
4922
4923 // Restore the plan state so it will get reported as intended when we are
4924 // done.
4925 restorer.Clean();
4926 return eExpressionCompleted;
4927 }
4928
4929 StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4930 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4931 stop_info_sp->ShouldNotify(event_sp.get())) {
4932 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4933 if (!options.DoesIgnoreBreakpoints()) {
4934 // Restore the plan state and then force Private to false. We are going
4935 // to stop because of this plan so we need it to become a public plan or
4936 // it won't report correctly when we continue to its termination later
4937 // on.
4938 restorer.Clean();
4939 thread_plan_sp->SetPrivate(false);
4940 event_to_broadcast_sp = event_sp;
4941 }
4943 }
4944
4945 if (!handle_interrupts &&
4947 return std::nullopt;
4948
4949 LLDB_LOG(log, "thread plan did not successfully complete");
4950 if (!options.DoesUnwindOnError())
4951 event_to_broadcast_sp = event_sp;
4953}
4954
4957 lldb::ThreadPlanSP &thread_plan_sp,
4958 const EvaluateExpressionOptions &options,
4959 DiagnosticManager &diagnostic_manager) {
4961
4962 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4963
4964 if (!thread_plan_sp) {
4965 diagnostic_manager.PutString(
4966 lldb::eSeverityError, "RunThreadPlan called with empty thread plan.");