LLDB  mainline
Process.cpp
Go to the documentation of this file.
1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include <atomic>
10 #include <memory>
11 #include <mutex>
12 
13 #include "llvm/Support/ScopedPrinter.h"
14 #include "llvm/Support/Threading.h"
15 
19 #include "lldb/Core/Debugger.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
23 #include "lldb/Core/StreamFile.h"
29 #include "lldb/Host/FileSystem.h"
30 #include "lldb/Host/Host.h"
31 #include "lldb/Host/HostInfo.h"
32 #include "lldb/Host/OptionParser.h"
33 #include "lldb/Host/Pipe.h"
34 #include "lldb/Host/Terminal.h"
39 #include "lldb/Symbol/Function.h"
40 #include "lldb/Symbol/Symbol.h"
41 #include "lldb/Target/ABI.h"
45 #include "lldb/Target/JITLoader.h"
52 #include "lldb/Target/Platform.h"
53 #include "lldb/Target/Process.h"
55 #include "lldb/Target/StopInfo.h"
58 #include "lldb/Target/Target.h"
59 #include "lldb/Target/TargetList.h"
60 #include "lldb/Target/Thread.h"
61 #include "lldb/Target/ThreadPlan.h"
64 #include "lldb/Utility/Event.h"
65 #include "lldb/Utility/Log.h"
69 #include "lldb/Utility/State.h"
70 
71 using namespace lldb;
72 using namespace lldb_private;
73 using namespace std::chrono;
74 
75 // Comment out line below to disable memory caching, overriding the process
76 // setting target.process.disable-memory-cache
77 #define ENABLE_MEMORY_CACHING
78 
79 #ifdef ENABLE_MEMORY_CACHING
80 #define DISABLE_MEM_CACHE_DEFAULT false
81 #else
82 #define DISABLE_MEM_CACHE_DEFAULT true
83 #endif
84 
86 public:
88  : OptionValueProperties(name) {}
89 
90  // This constructor is used when creating ProcessOptionValueProperties when
91  // it is part of a new lldb_private::Process instance. It will copy all
92  // current global property values as needed
94  : OptionValueProperties(*global_properties->GetValueProperties()) {}
95 
97  bool will_modify,
98  uint32_t idx) const override {
99  // When getting the value for a key from the process options, we will
100  // always try and grab the setting from the current process if there is
101  // one. Else we just use the one from this instance.
102  if (exe_ctx) {
103  Process *process = exe_ctx->GetProcessPtr();
104  if (process) {
105  ProcessOptionValueProperties *instance_properties =
106  static_cast<ProcessOptionValueProperties *>(
107  process->GetValueProperties().get());
108  if (this != instance_properties)
109  return instance_properties->ProtectedGetPropertyAtIndex(idx);
110  }
111  }
112  return ProtectedGetPropertyAtIndex(idx);
113  }
114 };
115 
116 static constexpr PropertyDefinition g_properties[] = {
117  {"disable-memory-cache", OptionValue::eTypeBoolean, false,
118  DISABLE_MEM_CACHE_DEFAULT, nullptr, {},
119  "Disable reading and caching of memory in fixed-size units."},
120  {"extra-startup-command", OptionValue::eTypeArray, false,
121  OptionValue::eTypeString, nullptr, {},
122  "A list containing extra commands understood by the particular process "
123  "plugin used. "
124  "For instance, to turn on debugserver logging set this to "
125  "\"QSetLogging:bitmask=LOG_DEFAULT;\""},
126  {"ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true,
127  nullptr, {},
128  "If true, breakpoints will be ignored during expression evaluation."},
129  {"unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true,
130  nullptr, {}, "If true, errors in expression evaluation will unwind "
131  "the stack back to the state before the call."},
132  {"python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, nullptr,
133  {}, "A path to a python OS plug-in module file that contains a "
134  "OperatingSystemPlugIn class."},
135  {"stop-on-sharedlibrary-events", OptionValue::eTypeBoolean, true, false,
136  nullptr, {},
137  "If true, stop when a shared library is loaded or unloaded."},
138  {"detach-keeps-stopped", OptionValue::eTypeBoolean, true, false, nullptr,
139  {}, "If true, detach will attempt to keep the process stopped."},
140  {"memory-cache-line-size", OptionValue::eTypeUInt64, false, 512, nullptr,
141  {}, "The memory cache line size"},
142  {"optimization-warnings", OptionValue::eTypeBoolean, false, true, nullptr,
143  {}, "If true, warn when stopped in code that is optimized where "
144  "stepping and variable availability may not behave as expected."},
145  {"stop-on-exec", OptionValue::eTypeBoolean, true, true,
146  nullptr, {},
147  "If true, stop when a shared library is loaded or unloaded."},
148  {"utility-expression-timeout", OptionValue::eTypeUInt64, false, 15,
149  nullptr, {},
150  "The time in seconds to wait for LLDB-internal utility expressions."}
151 };
152 
153 enum {
165 };
166 
167 ProcessProperties::ProcessProperties(lldb_private::Process *process)
168  : Properties(),
169  m_process(process) // Can be nullptr for global ProcessProperties
170 {
171  if (process == nullptr) {
172  // Global process properties, set them up one time
174  std::make_shared<ProcessOptionValueProperties>(ConstString("process"));
175  m_collection_sp->Initialize(g_properties);
176  m_collection_sp->AppendProperty(
177  ConstString("thread"), ConstString("Settings specific to threads."),
179  } else {
180  m_collection_sp = std::make_shared<ProcessOptionValueProperties>(
182  m_collection_sp->SetValueChangedCallback(
185  }
186 }
187 
189 
191  OptionValue *option_value) {
192  ProcessProperties *properties = (ProcessProperties *)baton;
193  if (properties->m_process)
194  properties->m_process->LoadOperatingSystemPlugin(true);
195 }
196 
199  return m_collection_sp->GetPropertyAtIndexAsBoolean(
200  nullptr, idx, g_properties[idx].default_uint_value != 0);
201 }
202 
205  return m_collection_sp->GetPropertyAtIndexAsUInt64(
206  nullptr, idx, g_properties[idx].default_uint_value);
207 }
208 
210  Args args;
212  m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args);
213  return args;
214 }
215 
218  m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args);
219 }
220 
223  return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx);
224 }
225 
228  m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file);
229 }
230 
233  return m_collection_sp->GetPropertyAtIndexAsBoolean(
234  nullptr, idx, g_properties[idx].default_uint_value != 0);
235 }
236 
239  m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
240 }
241 
244  return m_collection_sp->GetPropertyAtIndexAsBoolean(
245  nullptr, idx, g_properties[idx].default_uint_value != 0);
246 }
247 
250  m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore);
251 }
252 
255  return m_collection_sp->GetPropertyAtIndexAsBoolean(
256  nullptr, idx, g_properties[idx].default_uint_value != 0);
257 }
258 
261  m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
262 }
263 
266  return m_collection_sp->GetPropertyAtIndexAsBoolean(
267  nullptr, idx, g_properties[idx].default_uint_value != 0);
268 }
269 
272  m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop);
273 }
274 
277  return m_collection_sp->GetPropertyAtIndexAsBoolean(
278  nullptr, idx, g_properties[idx].default_uint_value != 0);
279 }
280 
282  const uint32_t idx = ePropertyStopOnExec;
283  return m_collection_sp->GetPropertyAtIndexAsBoolean(
284  nullptr, idx, g_properties[idx].default_uint_value != 0);
285 }
286 
289  uint64_t value = m_collection_sp->GetPropertyAtIndexAsUInt64(
290  nullptr, idx, g_properties[idx].default_uint_value);
291  return std::chrono::seconds(value);
292 }
293 
295  uint32_t option_idx, llvm::StringRef option_arg,
296  ExecutionContext *execution_context) {
297  Status error;
298  const int short_option = m_getopt_table[option_idx].val;
299 
300  switch (short_option) {
301  case 's': // Stop at program entry point
302  launch_info.GetFlags().Set(eLaunchFlagStopAtEntry);
303  break;
304 
305  case 'i': // STDIN for read only
306  {
307  FileAction action;
308  if (action.Open(STDIN_FILENO, FileSpec(option_arg), true, false))
309  launch_info.AppendFileAction(action);
310  break;
311  }
312 
313  case 'o': // Open STDOUT for write only
314  {
315  FileAction action;
316  if (action.Open(STDOUT_FILENO, FileSpec(option_arg), false, true))
317  launch_info.AppendFileAction(action);
318  break;
319  }
320 
321  case 'e': // STDERR for write only
322  {
323  FileAction action;
324  if (action.Open(STDERR_FILENO, FileSpec(option_arg), false, true))
325  launch_info.AppendFileAction(action);
326  break;
327  }
328 
329  case 'p': // Process plug-in name
330  launch_info.SetProcessPluginName(option_arg);
331  break;
332 
333  case 'n': // Disable STDIO
334  {
335  FileAction action;
336  const FileSpec dev_null(FileSystem::DEV_NULL);
337  if (action.Open(STDIN_FILENO, dev_null, true, false))
338  launch_info.AppendFileAction(action);
339  if (action.Open(STDOUT_FILENO, dev_null, false, true))
340  launch_info.AppendFileAction(action);
341  if (action.Open(STDERR_FILENO, dev_null, false, true))
342  launch_info.AppendFileAction(action);
343  break;
344  }
345 
346  case 'w':
347  launch_info.SetWorkingDirectory(FileSpec(option_arg));
348  break;
349 
350  case 't': // Open process in new terminal window
351  launch_info.GetFlags().Set(eLaunchFlagLaunchInTTY);
352  break;
353 
354  case 'a': {
355  TargetSP target_sp =
356  execution_context ? execution_context->GetTargetSP() : TargetSP();
357  PlatformSP platform_sp =
358  target_sp ? target_sp->GetPlatform() : PlatformSP();
359  launch_info.GetArchitecture() =
360  Platform::GetAugmentedArchSpec(platform_sp.get(), option_arg);
361  } break;
362 
363  case 'A': // Disable ASLR.
364  {
365  bool success;
366  const bool disable_aslr_arg =
367  OptionArgParser::ToBoolean(option_arg, true, &success);
368  if (success)
369  disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo;
370  else
372  "Invalid boolean value for disable-aslr option: '%s'",
373  option_arg.empty() ? "<null>" : option_arg.str().c_str());
374  break;
375  }
376 
377  case 'X': // shell expand args.
378  {
379  bool success;
380  const bool expand_args =
381  OptionArgParser::ToBoolean(option_arg, true, &success);
382  if (success)
383  launch_info.SetShellExpandArguments(expand_args);
384  else
386  "Invalid boolean value for shell-expand-args option: '%s'",
387  option_arg.empty() ? "<null>" : option_arg.str().c_str());
388  break;
389  }
390 
391  case 'c':
392  if (!option_arg.empty())
393  launch_info.SetShell(FileSpec(option_arg));
394  else
395  launch_info.SetShell(HostInfo::GetDefaultShell());
396  break;
397 
398  case 'v':
399  launch_info.GetEnvironment().insert(option_arg);
400  break;
401 
402  default:
403  error.SetErrorStringWithFormat("unrecognized short option character '%c'",
404  short_option);
405  break;
406  }
407  return error;
408 }
409 
410 static constexpr OptionDefinition g_process_launch_options[] = {
411  {LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument,
412  nullptr, {}, 0, eArgTypeNone,
413  "Stop at the entry point of the program when launching a process."},
414  {LLDB_OPT_SET_ALL, false, "disable-aslr", 'A',
416  "Set whether to disable address space layout randomization when launching "
417  "a process."},
418  {LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument,
419  nullptr, {}, 0, eArgTypePlugin,
420  "Name of the process plugin you want to use."},
421  {LLDB_OPT_SET_ALL, false, "working-dir", 'w',
422  OptionParser::eRequiredArgument, nullptr, {}, 0,
424  "Set the current working directory to <path> when running the inferior."},
426  nullptr, {}, 0, eArgTypeArchitecture,
427  "Set the architecture for the process to launch when ambiguous."},
428  {LLDB_OPT_SET_ALL, false, "environment", 'v',
430  "Specify an environment variable name/value string (--environment "
431  "NAME=VALUE). Can be specified multiple times for subsequent environment "
432  "entries."},
433  {LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3, false, "shell", 'c',
435  "Run the process in a shell (not supported on all platforms)."},
436 
437  {LLDB_OPT_SET_1, false, "stdin", 'i', OptionParser::eRequiredArgument,
438  nullptr, {}, 0, eArgTypeFilename,
439  "Redirect stdin for the process to <filename>."},
440  {LLDB_OPT_SET_1, false, "stdout", 'o', OptionParser::eRequiredArgument,
441  nullptr, {}, 0, eArgTypeFilename,
442  "Redirect stdout for the process to <filename>."},
443  {LLDB_OPT_SET_1, false, "stderr", 'e', OptionParser::eRequiredArgument,
444  nullptr, {}, 0, eArgTypeFilename,
445  "Redirect stderr for the process to <filename>."},
446 
447  {LLDB_OPT_SET_2, false, "tty", 't', OptionParser::eNoArgument, nullptr,
448  {}, 0, eArgTypeNone,
449  "Start the process in a terminal (not supported on all platforms)."},
450 
451  {LLDB_OPT_SET_3, false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr,
452  {}, 0, eArgTypeNone,
453  "Do not set up for terminal I/O to go to running process."},
454  {LLDB_OPT_SET_4, false, "shell-expand-args", 'X',
456  "Set whether to shell expand arguments to the process when launching."},
457 };
458 
459 llvm::ArrayRef<OptionDefinition> ProcessLaunchCommandOptions::GetDefinitions() {
460  return llvm::makeArrayRef(g_process_launch_options);
461 }
462 
463 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp,
464  llvm::StringRef plugin_name,
465  ListenerSP listener_sp,
466  const FileSpec *crash_file_path) {
467  static uint32_t g_process_unique_id = 0;
468 
469  ProcessSP process_sp;
470  ProcessCreateInstance create_callback = nullptr;
471  if (!plugin_name.empty()) {
472  ConstString const_plugin_name(plugin_name);
473  create_callback =
475  if (create_callback) {
476  process_sp = create_callback(target_sp, listener_sp, crash_file_path);
477  if (process_sp) {
478  if (process_sp->CanDebug(target_sp, true)) {
479  process_sp->m_process_unique_id = ++g_process_unique_id;
480  } else
481  process_sp.reset();
482  }
483  }
484  } else {
485  for (uint32_t idx = 0;
486  (create_callback =
488  ++idx) {
489  process_sp = create_callback(target_sp, listener_sp, crash_file_path);
490  if (process_sp) {
491  if (process_sp->CanDebug(target_sp, false)) {
492  process_sp->m_process_unique_id = ++g_process_unique_id;
493  break;
494  } else
495  process_sp.reset();
496  }
497  }
498  }
499  return process_sp;
500 }
501 
503  static ConstString class_name("lldb.process");
504  return class_name;
505 }
506 
507 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp)
508  : Process(target_sp, listener_sp,
509  UnixSignals::Create(HostInfo::GetArchitecture())) {
510  // This constructor just delegates to the full Process constructor,
511  // defaulting to using the Host's UnixSignals.
512 }
513 
514 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp,
515  const UnixSignalsSP &unix_signals_sp)
517  Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()),
519  m_target_wp(target_sp), m_public_state(eStateUnloaded),
520  m_private_state(eStateUnloaded),
521  m_private_state_broadcaster(nullptr,
522  "lldb.process.internal_state_broadcaster"),
523  m_private_state_control_broadcaster(
524  nullptr, "lldb.process.internal_state_control_broadcaster"),
525  m_private_state_listener_sp(
526  Listener::MakeListener("lldb.process.internal_state_listener")),
527  m_mod_id(), m_process_unique_id(0), m_thread_index_id(0),
528  m_thread_id_to_index_id_map(), m_exit_status(-1), m_exit_string(),
529  m_exit_status_mutex(), m_thread_mutex(), m_thread_list_real(this),
530  m_thread_list(this), m_extended_thread_list(this),
531  m_extended_thread_stop_id(0), m_queue_list(this), m_queue_list_stop_id(0),
532  m_notifications(), m_image_tokens(), m_listener_sp(listener_sp),
533  m_breakpoint_site_list(), m_dynamic_checkers_up(),
534  m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(),
535  m_stdio_communication("process.stdio"), m_stdio_communication_mutex(),
536  m_stdin_forward(false), m_stdout_data(), m_stderr_data(),
537  m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0),
538  m_memory_cache(*this), m_allocated_memory_cache(*this),
539  m_should_detach(false), m_next_event_action_up(), m_public_run_lock(),
540  m_private_run_lock(), m_finalizing(false), m_finalize_called(false),
541  m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false),
542  m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false),
543  m_can_interpret_function_calls(false), m_warnings_issued(),
544  m_run_thread_plan_lock(), m_can_jit(eCanJITDontKnow) {
545  CheckInWithManager();
546 
548  if (log)
549  log->Printf("%p Process::Process()", static_cast<void *>(this));
550 
551  if (!m_unix_signals_sp)
552  m_unix_signals_sp = std::make_shared<UnixSignals>();
553 
554  SetEventName(eBroadcastBitStateChanged, "state-changed");
555  SetEventName(eBroadcastBitInterrupt, "interrupt");
556  SetEventName(eBroadcastBitSTDOUT, "stdout-available");
557  SetEventName(eBroadcastBitSTDERR, "stderr-available");
558  SetEventName(eBroadcastBitProfileData, "profile-data-available");
559  SetEventName(eBroadcastBitStructuredData, "structured-data-available");
560 
561  m_private_state_control_broadcaster.SetEventName(
562  eBroadcastInternalStateControlStop, "control-stop");
563  m_private_state_control_broadcaster.SetEventName(
564  eBroadcastInternalStateControlPause, "control-pause");
565  m_private_state_control_broadcaster.SetEventName(
566  eBroadcastInternalStateControlResume, "control-resume");
567 
568  m_listener_sp->StartListeningForEvents(
569  this, eBroadcastBitStateChanged | eBroadcastBitInterrupt |
570  eBroadcastBitSTDOUT | eBroadcastBitSTDERR |
571  eBroadcastBitProfileData | eBroadcastBitStructuredData);
572 
573  m_private_state_listener_sp->StartListeningForEvents(
574  &m_private_state_broadcaster,
575  eBroadcastBitStateChanged | eBroadcastBitInterrupt);
576 
577  m_private_state_listener_sp->StartListeningForEvents(
578  &m_private_state_control_broadcaster,
579  eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause |
580  eBroadcastInternalStateControlResume);
581  // We need something valid here, even if just the default UnixSignalsSP.
582  assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization");
583 
584  // Allow the platform to override the default cache line size
585  OptionValueSP value_sp =
587  ->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)
588  ->GetValue();
589  uint32_t platform_cache_line_size =
590  target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize();
591  if (!value_sp->OptionWasSet() && platform_cache_line_size != 0)
592  value_sp->SetUInt64Value(platform_cache_line_size);
593 }
594 
597  if (log)
598  log->Printf("%p Process::~Process()", static_cast<void *>(this));
599  StopPrivateStateThread();
600 
601  // ThreadList::Clear() will try to acquire this process's mutex, so
602  // explicitly clear the thread list here to ensure that the mutex is not
603  // destroyed before the thread list.
604  m_thread_list.Clear();
605 }
606 
608  // NOTE: intentional leak so we don't crash if global destructor chain gets
609  // called as other threads still use the result of this function
610  static ProcessPropertiesSP *g_settings_sp_ptr =
611  new ProcessPropertiesSP(new ProcessProperties(nullptr));
612  return *g_settings_sp_ptr;
613 }
614 
616  m_finalizing = true;
617 
618  // Destroy this process if needed
619  switch (GetPrivateState()) {
620  case eStateConnected:
621  case eStateAttaching:
622  case eStateLaunching:
623  case eStateStopped:
624  case eStateRunning:
625  case eStateStepping:
626  case eStateCrashed:
627  case eStateSuspended:
628  Destroy(false);
629  break;
630 
631  case eStateInvalid:
632  case eStateUnloaded:
633  case eStateDetached:
634  case eStateExited:
635  break;
636  }
637 
638  // Clear our broadcaster before we proceed with destroying
640 
641  // Do any cleanup needed prior to being destructed... Subclasses that
642  // override this method should call this superclass method as well.
643 
644  // We need to destroy the loader before the derived Process class gets
645  // destroyed since it is very likely that undoing the loader will require
646  // access to the real process.
647  m_dynamic_checkers_up.reset();
648  m_abi_sp.reset();
649  m_os_up.reset();
650  m_system_runtime_up.reset();
651  m_dyld_up.reset();
652  m_jit_loaders_up.reset();
653  m_thread_list_real.Destroy();
654  m_thread_list.Destroy();
655  m_extended_thread_list.Destroy();
656  m_queue_list.Clear();
657  m_queue_list_stop_id = 0;
658  std::vector<Notifications> empty_notifications;
659  m_notifications.swap(empty_notifications);
660  m_image_tokens.clear();
661  m_memory_cache.Clear();
662  m_allocated_memory_cache.Clear();
663  m_language_runtimes.clear();
664  m_instrumentation_runtimes.clear();
665  m_next_event_action_up.reset();
666  // Clear the last natural stop ID since it has a strong reference to this
667  // process
668  m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
669  //#ifdef LLDB_CONFIGURATION_DEBUG
670  // StreamFile s(stdout, false);
671  // EventSP event_sp;
672  // while (m_private_state_listener_sp->GetNextEvent(event_sp))
673  // {
674  // event_sp->Dump (&s);
675  // s.EOL();
676  // }
677  //#endif
678  // We have to be very careful here as the m_private_state_listener might
679  // contain events that have ProcessSP values in them which can keep this
680  // process around forever. These events need to be cleared out.
681  m_private_state_listener_sp->Clear();
682  m_public_run_lock.TrySetRunning(); // This will do nothing if already locked
683  m_public_run_lock.SetStopped();
684  m_private_run_lock.TrySetRunning(); // This will do nothing if already locked
685  m_private_run_lock.SetStopped();
686  m_structured_data_plugin_map.clear();
687  m_finalize_called = true;
688 }
689 
691  m_notifications.push_back(callbacks);
692  if (callbacks.initialize != nullptr)
693  callbacks.initialize(callbacks.baton, this);
694 }
695 
697  std::vector<Notifications>::iterator pos, end = m_notifications.end();
698  for (pos = m_notifications.begin(); pos != end; ++pos) {
699  if (pos->baton == callbacks.baton &&
700  pos->initialize == callbacks.initialize &&
701  pos->process_state_changed == callbacks.process_state_changed) {
702  m_notifications.erase(pos);
703  return true;
704  }
705  }
706  return false;
707 }
708 
710  std::vector<Notifications>::iterator notification_pos,
711  notification_end = m_notifications.end();
712  for (notification_pos = m_notifications.begin();
713  notification_pos != notification_end; ++notification_pos) {
714  if (notification_pos->process_state_changed)
715  notification_pos->process_state_changed(notification_pos->baton, this,
716  state);
717  }
718 }
719 
720 // FIXME: We need to do some work on events before the general Listener sees
721 // them.
722 // For instance if we are continuing from a breakpoint, we need to ensure that
723 // we do the little "insert real insn, step & stop" trick. But we can't do
724 // that when the event is delivered by the broadcaster - since that is done on
725 // the thread that is waiting for new events, so if we needed more than one
726 // event for our handling, we would stall. So instead we do it when we fetch
727 // the event off of the queue.
728 //
729 
730 StateType Process::GetNextEvent(EventSP &event_sp) {
731  StateType state = eStateInvalid;
732 
733  if (m_listener_sp->GetEventForBroadcaster(this, event_sp,
734  std::chrono::seconds(0)) &&
735  event_sp)
736  state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
737 
738  return state;
739 }
740 
742  const Timeout<std::micro> &timeout) {
743  // don't sync (potentially context switch) in case where there is no process
744  // IO
745  if (!m_process_input_reader)
746  return;
747 
748  auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout);
749 
751  if (Result) {
752  LLDB_LOG(
753  log,
754  "waited from m_iohandler_sync to change from {0}. New value is {1}.",
755  iohandler_id, *Result);
756  } else {
757  LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.",
758  iohandler_id);
759  }
760 }
761 
763  EventSP *event_sp_ptr, bool wait_always,
764  ListenerSP hijack_listener_sp,
765  Stream *stream, bool use_run_lock) {
766  // We can't just wait for a "stopped" event, because the stopped event may
767  // have restarted the target. We have to actually check each event, and in
768  // the case of a stopped event check the restarted flag on the event.
769  if (event_sp_ptr)
770  event_sp_ptr->reset();
771  StateType state = GetState();
772  // If we are exited or detached, we won't ever get back to any other valid
773  // state...
774  if (state == eStateDetached || state == eStateExited)
775  return state;
776 
778  LLDB_LOG(log, "timeout = {0}", timeout);
779 
780  if (!wait_always && StateIsStoppedState(state, true) &&
781  StateIsStoppedState(GetPrivateState(), true)) {
782  if (log)
783  log->Printf("Process::%s returning without waiting for events; process "
784  "private and public states are already 'stopped'.",
785  __FUNCTION__);
786  // We need to toggle the run lock as this won't get done in
787  // SetPublicState() if the process is hijacked.
788  if (hijack_listener_sp && use_run_lock)
789  m_public_run_lock.SetStopped();
790  return state;
791  }
792 
793  while (state != eStateInvalid) {
794  EventSP event_sp;
795  state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp);
796  if (event_sp_ptr && event_sp)
797  *event_sp_ptr = event_sp;
798 
799  bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr);
801  pop_process_io_handler);
802 
803  switch (state) {
804  case eStateCrashed:
805  case eStateDetached:
806  case eStateExited:
807  case eStateUnloaded:
808  // We need to toggle the run lock as this won't get done in
809  // SetPublicState() if the process is hijacked.
810  if (hijack_listener_sp && use_run_lock)
811  m_public_run_lock.SetStopped();
812  return state;
813  case eStateStopped:
815  continue;
816  else {
817  // We need to toggle the run lock as this won't get done in
818  // SetPublicState() if the process is hijacked.
819  if (hijack_listener_sp && use_run_lock)
820  m_public_run_lock.SetStopped();
821  return state;
822  }
823  default:
824  continue;
825  }
826  }
827  return state;
828 }
829 
830 bool Process::HandleProcessStateChangedEvent(const EventSP &event_sp,
831  Stream *stream,
832  bool &pop_process_io_handler) {
833  const bool handle_pop = pop_process_io_handler;
834 
835  pop_process_io_handler = false;
836  ProcessSP process_sp =
838 
839  if (!process_sp)
840  return false;
841 
842  StateType event_state =
844  if (event_state == eStateInvalid)
845  return false;
846 
847  switch (event_state) {
848  case eStateInvalid:
849  case eStateUnloaded:
850  case eStateAttaching:
851  case eStateLaunching:
852  case eStateStepping:
853  case eStateDetached:
854  if (stream)
855  stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(),
856  StateAsCString(event_state));
857  if (event_state == eStateDetached)
858  pop_process_io_handler = true;
859  break;
860 
861  case eStateConnected:
862  case eStateRunning:
863  // Don't be chatty when we run...
864  break;
865 
866  case eStateExited:
867  if (stream)
868  process_sp->GetStatus(*stream);
869  pop_process_io_handler = true;
870  break;
871 
872  case eStateStopped:
873  case eStateCrashed:
874  case eStateSuspended:
875  // Make sure the program hasn't been auto-restarted:
877  if (stream) {
878  size_t num_reasons =
880  if (num_reasons > 0) {
881  // FIXME: Do we want to report this, or would that just be annoyingly
882  // chatty?
883  if (num_reasons == 1) {
884  const char *reason =
886  event_sp.get(), 0);
887  stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n",
888  process_sp->GetID(),
889  reason ? reason : "<UNKNOWN REASON>");
890  } else {
891  stream->Printf("Process %" PRIu64
892  " stopped and restarted, reasons:\n",
893  process_sp->GetID());
894 
895  for (size_t i = 0; i < num_reasons; i++) {
896  const char *reason =
898  event_sp.get(), i);
899  stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>");
900  }
901  }
902  }
903  }
904  } else {
905  StopInfoSP curr_thread_stop_info_sp;
906  // Lock the thread list so it doesn't change on us, this is the scope for
907  // the locker:
908  {
909  ThreadList &thread_list = process_sp->GetThreadList();
910  std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex());
911 
912  ThreadSP curr_thread(thread_list.GetSelectedThread());
913  ThreadSP thread;
914  StopReason curr_thread_stop_reason = eStopReasonInvalid;
915  if (curr_thread) {
916  curr_thread_stop_reason = curr_thread->GetStopReason();
917  curr_thread_stop_info_sp = curr_thread->GetStopInfo();
918  }
919  if (!curr_thread || !curr_thread->IsValid() ||
920  curr_thread_stop_reason == eStopReasonInvalid ||
921  curr_thread_stop_reason == eStopReasonNone) {
922  // Prefer a thread that has just completed its plan over another
923  // thread as current thread.
924  ThreadSP plan_thread;
925  ThreadSP other_thread;
926 
927  const size_t num_threads = thread_list.GetSize();
928  size_t i;
929  for (i = 0; i < num_threads; ++i) {
930  thread = thread_list.GetThreadAtIndex(i);
931  StopReason thread_stop_reason = thread->GetStopReason();
932  switch (thread_stop_reason) {
933  case eStopReasonInvalid:
934  case eStopReasonNone:
935  break;
936 
937  case eStopReasonSignal: {
938  // Don't select a signal thread if we weren't going to stop at
939  // that signal. We have to have had another reason for stopping
940  // here, and the user doesn't want to see this thread.
941  uint64_t signo = thread->GetStopInfo()->GetValue();
942  if (process_sp->GetUnixSignals()->GetShouldStop(signo)) {
943  if (!other_thread)
944  other_thread = thread;
945  }
946  break;
947  }
948  case eStopReasonTrace:
952  case eStopReasonExec:
955  if (!other_thread)
956  other_thread = thread;
957  break;
959  if (!plan_thread)
960  plan_thread = thread;
961  break;
962  }
963  }
964  if (plan_thread)
965  thread_list.SetSelectedThreadByID(plan_thread->GetID());
966  else if (other_thread)
967  thread_list.SetSelectedThreadByID(other_thread->GetID());
968  else {
969  if (curr_thread && curr_thread->IsValid())
970  thread = curr_thread;
971  else
972  thread = thread_list.GetThreadAtIndex(0);
973 
974  if (thread)
975  thread_list.SetSelectedThreadByID(thread->GetID());
976  }
977  }
978  }
979  // Drop the ThreadList mutex by here, since GetThreadStatus below might
980  // have to run code, e.g. for Data formatters, and if we hold the
981  // ThreadList mutex, then the process is going to have a hard time
982  // restarting the process.
983  if (stream) {
984  Debugger &debugger = process_sp->GetTarget().GetDebugger();
985  if (debugger.GetTargetList().GetSelectedTarget().get() ==
986  &process_sp->GetTarget()) {
987  const bool only_threads_with_stop_reason = true;
988  const uint32_t start_frame = 0;
989  const uint32_t num_frames = 1;
990  const uint32_t num_frames_with_source = 1;
991  const bool stop_format = true;
992  process_sp->GetStatus(*stream);
993  process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason,
994  start_frame, num_frames,
995  num_frames_with_source,
996  stop_format);
997  if (curr_thread_stop_info_sp) {
998  lldb::addr_t crashing_address;
999  ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference(
1000  curr_thread_stop_info_sp, &crashing_address);
1001  if (valobj_sp) {
1002  const bool qualify_cxx_base_classes = false;
1003 
1005  ValueObject::GetExpressionPathFormat::
1006  eGetExpressionPathFormatHonorPointers;
1007  stream->PutCString("Likely cause: ");
1008  valobj_sp->GetExpressionPath(*stream, qualify_cxx_base_classes,
1009  format);
1010  stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address);
1011  }
1012  }
1013  } else {
1014  uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(
1015  process_sp->GetTarget().shared_from_this());
1016  if (target_idx != UINT32_MAX)
1017  stream->Printf("Target %d: (", target_idx);
1018  else
1019  stream->Printf("Target <unknown index>: (");
1020  process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief);
1021  stream->Printf(") stopped.\n");
1022  }
1023  }
1024 
1025  // Pop the process IO handler
1026  pop_process_io_handler = true;
1027  }
1028  break;
1029  }
1030 
1031  if (handle_pop && pop_process_io_handler)
1032  process_sp->PopProcessIOHandler();
1033 
1034  return true;
1035 }
1036 
1037 bool Process::HijackProcessEvents(ListenerSP listener_sp) {
1038  if (listener_sp) {
1039  return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged |
1040  eBroadcastBitInterrupt);
1041  } else
1042  return false;
1043 }
1044 
1045 void Process::RestoreProcessEvents() { RestoreBroadcaster(); }
1046 
1048  const Timeout<std::micro> &timeout,
1049  ListenerSP hijack_listener_sp) {
1051  LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1052 
1053  ListenerSP listener_sp = hijack_listener_sp;
1054  if (!listener_sp)
1055  listener_sp = m_listener_sp;
1056 
1057  StateType state = eStateInvalid;
1058  if (listener_sp->GetEventForBroadcasterWithType(
1059  this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1060  timeout)) {
1061  if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1062  state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1063  else
1064  LLDB_LOG(log, "got no event or was interrupted.");
1065  }
1066 
1067  LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state);
1068  return state;
1069 }
1070 
1073 
1074  if (log)
1075  log->Printf("Process::%s...", __FUNCTION__);
1076 
1077  Event *event_ptr;
1078  event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType(
1079  this, eBroadcastBitStateChanged);
1080  if (log) {
1081  if (event_ptr) {
1082  log->Printf(
1083  "Process::%s (event_ptr) => %s", __FUNCTION__,
1084  StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr)));
1085  } else {
1086  log->Printf("Process::%s no events found", __FUNCTION__);
1087  }
1088  }
1089  return event_ptr;
1090 }
1091 
1092 StateType
1094  const Timeout<std::micro> &timeout) {
1096  LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1097 
1098  StateType state = eStateInvalid;
1099  if (m_private_state_listener_sp->GetEventForBroadcasterWithType(
1100  &m_private_state_broadcaster,
1101  eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp,
1102  timeout))
1103  if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged)
1104  state = Process::ProcessEventData::GetStateFromEvent(event_sp.get());
1105 
1106  LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout,
1107  state == eStateInvalid ? "TIMEOUT" : StateAsCString(state));
1108  return state;
1109 }
1110 
1111 bool Process::GetEventsPrivate(EventSP &event_sp,
1112  const Timeout<std::micro> &timeout,
1113  bool control_only) {
1115  LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout);
1116 
1117  if (control_only)
1118  return m_private_state_listener_sp->GetEventForBroadcaster(
1119  &m_private_state_control_broadcaster, event_sp, timeout);
1120  else
1121  return m_private_state_listener_sp->GetEvent(event_sp, timeout);
1122 }
1123 
1124 bool Process::IsRunning() const {
1125  return StateIsRunningState(m_public_state.GetValue());
1126 }
1127 
1129  std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1130 
1131  if (m_public_state.GetValue() == eStateExited)
1132  return m_exit_status;
1133  return -1;
1134 }
1135 
1137  std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1138 
1139  if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty())
1140  return m_exit_string.c_str();
1141  return nullptr;
1142 }
1143 
1144 bool Process::SetExitStatus(int status, const char *cstr) {
1145  // Use a mutex to protect setting the exit status.
1146  std::lock_guard<std::mutex> guard(m_exit_status_mutex);
1147 
1150  if (log)
1151  log->Printf(
1152  "Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)",
1153  status, status, cstr ? "\"" : "", cstr ? cstr : "NULL",
1154  cstr ? "\"" : "");
1155 
1156  // We were already in the exited state
1157  if (m_private_state.GetValue() == eStateExited) {
1158  if (log)
1159  log->Printf("Process::SetExitStatus () ignoring exit status because "
1160  "state was already set to eStateExited");
1161  return false;
1162  }
1163 
1164  m_exit_status = status;
1165  if (cstr)
1166  m_exit_string = cstr;
1167  else
1168  m_exit_string.clear();
1169 
1170  // Clear the last natural stop ID since it has a strong reference to this
1171  // process
1172  m_mod_id.SetStopEventForLastNaturalStopID(EventSP());
1173 
1174  SetPrivateState(eStateExited);
1175 
1176  // Allow subclasses to do some cleanup
1177  DidExit();
1178 
1179  return true;
1180 }
1181 
1183  switch (m_private_state.GetValue()) {
1184  case eStateConnected:
1185  case eStateAttaching:
1186  case eStateLaunching:
1187  case eStateStopped:
1188  case eStateRunning:
1189  case eStateStepping:
1190  case eStateCrashed:
1191  case eStateSuspended:
1192  return true;
1193  default:
1194  return false;
1195  }
1196 }
1197 
1198 // This static callback can be used to watch for local child processes on the
1199 // current host. The child process exits, the process will be found in the
1200 // global target list (we want to be completely sure that the
1201 // lldb_private::Process doesn't go away before we can deliver the signal.
1203  lldb::pid_t pid, bool exited,
1204  int signo, // Zero for no signal
1205  int exit_status // Exit value of process if signal is zero
1206  ) {
1208  if (log)
1209  log->Printf("Process::SetProcessExitStatus (pid=%" PRIu64
1210  ", exited=%i, signal=%i, exit_status=%i)\n",
1211  pid, exited, signo, exit_status);
1212 
1213  if (exited) {
1214  TargetSP target_sp(Debugger::FindTargetWithProcessID(pid));
1215  if (target_sp) {
1216  ProcessSP process_sp(target_sp->GetProcessSP());
1217  if (process_sp) {
1218  const char *signal_cstr = nullptr;
1219  if (signo)
1220  signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo);
1221 
1222  process_sp->SetExitStatus(exit_status, signal_cstr);
1223  }
1224  }
1225  return true;
1226  }
1227  return false;
1228 }
1229 
1231  const uint32_t stop_id = GetStopID();
1232  if (m_thread_list.GetSize(false) == 0 ||
1233  stop_id != m_thread_list.GetStopID()) {
1234  const StateType state = GetPrivateState();
1235  if (StateIsStoppedState(state, true)) {
1236  std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex());
1237  // m_thread_list does have its own mutex, but we need to hold onto the
1238  // mutex between the call to UpdateThreadList(...) and the
1239  // os->UpdateThreadList(...) so it doesn't change on us
1240  ThreadList &old_thread_list = m_thread_list;
1241  ThreadList real_thread_list(this);
1242  ThreadList new_thread_list(this);
1243  // Always update the thread list with the protocol specific thread list,
1244  // but only update if "true" is returned
1245  if (UpdateThreadList(m_thread_list_real, real_thread_list)) {
1246  // Don't call into the OperatingSystem to update the thread list if we
1247  // are shutting down, since that may call back into the SBAPI's,
1248  // requiring the API lock which is already held by whoever is shutting
1249  // us down, causing a deadlock.
1250  OperatingSystem *os = GetOperatingSystem();
1251  if (os && !m_destroy_in_process) {
1252  // Clear any old backing threads where memory threads might have been
1253  // backed by actual threads from the lldb_private::Process subclass
1254  size_t num_old_threads = old_thread_list.GetSize(false);
1255  for (size_t i = 0; i < num_old_threads; ++i)
1256  old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread();
1257 
1258  // Turn off dynamic types to ensure we don't run any expressions.
1259  // Objective-C can run an expression to determine if a SBValue is a
1260  // dynamic type or not and we need to avoid this. OperatingSystem
1261  // plug-ins can't run expressions that require running code...
1262 
1263  Target &target = GetTarget();
1264  const lldb::DynamicValueType saved_prefer_dynamic =
1265  target.GetPreferDynamicValue();
1266  if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1268 
1269  // Now let the OperatingSystem plug-in update the thread list
1270 
1271  os->UpdateThreadList(
1272  old_thread_list, // Old list full of threads created by OS plug-in
1273  real_thread_list, // The actual thread list full of threads
1274  // created by each lldb_private::Process
1275  // subclass
1276  new_thread_list); // The new thread list that we will show to the
1277  // user that gets filled in
1278 
1279  if (saved_prefer_dynamic != lldb::eNoDynamicValues)
1280  target.SetPreferDynamicValue(saved_prefer_dynamic);
1281  } else {
1282  // No OS plug-in, the new thread list is the same as the real thread
1283  // list
1284  new_thread_list = real_thread_list;
1285  }
1286 
1287  m_thread_list_real.Update(real_thread_list);
1288  m_thread_list.Update(new_thread_list);
1289  m_thread_list.SetStopID(stop_id);
1290 
1291  if (GetLastNaturalStopID() != m_extended_thread_stop_id) {
1292  // Clear any extended threads that we may have accumulated previously
1293  m_extended_thread_list.Clear();
1294  m_extended_thread_stop_id = GetLastNaturalStopID();
1295 
1296  m_queue_list.Clear();
1297  m_queue_list_stop_id = GetLastNaturalStopID();
1298  }
1299  }
1300  }
1301  }
1302 }
1303 
1305  if (m_system_runtime_up) {
1306  if (m_queue_list.GetSize() == 0 ||
1307  m_queue_list_stop_id != GetLastNaturalStopID()) {
1308  const StateType state = GetPrivateState();
1309  if (StateIsStoppedState(state, true)) {
1310  m_system_runtime_up->PopulateQueueList(m_queue_list);
1311  m_queue_list_stop_id = GetLastNaturalStopID();
1312  }
1313  }
1314  }
1315 }
1316 
1318  OperatingSystem *os = GetOperatingSystem();
1319  if (os)
1320  return os->CreateThread(tid, context);
1321  return ThreadSP();
1322 }
1323 
1325  return AssignIndexIDToThread(thread_id);
1326 }
1327 
1328 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) {
1329  return (m_thread_id_to_index_id_map.find(thread_id) !=
1330  m_thread_id_to_index_id_map.end());
1331 }
1332 
1334  uint32_t result = 0;
1335  std::map<uint64_t, uint32_t>::iterator iterator =
1336  m_thread_id_to_index_id_map.find(thread_id);
1337  if (iterator == m_thread_id_to_index_id_map.end()) {
1338  result = ++m_thread_index_id;
1339  m_thread_id_to_index_id_map[thread_id] = result;
1340  } else {
1341  result = iterator->second;
1342  }
1343 
1344  return result;
1345 }
1346 
1348  return m_public_state.GetValue();
1349 }
1350 
1351 void Process::SetPublicState(StateType new_state, bool restarted) {
1354  if (log)
1355  log->Printf("Process::SetPublicState (state = %s, restarted = %i)",
1356  StateAsCString(new_state), restarted);
1357  const StateType old_state = m_public_state.GetValue();
1358  m_public_state.SetValue(new_state);
1359 
1360  // On the transition from Run to Stopped, we unlock the writer end of the run
1361  // lock. The lock gets locked in Resume, which is the public API to tell the
1362  // program to run.
1363  if (!StateChangedIsExternallyHijacked()) {
1364  if (new_state == eStateDetached) {
1365  if (log)
1366  log->Printf(
1367  "Process::SetPublicState (%s) -- unlocking run lock for detach",
1368  StateAsCString(new_state));
1369  m_public_run_lock.SetStopped();
1370  } else {
1371  const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1372  const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1373  if ((old_state_is_stopped != new_state_is_stopped)) {
1374  if (new_state_is_stopped && !restarted) {
1375  if (log)
1376  log->Printf("Process::SetPublicState (%s) -- unlocking run lock",
1377  StateAsCString(new_state));
1378  m_public_run_lock.SetStopped();
1379  }
1380  }
1381  }
1382  }
1383 }
1384 
1388  if (log)
1389  log->Printf("Process::Resume -- locking run lock");
1390  if (!m_public_run_lock.TrySetRunning()) {
1391  Status error("Resume request failed - process still running.");
1392  if (log)
1393  log->Printf("Process::Resume: -- TrySetRunning failed, not resuming.");
1394  return error;
1395  }
1396  Status error = PrivateResume();
1397  if (!error.Success()) {
1398  // Undo running state change
1399  m_public_run_lock.SetStopped();
1400  }
1401  return error;
1402 }
1403 
1404 static const char *g_resume_sync_name = "lldb.Process.ResumeSynchronous.hijack";
1405 
1409  if (log)
1410  log->Printf("Process::ResumeSynchronous -- locking run lock");
1411  if (!m_public_run_lock.TrySetRunning()) {
1412  Status error("Resume request failed - process still running.");
1413  if (log)
1414  log->Printf("Process::Resume: -- TrySetRunning failed, not resuming.");
1415  return error;
1416  }
1417 
1418  ListenerSP listener_sp(
1420  HijackProcessEvents(listener_sp);
1421 
1422  Status error = PrivateResume();
1423  if (error.Success()) {
1424  StateType state =
1425  WaitForProcessToStop(llvm::None, NULL, true, listener_sp, stream);
1426  const bool must_be_alive =
1427  false; // eStateExited is ok, so this must be false
1428  if (!StateIsStoppedState(state, must_be_alive))
1430  "process not in stopped state after synchronous resume: %s",
1431  StateAsCString(state));
1432  } else {
1433  // Undo running state change
1434  m_public_run_lock.SetStopped();
1435  }
1436 
1437  // Undo the hijacking of process events...
1438  RestoreProcessEvents();
1439 
1440  return error;
1441 }
1442 
1444  if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1445  const char *hijacking_name = GetHijackingListenerName();
1446  if (hijacking_name &&
1447  strcmp(hijacking_name, g_resume_sync_name))
1448  return true;
1449  }
1450  return false;
1451 }
1452 
1454  if (IsHijackedForEvent(eBroadcastBitStateChanged)) {
1455  const char *hijacking_name = GetHijackingListenerName();
1456  if (hijacking_name &&
1457  strcmp(hijacking_name, g_resume_sync_name) == 0)
1458  return true;
1459  }
1460  return false;
1461 }
1462 
1463 StateType Process::GetPrivateState() { return m_private_state.GetValue(); }
1464 
1466  if (m_finalize_called)
1467  return;
1468 
1471  bool state_changed = false;
1472 
1473  if (log)
1474  log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state));
1475 
1476  std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex());
1477  std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex());
1478 
1479  const StateType old_state = m_private_state.GetValueNoLock();
1480  state_changed = old_state != new_state;
1481 
1482  const bool old_state_is_stopped = StateIsStoppedState(old_state, false);
1483  const bool new_state_is_stopped = StateIsStoppedState(new_state, false);
1484  if (old_state_is_stopped != new_state_is_stopped) {
1485  if (new_state_is_stopped)
1486  m_private_run_lock.SetStopped();
1487  else
1488  m_private_run_lock.SetRunning();
1489  }
1490 
1491  if (state_changed) {
1492  m_private_state.SetValueNoLock(new_state);
1493  EventSP event_sp(
1494  new Event(eBroadcastBitStateChanged,
1495  new ProcessEventData(shared_from_this(), new_state)));
1496  if (StateIsStoppedState(new_state, false)) {
1497  // Note, this currently assumes that all threads in the list stop when
1498  // the process stops. In the future we will want to support a debugging
1499  // model where some threads continue to run while others are stopped.
1500  // When that happens we will either need a way for the thread list to
1501  // identify which threads are stopping or create a special thread list
1502  // containing only threads which actually stopped.
1503  //
1504  // The process plugin is responsible for managing the actual behavior of
1505  // the threads and should have stopped any threads that are going to stop
1506  // before we get here.
1507  m_thread_list.DidStop();
1508 
1509  m_mod_id.BumpStopID();
1510  if (!m_mod_id.IsLastResumeForUserExpression())
1511  m_mod_id.SetStopEventForLastNaturalStopID(event_sp);
1512  m_memory_cache.Clear();
1513  if (log)
1514  log->Printf("Process::SetPrivateState (%s) stop_id = %u",
1515  StateAsCString(new_state), m_mod_id.GetStopID());
1516  }
1517 
1518  // Use our target to get a shared pointer to ourselves...
1519  if (m_finalize_called && !PrivateStateThreadIsValid())
1520  BroadcastEvent(event_sp);
1521  else
1522  m_private_state_broadcaster.BroadcastEvent(event_sp);
1523  } else {
1524  if (log)
1525  log->Printf(
1526  "Process::SetPrivateState (%s) state didn't change. Ignoring...",
1527  StateAsCString(new_state));
1528  }
1529 }
1530 
1532  m_mod_id.SetRunningUserExpression(on);
1533 }
1534 
1536  m_mod_id.SetRunningUtilityFunction(on);
1537 }
1538 
1540 
1541 const lldb::ABISP &Process::GetABI() {
1542  if (!m_abi_sp)
1543  m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture());
1544  return m_abi_sp;
1545 }
1546 
1548  bool retry_if_null) {
1549  if (m_finalizing)
1550  return nullptr;
1551 
1552  LanguageRuntimeCollection::iterator pos;
1553  pos = m_language_runtimes.find(language);
1554  if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) {
1555  lldb::LanguageRuntimeSP runtime_sp(
1556  LanguageRuntime::FindPlugin(this, language));
1557 
1558  m_language_runtimes[language] = runtime_sp;
1559  return runtime_sp.get();
1560  } else
1561  return (*pos).second.get();
1562 }
1563 
1565  LanguageRuntime *runtime =
1566  GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null);
1567  if (runtime != nullptr &&
1569  return static_cast<CPPLanguageRuntime *>(runtime);
1570  return nullptr;
1571 }
1572 
1574  LanguageRuntime *runtime =
1575  GetLanguageRuntime(eLanguageTypeObjC, retry_if_null);
1576  if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeObjC)
1577  return static_cast<ObjCLanguageRuntime *>(runtime);
1578  return nullptr;
1579 }
1580 
1582  if (m_finalizing)
1583  return false;
1584 
1585  if (in_value.IsDynamic())
1586  return false;
1587  LanguageType known_type = in_value.GetObjectRuntimeLanguage();
1588 
1589  if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) {
1590  LanguageRuntime *runtime = GetLanguageRuntime(known_type);
1591  return runtime ? runtime->CouldHaveDynamicValue(in_value) : false;
1592  }
1593 
1594  LanguageRuntime *cpp_runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus);
1595  if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value))
1596  return true;
1597 
1598  LanguageRuntime *objc_runtime = GetLanguageRuntime(eLanguageTypeObjC);
1599  return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false;
1600 }
1601 
1603  m_dynamic_checkers_up.reset(dynamic_checkers);
1604 }
1605 
1607  return m_breakpoint_site_list;
1608 }
1609 
1611  return m_breakpoint_site_list;
1612 }
1613 
1615  m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void {
1616  // bp_site->SetEnabled(true);
1617  DisableBreakpointSite(bp_site);
1618  });
1619 }
1620 
1622  Status error(DisableBreakpointSiteByID(break_id));
1623 
1624  if (error.Success())
1625  m_breakpoint_site_list.Remove(break_id);
1626 
1627  return error;
1628 }
1629 
1631  Status error;
1632  BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1633  if (bp_site_sp) {
1634  if (bp_site_sp->IsEnabled())
1635  error = DisableBreakpointSite(bp_site_sp.get());
1636  } else {
1637  error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1638  break_id);
1639  }
1640 
1641  return error;
1642 }
1643 
1645  Status error;
1646  BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id);
1647  if (bp_site_sp) {
1648  if (!bp_site_sp->IsEnabled())
1649  error = EnableBreakpointSite(bp_site_sp.get());
1650  } else {
1651  error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64,
1652  break_id);
1653  }
1654  return error;
1655 }
1656 
1658 Process::CreateBreakpointSite(const BreakpointLocationSP &owner,
1659  bool use_hardware) {
1660  addr_t load_addr = LLDB_INVALID_ADDRESS;
1661 
1662  bool show_error = true;
1663  switch (GetState()) {
1664  case eStateInvalid:
1665  case eStateUnloaded:
1666  case eStateConnected:
1667  case eStateAttaching:
1668  case eStateLaunching:
1669  case eStateDetached:
1670  case eStateExited:
1671  show_error = false;
1672  break;
1673 
1674  case eStateStopped:
1675  case eStateRunning:
1676  case eStateStepping:
1677  case eStateCrashed:
1678  case eStateSuspended:
1679  show_error = IsAlive();
1680  break;
1681  }
1682 
1683  // Reset the IsIndirect flag here, in case the location changes from pointing
1684  // to a indirect symbol to a regular symbol.
1685  owner->SetIsIndirect(false);
1686 
1687  if (owner->ShouldResolveIndirectFunctions()) {
1688  Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol();
1689  if (symbol && symbol->IsIndirect()) {
1690  Status error;
1691  Address symbol_address = symbol->GetAddress();
1692  load_addr = ResolveIndirectFunction(&symbol_address, error);
1693  if (!error.Success() && show_error) {
1694  GetTarget().GetDebugger().GetErrorFile()->Printf(
1695  "warning: failed to resolve indirect function at 0x%" PRIx64
1696  " for breakpoint %i.%i: %s\n",
1697  symbol->GetLoadAddress(&GetTarget()),
1698  owner->GetBreakpoint().GetID(), owner->GetID(),
1699  error.AsCString() ? error.AsCString() : "unknown error");
1700  return LLDB_INVALID_BREAK_ID;
1701  }
1702  Address resolved_address(load_addr);
1703  load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget());
1704  owner->SetIsIndirect(true);
1705  } else
1706  load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1707  } else
1708  load_addr = owner->GetAddress().GetOpcodeLoadAddress(&GetTarget());
1709 
1710  if (load_addr != LLDB_INVALID_ADDRESS) {
1711  BreakpointSiteSP bp_site_sp;
1712 
1713  // Look up this breakpoint site. If it exists, then add this new owner,
1714  // otherwise create a new breakpoint site and add it.
1715 
1716  bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr);
1717 
1718  if (bp_site_sp) {
1719  bp_site_sp->AddOwner(owner);
1720  owner->SetBreakpointSite(bp_site_sp);
1721  return bp_site_sp->GetID();
1722  } else {
1723  bp_site_sp.reset(new BreakpointSite(&m_breakpoint_site_list, owner,
1724  load_addr, use_hardware));
1725  if (bp_site_sp) {
1726  Status error = EnableBreakpointSite(bp_site_sp.get());
1727  if (error.Success()) {
1728  owner->SetBreakpointSite(bp_site_sp);
1729  return m_breakpoint_site_list.Add(bp_site_sp);
1730  } else {
1731  if (show_error || use_hardware) {
1732  // Report error for setting breakpoint...
1733  GetTarget().GetDebugger().GetErrorFile()->Printf(
1734  "warning: failed to set breakpoint site at 0x%" PRIx64
1735  " for breakpoint %i.%i: %s\n",
1736  load_addr, owner->GetBreakpoint().GetID(), owner->GetID(),
1737  error.AsCString() ? error.AsCString() : "unknown error");
1738  }
1739  }
1740  }
1741  }
1742  }
1743  // We failed to enable the breakpoint
1744  return LLDB_INVALID_BREAK_ID;
1745 }
1746 
1748  lldb::user_id_t owner_loc_id,
1749  BreakpointSiteSP &bp_site_sp) {
1750  uint32_t num_owners = bp_site_sp->RemoveOwner(owner_id, owner_loc_id);
1751  if (num_owners == 0) {
1752  // Don't try to disable the site if we don't have a live process anymore.
1753  if (IsAlive())
1754  DisableBreakpointSite(bp_site_sp.get());
1755  m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress());
1756  }
1757 }
1758 
1760  uint8_t *buf) const {
1761  size_t bytes_removed = 0;
1762  BreakpointSiteList bp_sites_in_range;
1763 
1764  if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size,
1765  bp_sites_in_range)) {
1766  bp_sites_in_range.ForEach([bp_addr, size,
1767  buf](BreakpointSite *bp_site) -> void {
1768  if (bp_site->GetType() == BreakpointSite::eSoftware) {
1769  addr_t intersect_addr;
1770  size_t intersect_size;
1771  size_t opcode_offset;
1772  if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr,
1773  &intersect_size, &opcode_offset)) {
1774  assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size);
1775  assert(bp_addr < intersect_addr + intersect_size &&
1776  intersect_addr + intersect_size <= bp_addr + size);
1777  assert(opcode_offset + intersect_size <= bp_site->GetByteSize());
1778  size_t buf_offset = intersect_addr - bp_addr;
1779  ::memcpy(buf + buf_offset,
1780  bp_site->GetSavedOpcodeBytes() + opcode_offset,
1781  intersect_size);
1782  }
1783  }
1784  });
1785  }
1786  return bytes_removed;
1787 }
1788 
1790  PlatformSP platform_sp(GetTarget().GetPlatform());
1791  if (platform_sp)
1792  return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site);
1793  return 0;
1794 }
1795 
1797  Status error;
1798  assert(bp_site != nullptr);
1800  const addr_t bp_addr = bp_site->GetLoadAddress();
1801  if (log)
1802  log->Printf(
1803  "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64,
1804  bp_site->GetID(), (uint64_t)bp_addr);
1805  if (bp_site->IsEnabled()) {
1806  if (log)
1807  log->Printf(
1808  "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1809  " -- already enabled",
1810  bp_site->GetID(), (uint64_t)bp_addr);
1811  return error;
1812  }
1813 
1814  if (bp_addr == LLDB_INVALID_ADDRESS) {
1815  error.SetErrorString("BreakpointSite contains an invalid load address.");
1816  return error;
1817  }
1818  // Ask the lldb::Process subclass to fill in the correct software breakpoint
1819  // trap for the breakpoint site
1820  const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site);
1821 
1822  if (bp_opcode_size == 0) {
1823  error.SetErrorStringWithFormat("Process::GetSoftwareBreakpointTrapOpcode() "
1824  "returned zero, unable to get breakpoint "
1825  "trap for address 0x%" PRIx64,
1826  bp_addr);
1827  } else {
1828  const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes();
1829 
1830  if (bp_opcode_bytes == nullptr) {
1831  error.SetErrorString(
1832  "BreakpointSite doesn't contain a valid breakpoint trap opcode.");
1833  return error;
1834  }
1835 
1836  // Save the original opcode by reading it
1837  if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size,
1838  error) == bp_opcode_size) {
1839  // Write a software breakpoint in place of the original opcode
1840  if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) ==
1841  bp_opcode_size) {
1842  uint8_t verify_bp_opcode_bytes[64];
1843  if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size,
1844  error) == bp_opcode_size) {
1845  if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes,
1846  bp_opcode_size) == 0) {
1847  bp_site->SetEnabled(true);
1849  if (log)
1850  log->Printf("Process::EnableSoftwareBreakpoint (site_id = %d) "
1851  "addr = 0x%" PRIx64 " -- SUCCESS",
1852  bp_site->GetID(), (uint64_t)bp_addr);
1853  } else
1854  error.SetErrorString(
1855  "failed to verify the breakpoint trap in memory.");
1856  } else
1857  error.SetErrorString(
1858  "Unable to read memory to verify breakpoint trap.");
1859  } else
1860  error.SetErrorString("Unable to write breakpoint trap to memory.");
1861  } else
1862  error.SetErrorString("Unable to read memory at breakpoint address.");
1863  }
1864  if (log && error.Fail())
1865  log->Printf(
1866  "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1867  " -- FAILED: %s",
1868  bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1869  return error;
1870 }
1871 
1873  Status error;
1874  assert(bp_site != nullptr);
1876  addr_t bp_addr = bp_site->GetLoadAddress();
1877  lldb::user_id_t breakID = bp_site->GetID();
1878  if (log)
1879  log->Printf("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64
1880  ") addr = 0x%" PRIx64,
1881  breakID, (uint64_t)bp_addr);
1882 
1883  if (bp_site->IsHardware()) {
1884  error.SetErrorString("Breakpoint site is a hardware breakpoint.");
1885  } else if (bp_site->IsEnabled()) {
1886  const size_t break_op_size = bp_site->GetByteSize();
1887  const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes();
1888  if (break_op_size > 0) {
1889  // Clear a software breakpoint instruction
1890  uint8_t curr_break_op[8];
1891  assert(break_op_size <= sizeof(curr_break_op));
1892  bool break_op_found = false;
1893 
1894  // Read the breakpoint opcode
1895  if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) ==
1896  break_op_size) {
1897  bool verify = false;
1898  // Make sure the breakpoint opcode exists at this address
1899  if (::memcmp(curr_break_op, break_op, break_op_size) == 0) {
1900  break_op_found = true;
1901  // We found a valid breakpoint opcode at this address, now restore
1902  // the saved opcode.
1903  if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(),
1904  break_op_size, error) == break_op_size) {
1905  verify = true;
1906  } else
1907  error.SetErrorString(
1908  "Memory write failed when restoring original opcode.");
1909  } else {
1910  error.SetErrorString(
1911  "Original breakpoint trap is no longer in memory.");
1912  // Set verify to true and so we can check if the original opcode has
1913  // already been restored
1914  verify = true;
1915  }
1916 
1917  if (verify) {
1918  uint8_t verify_opcode[8];
1919  assert(break_op_size < sizeof(verify_opcode));
1920  // Verify that our original opcode made it back to the inferior
1921  if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) ==
1922  break_op_size) {
1923  // compare the memory we just read with the original opcode
1924  if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode,
1925  break_op_size) == 0) {
1926  // SUCCESS
1927  bp_site->SetEnabled(false);
1928  if (log)
1929  log->Printf("Process::DisableSoftwareBreakpoint (site_id = %d) "
1930  "addr = 0x%" PRIx64 " -- SUCCESS",
1931  bp_site->GetID(), (uint64_t)bp_addr);
1932  return error;
1933  } else {
1934  if (break_op_found)
1935  error.SetErrorString("Failed to restore original opcode.");
1936  }
1937  } else
1938  error.SetErrorString("Failed to read memory to verify that "
1939  "breakpoint trap was restored.");
1940  }
1941  } else
1942  error.SetErrorString(
1943  "Unable to read memory that should contain the breakpoint trap.");
1944  }
1945  } else {
1946  if (log)
1947  log->Printf(
1948  "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1949  " -- already disabled",
1950  bp_site->GetID(), (uint64_t)bp_addr);
1951  return error;
1952  }
1953 
1954  if (log)
1955  log->Printf(
1956  "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64
1957  " -- FAILED: %s",
1958  bp_site->GetID(), (uint64_t)bp_addr, error.AsCString());
1959  return error;
1960 }
1961 
1962 // Uncomment to verify memory caching works after making changes to caching
1963 // code
1964 //#define VERIFY_MEMORY_READS
1965 
1966 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) {
1967  error.Clear();
1968  if (!GetDisableMemoryCache()) {
1969 #if defined(VERIFY_MEMORY_READS)
1970  // Memory caching is enabled, with debug verification
1971 
1972  if (buf && size) {
1973  // Uncomment the line below to make sure memory caching is working.
1974  // I ran this through the test suite and got no assertions, so I am
1975  // pretty confident this is working well. If any changes are made to
1976  // memory caching, uncomment the line below and test your changes!
1977 
1978  // Verify all memory reads by using the cache first, then redundantly
1979  // reading the same memory from the inferior and comparing to make sure
1980  // everything is exactly the same.
1981  std::string verify_buf(size, '\0');
1982  assert(verify_buf.size() == size);
1983  const size_t cache_bytes_read =
1984  m_memory_cache.Read(this, addr, buf, size, error);
1985  Status verify_error;
1986  const size_t verify_bytes_read =
1987  ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()),
1988  verify_buf.size(), verify_error);
1989  assert(cache_bytes_read == verify_bytes_read);
1990  assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0);
1991  assert(verify_error.Success() == error.Success());
1992  return cache_bytes_read;
1993  }
1994  return 0;
1995 #else // !defined(VERIFY_MEMORY_READS)
1996  // Memory caching is enabled, without debug verification
1997 
1998  return m_memory_cache.Read(addr, buf, size, error);
1999 #endif // defined (VERIFY_MEMORY_READS)
2000  } else {
2001  // Memory caching is disabled
2002 
2003  return ReadMemoryFromInferior(addr, buf, size, error);
2004  }
2005 }
2006 
2007 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str,
2008  Status &error) {
2009  char buf[256];
2010  out_str.clear();
2011  addr_t curr_addr = addr;
2012  while (true) {
2013  size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error);
2014  if (length == 0)
2015  break;
2016  out_str.append(buf, length);
2017  // If we got "length - 1" bytes, we didn't get the whole C string, we need
2018  // to read some more characters
2019  if (length == sizeof(buf) - 1)
2020  curr_addr += length;
2021  else
2022  break;
2023  }
2024  return out_str.size();
2025 }
2026 
2027 size_t Process::ReadStringFromMemory(addr_t addr, char *dst, size_t max_bytes,
2028  Status &error, size_t type_width) {
2029  size_t total_bytes_read = 0;
2030  if (dst && max_bytes && type_width && max_bytes >= type_width) {
2031  // Ensure a null terminator independent of the number of bytes that is
2032  // read.
2033  memset(dst, 0, max_bytes);
2034  size_t bytes_left = max_bytes - type_width;
2035 
2036  const char terminator[4] = {'\0', '\0', '\0', '\0'};
2037  assert(sizeof(terminator) >= type_width && "Attempting to validate a "
2038  "string with more than 4 bytes "
2039  "per character!");
2040 
2041  addr_t curr_addr = addr;
2042  const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2043  char *curr_dst = dst;
2044 
2045  error.Clear();
2046  while (bytes_left > 0 && error.Success()) {
2047  addr_t cache_line_bytes_left =
2048  cache_line_size - (curr_addr % cache_line_size);
2049  addr_t bytes_to_read =
2050  std::min<addr_t>(bytes_left, cache_line_bytes_left);
2051  size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2052 
2053  if (bytes_read == 0)
2054  break;
2055 
2056  // Search for a null terminator of correct size and alignment in
2057  // bytes_read
2058  size_t aligned_start = total_bytes_read - total_bytes_read % type_width;
2059  for (size_t i = aligned_start;
2060  i + type_width <= total_bytes_read + bytes_read; i += type_width)
2061  if (::memcmp(&dst[i], terminator, type_width) == 0) {
2062  error.Clear();
2063  return i;
2064  }
2065 
2066  total_bytes_read += bytes_read;
2067  curr_dst += bytes_read;
2068  curr_addr += bytes_read;
2069  bytes_left -= bytes_read;
2070  }
2071  } else {
2072  if (max_bytes)
2073  error.SetErrorString("invalid arguments");
2074  }
2075  return total_bytes_read;
2076 }
2077 
2078 // Deprecated in favor of ReadStringFromMemory which has wchar support and
2079 // correct code to find null terminators.
2081  size_t dst_max_len,
2082  Status &result_error) {
2083  size_t total_cstr_len = 0;
2084  if (dst && dst_max_len) {
2085  result_error.Clear();
2086  // NULL out everything just to be safe
2087  memset(dst, 0, dst_max_len);
2088  Status error;
2089  addr_t curr_addr = addr;
2090  const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize();
2091  size_t bytes_left = dst_max_len - 1;
2092  char *curr_dst = dst;
2093 
2094  while (bytes_left > 0) {
2095  addr_t cache_line_bytes_left =
2096  cache_line_size - (curr_addr % cache_line_size);
2097  addr_t bytes_to_read =
2098  std::min<addr_t>(bytes_left, cache_line_bytes_left);
2099  size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error);
2100 
2101  if (bytes_read == 0) {
2102  result_error = error;
2103  dst[total_cstr_len] = '\0';
2104  break;
2105  }
2106  const size_t len = strlen(curr_dst);
2107 
2108  total_cstr_len += len;
2109 
2110  if (len < bytes_to_read)
2111  break;
2112 
2113  curr_dst += bytes_read;
2114  curr_addr += bytes_read;
2115  bytes_left -= bytes_read;
2116  }
2117  } else {
2118  if (dst == nullptr)
2119  result_error.SetErrorString("invalid arguments");
2120  else
2121  result_error.Clear();
2122  }
2123  return total_cstr_len;
2124 }
2125 
2126 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size,
2127  Status &error) {
2128  if (buf == nullptr || size == 0)
2129  return 0;
2130 
2131  size_t bytes_read = 0;
2132  uint8_t *bytes = (uint8_t *)buf;
2133 
2134  while (bytes_read < size) {
2135  const size_t curr_size = size - bytes_read;
2136  const size_t curr_bytes_read =
2137  DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error);
2138  bytes_read += curr_bytes_read;
2139  if (curr_bytes_read == curr_size || curr_bytes_read == 0)
2140  break;
2141  }
2142 
2143  // Replace any software breakpoint opcodes that fall into this range back
2144  // into "buf" before we return
2145  if (bytes_read > 0)
2146  RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf);
2147  return bytes_read;
2148 }
2149 
2151  size_t integer_byte_size,
2152  uint64_t fail_value,
2153  Status &error) {
2154  Scalar scalar;
2155  if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar,
2156  error))
2157  return scalar.ULongLong(fail_value);
2158  return fail_value;
2159 }
2160 
2162  size_t integer_byte_size,
2163  int64_t fail_value,
2164  Status &error) {
2165  Scalar scalar;
2166  if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar,
2167  error))
2168  return scalar.SLongLong(fail_value);
2169  return fail_value;
2170 }
2171 
2173  Scalar scalar;
2174  if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar,
2175  error))
2176  return scalar.ULongLong(LLDB_INVALID_ADDRESS);
2177  return LLDB_INVALID_ADDRESS;
2178 }
2179 
2181  Status &error) {
2182  Scalar scalar;
2183  const uint32_t addr_byte_size = GetAddressByteSize();
2184  if (addr_byte_size <= 4)
2185  scalar = (uint32_t)ptr_value;
2186  else
2187  scalar = ptr_value;
2188  return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) ==
2189  addr_byte_size;
2190 }
2191 
2192 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size,
2193  Status &error) {
2194  size_t bytes_written = 0;
2195  const uint8_t *bytes = (const uint8_t *)buf;
2196 
2197  while (bytes_written < size) {
2198  const size_t curr_size = size - bytes_written;
2199  const size_t curr_bytes_written = DoWriteMemory(
2200  addr + bytes_written, bytes + bytes_written, curr_size, error);
2201  bytes_written += curr_bytes_written;
2202  if (curr_bytes_written == curr_size || curr_bytes_written == 0)
2203  break;
2204  }
2205  return bytes_written;
2206 }
2207 
2208 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size,
2209  Status &error) {
2210 #if defined(ENABLE_MEMORY_CACHING)
2211  m_memory_cache.Flush(addr, size);
2212 #endif
2213 
2214  if (buf == nullptr || size == 0)
2215  return 0;
2216 
2217  m_mod_id.BumpMemoryID();
2218 
2219  // We need to write any data that would go where any current software traps
2220  // (enabled software breakpoints) any software traps (breakpoints) that we
2221  // may have placed in our tasks memory.
2222 
2223  BreakpointSiteList bp_sites_in_range;
2224  if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range))
2225  return WriteMemoryPrivate(addr, buf, size, error);
2226 
2227  // No breakpoint sites overlap
2228  if (bp_sites_in_range.IsEmpty())
2229  return WriteMemoryPrivate(addr, buf, size, error);
2230 
2231  const uint8_t *ubuf = (const uint8_t *)buf;
2232  uint64_t bytes_written = 0;
2233 
2234  bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf,
2235  &error](BreakpointSite *bp) -> void {
2236  if (error.Fail())
2237  return;
2238 
2239  addr_t intersect_addr;
2240  size_t intersect_size;
2241  size_t opcode_offset;
2242  const bool intersects = bp->IntersectsRange(
2243  addr, size, &intersect_addr, &intersect_size, &opcode_offset);
2244  UNUSED_IF_ASSERT_DISABLED(intersects);
2245  assert(intersects);
2246  assert(addr <= intersect_addr && intersect_addr < addr + size);
2247  assert(addr < intersect_addr + intersect_size &&
2248  intersect_addr + intersect_size <= addr + size);
2249  assert(opcode_offset + intersect_size <= bp->GetByteSize());
2250 
2251  // Check for bytes before this breakpoint
2252  const addr_t curr_addr = addr + bytes_written;
2253  if (intersect_addr > curr_addr) {
2254  // There are some bytes before this breakpoint that we need to just
2255  // write to memory
2256  size_t curr_size = intersect_addr - curr_addr;
2257  size_t curr_bytes_written =
2258  WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error);
2259  bytes_written += curr_bytes_written;
2260  if (curr_bytes_written != curr_size) {
2261  // We weren't able to write all of the requested bytes, we are
2262  // done looping and will return the number of bytes that we have
2263  // written so far.
2264  if (error.Success())
2265  error.SetErrorToGenericError();
2266  }
2267  }
2268  // Now write any bytes that would cover up any software breakpoints
2269  // directly into the breakpoint opcode buffer
2270  ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written,
2271  intersect_size);
2272  bytes_written += intersect_size;
2273  });
2274 
2275  // Write any remaining bytes after the last breakpoint if we have any left
2276  if (bytes_written < size)
2277  bytes_written +=
2278  WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written,
2279  size - bytes_written, error);
2280 
2281  return bytes_written;
2282 }
2283 
2284 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar,
2285  size_t byte_size, Status &error) {
2286  if (byte_size == UINT32_MAX)
2287  byte_size = scalar.GetByteSize();
2288  if (byte_size > 0) {
2289  uint8_t buf[32];
2290  const size_t mem_size =
2291  scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error);
2292  if (mem_size > 0)
2293  return WriteMemory(addr, buf, mem_size, error);
2294  else
2295  error.SetErrorString("failed to get scalar as memory data");
2296  } else {
2297  error.SetErrorString("invalid scalar value");
2298  }
2299  return 0;
2300 }
2301 
2303  bool is_signed, Scalar &scalar,
2304  Status &error) {
2305  uint64_t uval = 0;
2306  if (byte_size == 0) {
2307  error.SetErrorString("byte size is zero");
2308  } else if (byte_size & (byte_size - 1)) {
2309  error.SetErrorStringWithFormat("byte size %u is not a power of 2",
2310  byte_size);
2311  } else if (byte_size <= sizeof(uval)) {
2312  const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error);
2313  if (bytes_read == byte_size) {
2314  DataExtractor data(&uval, sizeof(uval), GetByteOrder(),
2315  GetAddressByteSize());
2316  lldb::offset_t offset = 0;
2317  if (byte_size <= 4)
2318  scalar = data.GetMaxU32(&offset, byte_size);
2319  else
2320  scalar = data.GetMaxU64(&offset, byte_size);
2321  if (is_signed)
2322  scalar.SignExtend(byte_size * 8);
2323  return bytes_read;
2324  }
2325  } else {
2327  "byte size of %u is too large for integer scalar type", byte_size);
2328  }
2329  return 0;
2330 }
2331 
2332 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) {
2333  Status error;
2334  for (const auto &Entry : entries) {
2335  WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(),
2336  error);
2337  if (!error.Success())
2338  break;
2339  }
2340  return error;
2341 }
2342 
2343 #define USE_ALLOCATE_MEMORY_CACHE 1
2344 addr_t Process::AllocateMemory(size_t size, uint32_t permissions,
2345  Status &error) {
2346  if (GetPrivateState() != eStateStopped) {
2347  error.SetErrorToGenericError();
2348  return LLDB_INVALID_ADDRESS;
2349  }
2350 
2351 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2352  return m_allocated_memory_cache.AllocateMemory(size, permissions, error);
2353 #else
2354  addr_t allocated_addr = DoAllocateMemory(size, permissions, error);
2356  if (log)
2357  log->Printf("Process::AllocateMemory(size=%" PRIu64
2358  ", permissions=%s) => 0x%16.16" PRIx64
2359  " (m_stop_id = %u m_memory_id = %u)",
2360  (uint64_t)size, GetPermissionsAsCString(permissions),
2361  (uint64_t)allocated_addr, m_mod_id.GetStopID(),
2362  m_mod_id.GetMemoryID());
2363  return allocated_addr;
2364 #endif
2365 }
2366 
2367 addr_t Process::CallocateMemory(size_t size, uint32_t permissions,
2368  Status &error) {
2369  addr_t return_addr = AllocateMemory(size, permissions, error);
2370  if (error.Success()) {
2371  std::string buffer(size, 0);
2372  WriteMemory(return_addr, buffer.c_str(), size, error);
2373  }
2374  return return_addr;
2375 }
2376 
2378  if (m_can_jit == eCanJITDontKnow) {
2380  Status err;
2381 
2382  uint64_t allocated_memory = AllocateMemory(
2383  8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable,
2384  err);
2385 
2386  if (err.Success()) {
2387  m_can_jit = eCanJITYes;
2388  if (log)
2389  log->Printf("Process::%s pid %" PRIu64
2390  " allocation test passed, CanJIT () is true",
2391  __FUNCTION__, GetID());
2392  } else {
2393  m_can_jit = eCanJITNo;
2394  if (log)
2395  log->Printf("Process::%s pid %" PRIu64
2396  " allocation test failed, CanJIT () is false: %s",
2397  __FUNCTION__, GetID(), err.AsCString());
2398  }
2399 
2400  DeallocateMemory(allocated_memory);
2401  }
2402 
2403  return m_can_jit == eCanJITYes;
2404 }
2405 
2406 void Process::SetCanJIT(bool can_jit) {
2407  m_can_jit = (can_jit ? eCanJITYes : eCanJITNo);
2408 }
2409 
2410 void Process::SetCanRunCode(bool can_run_code) {
2411  SetCanJIT(can_run_code);
2412  m_can_interpret_function_calls = can_run_code;
2413 }
2414 
2416  Status error;
2417 #if defined(USE_ALLOCATE_MEMORY_CACHE)
2418  if (!m_allocated_memory_cache.DeallocateMemory(ptr)) {
2420  "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr);
2421  }
2422 #else
2423  error = DoDeallocateMemory(ptr);
2424 
2426  if (log)
2427  log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64
2428  ") => err = %s (m_stop_id = %u, m_memory_id = %u)",
2429  ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(),
2430  m_mod_id.GetMemoryID());
2431 #endif
2432  return error;
2433 }
2434 
2435 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec,
2436  lldb::addr_t header_addr,
2437  size_t size_to_read) {
2439  if (log) {
2440  log->Printf("Process::ReadModuleFromMemory reading %s binary from memory",
2441  file_spec.GetPath().c_str());
2442  }
2443  ModuleSP module_sp(new Module(file_spec, ArchSpec()));
2444  if (module_sp) {
2445  Status error;
2446  ObjectFile *objfile = module_sp->GetMemoryObjectFile(
2447  shared_from_this(), header_addr, error, size_to_read);
2448  if (objfile)
2449  return module_sp;
2450  }
2451  return ModuleSP();
2452 }
2453 
2455  uint32_t &permissions) {
2456  MemoryRegionInfo range_info;
2457  permissions = 0;
2458  Status error(GetMemoryRegionInfo(load_addr, range_info));
2459  if (!error.Success())
2460  return false;
2461  if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow ||
2462  range_info.GetWritable() == MemoryRegionInfo::eDontKnow ||
2463  range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) {
2464  return false;
2465  }
2466 
2467  if (range_info.GetReadable() == MemoryRegionInfo::eYes)
2468  permissions |= lldb::ePermissionsReadable;
2469 
2470  if (range_info.GetWritable() == MemoryRegionInfo::eYes)
2471  permissions |= lldb::ePermissionsWritable;
2472 
2473  if (range_info.GetExecutable() == MemoryRegionInfo::eYes)
2474  permissions |= lldb::ePermissionsExecutable;
2475 
2476  return true;
2477 }
2478 
2479 Status Process::EnableWatchpoint(Watchpoint *watchpoint, bool notify) {
2480  Status error;
2481  error.SetErrorString("watchpoints are not supported");
2482  return error;
2483 }
2484 
2485 Status Process::DisableWatchpoint(Watchpoint *watchpoint, bool notify) {
2486  Status error;
2487  error.SetErrorString("watchpoints are not supported");
2488  return error;
2489 }
2490 
2491 StateType
2493  const Timeout<std::micro> &timeout) {
2494  StateType state;
2495 
2496  while (true) {
2497  event_sp.reset();
2498  state = GetStateChangedEventsPrivate(event_sp, timeout);
2499 
2500  if (StateIsStoppedState(state, false))
2501  break;
2502 
2503  // If state is invalid, then we timed out
2504  if (state == eStateInvalid)
2505  break;
2506 
2507  if (event_sp)
2508  HandlePrivateEvent(event_sp);
2509  }
2510  return state;
2511 }
2512 
2514  if (flush)
2515  m_thread_list.Clear();
2516  m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr));
2517  if (flush)
2518  Flush();
2519 }
2520 
2522  Status error;
2523  m_abi_sp.reset();
2524  m_dyld_up.reset();
2525  m_jit_loaders_up.reset();
2526  m_system_runtime_up.reset();
2527  m_os_up.reset();
2528  m_process_input_reader.reset();
2529 
2530  Module *exe_module = GetTarget().GetExecutableModulePointer();
2531  if (!exe_module) {
2532  error.SetErrorString("executable module does not exist");
2533  return error;
2534  }
2535 
2536  char local_exec_file_path[PATH_MAX];
2537  char platform_exec_file_path[PATH_MAX];
2538  exe_module->GetFileSpec().GetPath(local_exec_file_path,
2539  sizeof(local_exec_file_path));
2540  exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path,
2541  sizeof(platform_exec_file_path));
2542  if (FileSystem::Instance().Exists(exe_module->GetFileSpec())) {
2543  // Install anything that might need to be installed prior to launching.
2544  // For host systems, this will do nothing, but if we are connected to a
2545  // remote platform it will install any needed binaries
2546  error = GetTarget().Install(&launch_info);
2547  if (error.Fail())
2548  return error;
2549 
2550  if (PrivateStateThreadIsValid())
2551  PausePrivateStateThread();
2552 
2553  error = WillLaunch(exe_module);
2554  if (error.Success()) {
2555  const bool restarted = false;
2556  SetPublicState(eStateLaunching, restarted);
2557  m_should_detach = false;
2558 
2559  if (m_public_run_lock.TrySetRunning()) {
2560  // Now launch using these arguments.
2561  error = DoLaunch(exe_module, launch_info);
2562  } else {
2563  // This shouldn't happen
2564  error.SetErrorString("failed to acquire process run lock");
2565  }
2566 
2567  if (error.Fail()) {
2568  if (GetID() != LLDB_INVALID_PROCESS_ID) {
2569  SetID(LLDB_INVALID_PROCESS_ID);
2570  const char *error_string = error.AsCString();
2571  if (error_string == nullptr)
2572  error_string = "launch failed";
2573  SetExitStatus(-1, error_string);
2574  }
2575  } else {
2576  EventSP event_sp;
2577 
2578  // Now wait for the process to launch and return control to us, and then
2579  // call DidLaunch:
2580  StateType state = WaitForProcessStopPrivate(event_sp, seconds(10));
2581 
2582  if (state == eStateInvalid || !event_sp) {
2583  // We were able to launch the process, but we failed to catch the
2584  // initial stop.
2585  error.SetErrorString("failed to catch stop after launch");
2586  SetExitStatus(0, "failed to catch stop after launch");
2587  Destroy(false);
2588  } else if (state == eStateStopped || state == eStateCrashed) {
2589  DidLaunch();
2590 
2591  DynamicLoader *dyld = GetDynamicLoader();
2592  if (dyld)
2593  dyld->DidLaunch();
2594 
2595  GetJITLoaders().DidLaunch();
2596 
2597  SystemRuntime *system_runtime = GetSystemRuntime();
2598  if (system_runtime)
2599  system_runtime->DidLaunch();
2600 
2601  if (!m_os_up)
2602  LoadOperatingSystemPlugin(false);
2603 
2604  // We successfully launched the process and stopped, now it the
2605  // right time to set up signal filters before resuming.
2606  UpdateAutomaticSignalFiltering();
2607 
2608  // Note, the stop event was consumed above, but not handled. This
2609  // was done to give DidLaunch a chance to run. The target is either
2610  // stopped or crashed. Directly set the state. This is done to
2611  // prevent a stop message with a bunch of spurious output on thread
2612  // status, as well as not pop a ProcessIOHandler.
2613  SetPublicState(state, false);
2614 
2615  if (PrivateStateThreadIsValid())
2616  ResumePrivateStateThread();
2617  else
2618  StartPrivateStateThread();
2619 
2620  // Target was stopped at entry as was intended. Need to notify the
2621  // listeners about it.
2622  if (state == eStateStopped &&
2623  launch_info.GetFlags().Test(eLaunchFlagStopAtEntry))
2624  HandlePrivateEvent(event_sp);
2625  } else if (state == eStateExited) {
2626  // We exited while trying to launch somehow. Don't call DidLaunch
2627  // as that's not likely to work, and return an invalid pid.
2628  HandlePrivateEvent(event_sp);
2629  }
2630  }
2631  }
2632  } else {
2633  error.SetErrorStringWithFormat("file doesn't exist: '%s'",
2634  local_exec_file_path);
2635  }
2636 
2637  return error;
2638 }
2639 
2641  Status error = DoLoadCore();
2642  if (error.Success()) {
2643  ListenerSP listener_sp(
2644  Listener::MakeListener("lldb.process.load_core_listener"));
2645  HijackProcessEvents(listener_sp);
2646 
2647  if (PrivateStateThreadIsValid())
2648  ResumePrivateStateThread();
2649  else
2650  StartPrivateStateThread();
2651 
2652  DynamicLoader *dyld = GetDynamicLoader();
2653  if (dyld)
2654  dyld->DidAttach();
2655 
2656  GetJITLoaders().DidAttach();
2657 
2658  SystemRuntime *system_runtime = GetSystemRuntime();
2659  if (system_runtime)
2660  system_runtime->DidAttach();
2661 
2662  if (!m_os_up)
2663  LoadOperatingSystemPlugin(false);
2664 
2665  // We successfully loaded a core file, now pretend we stopped so we can
2666  // show all of the threads in the core file and explore the crashed state.
2667  SetPrivateState(eStateStopped);
2668 
2669  // Wait for a stopped event since we just posted one above...
2670  lldb::EventSP event_sp;
2671  StateType state =
2672  WaitForProcessToStop(seconds(10), &event_sp, true, listener_sp);
2673 
2674  if (!StateIsStoppedState(state, false)) {
2676  if (log)
2677  log->Printf("Process::Halt() failed to stop, state is: %s",
2678  StateAsCString(state));
2679  error.SetErrorString(
2680  "Did not get stopped event after loading the core file.");
2681  }
2682  RestoreProcessEvents();
2683  }
2684  return error;
2685 }
2686 
2688  if (!m_dyld_up)
2689  m_dyld_up.reset(DynamicLoader::FindPlugin(this, nullptr));
2690  return m_dyld_up.get();
2691 }
2692 
2693 const lldb::DataBufferSP Process::GetAuxvData() { return DataBufferSP(); }
2694 
2696  if (!m_jit_loaders_up) {
2697  m_jit_loaders_up.reset(new JITLoaderList());
2698  JITLoader::LoadPlugins(this, *m_jit_loaders_up);
2699  }
2700  return *m_jit_loaders_up;
2701 }
2702 
2704  if (!m_system_runtime_up)
2705  m_system_runtime_up.reset(SystemRuntime::FindPlugin(this));
2706  return m_system_runtime_up.get();
2707 }
2708 
2710  uint32_t exec_count)
2711  : NextEventAction(process), m_exec_count(exec_count) {
2713  if (log)
2714  log->Printf(
2715  "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32,
2716  __FUNCTION__, static_cast<void *>(process), exec_count);
2717 }
2718 
2722 
2723  StateType state = ProcessEventData::GetStateFromEvent(event_sp.get());
2724  if (log)
2725  log->Printf(
2726  "Process::AttachCompletionHandler::%s called with state %s (%d)",
2727  __FUNCTION__, StateAsCString(state), static_cast<int>(state));
2728 
2729  switch (state) {
2730  case eStateAttaching:
2731  return eEventActionSuccess;
2732 
2733  case eStateRunning:
2734  case eStateConnected:
2735  return eEventActionRetry;
2736 
2737  case eStateStopped:
2738  case eStateCrashed:
2739  // During attach, prior to sending the eStateStopped event,
2740  // lldb_private::Process subclasses must set the new process ID.
2741  assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID);
2742  // We don't want these events to be reported, so go set the
2743  // ShouldReportStop here:
2745 
2746  if (m_exec_count > 0) {
2747  --m_exec_count;
2748 
2749  if (log)
2750  log->Printf("Process::AttachCompletionHandler::%s state %s: reduced "
2751  "remaining exec count to %" PRIu32 ", requesting resume",
2752  __FUNCTION__, StateAsCString(state), m_exec_count);
2753 
2754  RequestResume();
2755  return eEventActionRetry;
2756  } else {
2757  if (log)
2758  log->Printf("Process::AttachCompletionHandler::%s state %s: no more "
2759  "execs expected to start, continuing with attach",
2760  __FUNCTION__, StateAsCString(state));
2761 
2763  return eEventActionSuccess;
2764  }
2765  break;
2766 
2767  default:
2768  case eStateExited:
2769  case eStateInvalid:
2770  break;
2771  }
2772 
2773  m_exit_string.assign("No valid Process");
2774  return eEventActionExit;
2775 }
2776 
2779  return eEventActionSuccess;
2780 }
2781 
2783  return m_exit_string.c_str();
2784 }
2785 
2787  if (m_listener_sp)
2788  return m_listener_sp;
2789  else
2790  return debugger.GetListener();
2791 }
2792 
2794  m_abi_sp.reset();
2795  m_process_input_reader.reset();
2796  m_dyld_up.reset();
2797  m_jit_loaders_up.reset();
2798  m_system_runtime_up.reset();
2799  m_os_up.reset();
2800 
2801  lldb::pid_t attach_pid = attach_info.GetProcessID();
2802  Status error;
2803  if (attach_pid == LLDB_INVALID_PROCESS_ID) {
2804  char process_name[PATH_MAX];
2805 
2806  if (attach_info.GetExecutableFile().GetPath(process_name,
2807  sizeof(process_name))) {
2808  const bool wait_for_launch = attach_info.GetWaitForLaunch();
2809 
2810  if (wait_for_launch) {
2811  error = WillAttachToProcessWithName(process_name, wait_for_launch);
2812  if (error.Success()) {
2814  m_should_detach = true;
2815  const bool restarted = false;
2816  SetPublicState(eStateAttaching, restarted);
2817  // Now attach using these arguments.
2818  error = DoAttachToProcessWithName(process_name, attach_info);
2819  } else {
2820  // This shouldn't happen
2821  error.SetErrorString("failed to acquire process run lock");
2822  }
2823 
2824  if (error.Fail()) {
2825  if (GetID() != LLDB_INVALID_PROCESS_ID) {
2827  if (error.AsCString() == nullptr)
2828  error.SetErrorString("attach failed");
2829 
2830  SetExitStatus(-1, error.AsCString());
2831  }
2832  } else {
2834  this, attach_info.GetResumeCount()));
2836  }
2837  return error;
2838  }
2839  } else {
2840  ProcessInstanceInfoList process_infos;
2841  PlatformSP platform_sp(GetTarget().GetPlatform());
2842 
2843  if (platform_sp) {
2844  ProcessInstanceInfoMatch match_info;
2845  match_info.GetProcessInfo() = attach_info;
2846  match_info.SetNameMatchType(NameMatch::Equals);
2847  platform_sp->FindProcesses(match_info, process_infos);
2848  const uint32_t num_matches = process_infos.GetSize();
2849  if (num_matches == 1) {
2850  attach_pid = process_infos.GetProcessIDAtIndex(0);
2851  // Fall through and attach using the above process ID
2852  } else {
2853  match_info.GetProcessInfo().GetExecutableFile().GetPath(
2854  process_name, sizeof(process_name));
2855  if (num_matches > 1) {
2856  StreamString s;
2857  ProcessInstanceInfo::DumpTableHeader(s, true, false);
2858  for (size_t i = 0; i < num_matches; i++) {
2859  process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow(
2860  s, platform_sp->GetUserIDResolver(), true, false);
2861  }
2863  "more than one process named %s:\n%s", process_name,
2864  s.GetData());
2865  } else
2867  "could not find a process named %s", process_name);
2868  }
2869  } else {
2870  error.SetErrorString(
2871  "invalid platform, can't find processes by name");
2872  return error;
2873  }
2874  }
2875  } else {
2876  error.SetErrorString("invalid process name");
2877  }
2878  }
2879 
2880  if (attach_pid != LLDB_INVALID_PROCESS_ID) {
2881  error = WillAttachToProcessWithID(attach_pid);
2882  if (error.Success()) {
2883 
2885  // Now attach using these arguments.
2886  m_should_detach = true;
2887  const bool restarted = false;
2888  SetPublicState(eStateAttaching, restarted);
2889  error = DoAttachToProcessWithID(attach_pid, attach_info);
2890  } else {
2891  // This shouldn't happen
2892  error.SetErrorString("failed to acquire process run lock");
2893  }
2894 
2895  if (error.Success()) {
2897  this, attach_info.GetResumeCount()));
2899  } else {
2900  if (GetID() != LLDB_INVALID_PROCESS_ID)
2902 
2903  const char *error_string = error.AsCString();
2904  if (error_string == nullptr)
2905  error_string = "attach failed";
2906 
2907  SetExitStatus(-1, error_string);
2908  }
2909  }
2910  }
2911  return error;
2912 }
2913 
2917  if (log)
2918  log->Printf("Process::%s()", __FUNCTION__);
2919 
2920  // Let the process subclass figure out at much as it can about the process
2921  // before we go looking for a dynamic loader plug-in.
2922  ArchSpec process_arch;
2923  DidAttach(process_arch);
2924 
2925  if (process_arch.IsValid()) {
2926  GetTarget().SetArchitecture(process_arch);
2927  if (log) {
2928  const char *triple_str = process_arch.GetTriple().getTriple().c_str();
2929  log->Printf("Process::%s replacing process architecture with DidAttach() "
2930  "architecture: %s",
2931  __FUNCTION__, triple_str ? triple_str : "<null>");
2932  }
2933  }
2934 
2935  // We just attached. If we have a platform, ask it for the process
2936  // architecture, and if it isn't the same as the one we've already set,
2937  // switch architectures.
2938  PlatformSP platform_sp(GetTarget().GetPlatform());
2939  assert(platform_sp);
2940  if (platform_sp) {
2941  const ArchSpec &target_arch = GetTarget().GetArchitecture();
2942  if (target_arch.IsValid() &&
2943  !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) {
2944  ArchSpec platform_arch;
2945  platform_sp =
2946  platform_sp->GetPlatformForArchitecture(target_arch, &platform_arch);
2947  if (platform_sp) {
2948  GetTarget().SetPlatform(platform_sp);
2949  GetTarget().SetArchitecture(platform_arch);
2950  if (log)
2951  log->Printf("Process::%s switching platform to %s and architecture "
2952  "to %s based on info from attach",
2953  __FUNCTION__, platform_sp->GetName().AsCString(""),
2954  platform_arch.GetTriple().getTriple().c_str());
2955  }
2956  } else if (!process_arch.IsValid()) {
2957  ProcessInstanceInfo process_info;
2958  GetProcessInfo(process_info);
2959  const ArchSpec &process_arch = process_info.GetArchitecture();
2960  if (process_arch.IsValid() &&
2961  !GetTarget().GetArchitecture().IsExactMatch(process_arch)) {
2962  GetTarget().SetArchitecture(process_arch);
2963  if (log)
2964  log->Printf("Process::%s switching architecture to %s based on info "
2965  "the platform retrieved for pid %" PRIu64,
2966  __FUNCTION__,
2967  process_arch.GetTriple().getTriple().c_str(), GetID());
2968  }
2969  }
2970  }
2971 
2972  // We have completed the attach, now it is time to find the dynamic loader
2973  // plug-in
2974  DynamicLoader *dyld = GetDynamicLoader();
2975  if (dyld) {
2976  dyld->DidAttach();
2977  if (log) {
2978  ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2979  log->Printf("Process::%s after DynamicLoader::DidAttach(), target "
2980  "executable is %s (using %s plugin)",
2981  __FUNCTION__,
2982  exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2983  : "<none>",
2984  dyld->GetPluginName().AsCString("<unnamed>"));
2985  }
2986  }
2987 
2989 
2990  SystemRuntime *system_runtime = GetSystemRuntime();
2991  if (system_runtime) {
2992  system_runtime->DidAttach();
2993  if (log) {
2994  ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
2995  log->Printf("Process::%s after SystemRuntime::DidAttach(), target "
2996  "executable is %s (using %s plugin)",
2997  __FUNCTION__,
2998  exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
2999  : "<none>",
3000  system_runtime->GetPluginName().AsCString("<unnamed>"));
3001  }
3002  }
3003 
3004  if (!m_os_up)
3006  // Figure out which one is the executable, and set that in our target:
3007  const ModuleList &target_modules = GetTarget().GetImages();
3008  std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex());
3009  size_t num_modules = target_modules.GetSize();
3010  ModuleSP new_executable_module_sp;
3011 
3012  for (size_t i = 0; i < num_modules; i++) {
3013  ModuleSP module_sp(target_modules.GetModuleAtIndexUnlocked(i));
3014  if (module_sp && module_sp->IsExecutable()) {
3015  if (GetTarget().GetExecutableModulePointer() != module_sp.get())
3016  new_executable_module_sp = module_sp;
3017  break;
3018  }
3019  }
3020  if (new_executable_module_sp) {
3021  GetTarget().SetExecutableModule(new_executable_module_sp,
3023  if (log) {
3024  ModuleSP exe_module_sp = GetTarget().GetExecutableModule();
3025  log->Printf(
3026  "Process::%s after looping through modules, target executable is %s",
3027  __FUNCTION__,
3028  exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str()
3029  : "<none>");
3030  }
3031  }
3032 }
3033 
3034 Status Process::ConnectRemote(Stream *strm, llvm::StringRef remote_url) {
3035  m_abi_sp.reset();
3036  m_process_input_reader.reset();
3037 
3038  // Find the process and its architecture. Make sure it matches the
3039  // architecture of the current Target, and if not adjust it.
3040 
3041  Status error(DoConnectRemote(strm, remote_url));
3042  if (error.Success()) {
3043  if (GetID() != LLDB_INVALID_PROCESS_ID) {
3044  EventSP event_sp;
3045  StateType state = WaitForProcessStopPrivate(event_sp, llvm::None);
3046 
3047  if (state == eStateStopped || state == eStateCrashed) {
3048  // If we attached and actually have a process on the other end, then
3049  // this ended up being the equivalent of an attach.
3050  CompleteAttach();
3051 
3052  // This delays passing the stopped event to listeners till
3053  // CompleteAttach gets a chance to complete...
3054  HandlePrivateEvent(event_sp);
3055  }
3056  }
3057 
3060  else
3062  }
3063  return error;
3064 }
3065 
3068  LIBLLDB_LOG_STEP));
3069  if (log)
3070  log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s "
3071  "private state: %s",
3074 
3075  // If signals handing status changed we might want to update our signal
3076  // filters before resuming.
3078 
3079  Status error(WillResume());
3080  // Tell the process it is about to resume before the thread list
3081  if (error.Success()) {
3082  // Now let the thread list know we are about to resume so it can let all of
3083  // our threads know that they are about to be resumed. Threads will each be
3084  // called with Thread::WillResume(StateType) where StateType contains the
3085  // state that they are supposed to have when the process is resumed
3086  // (suspended/running/stepping). Threads should also check their resume
3087  // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to
3088  // start back up with a signal.
3089  if (m_thread_list.WillResume()) {
3090  // Last thing, do the PreResumeActions.
3091  if (!RunPreResumeActions()) {
3093  "Process::PrivateResume PreResumeActions failed, not resuming.");
3094  } else {
3096  error = DoResume();
3097  if (error.Success()) {
3098  DidResume();
3100  if (log)
3101  log->Printf("Process thinks the process has resumed.");
3102  } else {
3103  if (log)
3104  log->Printf(
3105  "Process::PrivateResume() DoResume failed.");
3106  return error;
3107  }
3108  }
3109  } else {
3110  // Somebody wanted to run without running (e.g. we were faking a step
3111  // from one frame of a set of inlined frames that share the same PC to
3112  // another.) So generate a continue & a stopped event, and let the world
3113  // handle them.
3114  if (log)
3115  log->Printf(
3116  "Process::PrivateResume() asked to simulate a start & stop.");
3117 
3120  }
3121  } else if (log)
3122  log->Printf("Process::PrivateResume() got an error \"%s\".",
3123  error.AsCString("<unknown error>"));
3124  return error;
3125 }
3126 
3127 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) {
3129  return Status("Process is not running.");
3130 
3131  // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in
3132  // case it was already set and some thread plan logic calls halt on its own.
3133  m_clear_thread_plans_on_stop |= clear_thread_plans;
3134 
3135  ListenerSP halt_listener_sp(
3136  Listener::MakeListener("lldb.process.halt_listener"));
3137  HijackProcessEvents(halt_listener_sp);
3138 
3139  EventSP event_sp;
3140 
3142 
3144  // Don't hijack and eat the eStateExited as the code that was doing the
3145  // attach will be waiting for this event...
3147  SetExitStatus(SIGKILL, "Cancelled async attach.");
3148  Destroy(false);
3149  return Status();
3150  }
3151 
3152  // Wait for 10 second for the process to stop.
3154  seconds(10), &event_sp, true, halt_listener_sp, nullptr, use_run_lock);
3156 
3157  if (state == eStateInvalid || !event_sp) {
3158  // We timed out and didn't get a stop event...
3159  return Status("Halt timed out. State = %s", StateAsCString(GetState()));
3160  }
3161 
3162  BroadcastEvent(event_sp);
3163 
3164  return Status();
3165 }
3166 
3167 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) {
3168  Status error;
3169 
3170  // Check both the public & private states here. If we're hung evaluating an
3171  // expression, for instance, then the public state will be stopped, but we
3172  // still need to interrupt.
3176  if (log)
3177  log->Printf("Process::%s() About to stop.", __FUNCTION__);
3178 
3179  ListenerSP listener_sp(
3180  Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack"));
3181  HijackProcessEvents(listener_sp);
3182 
3184 
3185  // Consume the interrupt event.
3186  StateType state =
3187  WaitForProcessToStop(seconds(10), &exit_event_sp, true, listener_sp);
3188 
3190 
3191  // If the process exited while we were waiting for it to stop, put the
3192  // exited event into the shared pointer passed in and return. Our caller
3193  // doesn't need to do anything else, since they don't have a process
3194  // anymore...
3195 
3196  if (state == eStateExited || m_private_state.GetValue() == eStateExited) {
3197  if (log)
3198  log->Printf("Process::%s() Process exited while waiting to stop.",
3199  __FUNCTION__);
3200  return error;
3201  } else
3202  exit_event_sp.reset(); // It is ok to consume any non-exit stop events
3203 
3204  if (state != eStateStopped) {
3205  if (log)
3206  log->Printf("Process::%s() failed to stop, state is: %s", __FUNCTION__,
3207  StateAsCString(state));
3208  // If we really couldn't stop the process then we should just error out
3209  // here, but if the lower levels just bobbled sending the event and we
3210  // really are stopped, then continue on.
3211  StateType private_state = m_private_state.GetValue();
3212  if (private_state != eStateStopped) {
3213  return Status(
3214  "Attempt to stop the target in order to detach timed out. "
3215  "State = %s",
3217  }
3218  }
3219  }
3220  return error;
3221 }
3222 
3223 Status Process::Detach(bool keep_stopped) {
3224  EventSP exit_event_sp;
3225  Status error;
3226  m_destroy_in_process = true;
3227 
3228  error = WillDetach();
3229 
3230  if (error.Success()) {
3231  if (DetachRequiresHalt()) {
3232  error = StopForDestroyOrDetach(exit_event_sp);
3233  if (!error.Success()) {
3234  m_destroy_in_process = false;
3235  return error;
3236  } else if (exit_event_sp) {
3237  // We shouldn't need to do anything else here. There's no process left
3238  // to detach from...
3240  m_destroy_in_process = false;
3241  return error;
3242  }
3243  }
3244 
3247 
3248  error = DoDetach(keep_stopped);
3249  if (error.Success()) {
3250  DidDetach();
3252  } else {
3253  return error;
3254  }
3255  }
3256  m_destroy_in_process = false;
3257 
3258  // If we exited when we were waiting for a process to stop, then forward the
3259  // event here so we don't lose the event
3260  if (exit_event_sp) {
3261  // Directly broadcast our exited event because we shut down our private
3262  // state thread above
3263  BroadcastEvent(exit_event_sp);
3264  }
3265 
3266  // If we have been interrupted (to kill us) in the middle of running, we may
3267  // not end up propagating the last events through the event system, in which
3268  // case we might strand the write lock. Unlock it here so when we do to tear
3269  // down the process we don't get an error destroying the lock.
3270 
3272  return error;
3273 }
3274 
3275 Status Process::Destroy(bool force_kill) {
3276 
3277  // Tell ourselves we are in the process of destroying the process, so that we
3278  // don't do any unnecessary work that might hinder the destruction. Remember
3279  // to set this back to false when we are done. That way if the attempt
3280  // failed and the process stays around for some reason it won't be in a
3281  // confused state.
3282 
3283  if (force_kill)
3284  m_should_detach = false;
3285 
3286  if (GetShouldDetach()) {
3287  // FIXME: This will have to be a process setting:
3288  bool keep_stopped = false;
3289  Detach(keep_stopped);
3290  }
3291 
3292  m_destroy_in_process = true;
3293 
3294  Status error(WillDestroy());
3295  if (error.Success()) {
3296  EventSP exit_event_sp;
3297  if (DestroyRequiresHalt()) {
3298  error = StopForDestroyOrDetach(exit_event_sp);
3299  }
3300 
3302  // Ditch all thread plans, and remove all our breakpoints: in case we
3303  // have to restart the target to kill it, we don't want it hitting a
3304  // breakpoint... Only do this if we've stopped, however, since if we
3305  // didn't manage to halt it above, then we're not going to have much luck
3306  // doing this now.
3309  }
3310 
3311  error = DoDestroy();
3312  if (error.Success()) {
3313  DidDestroy();
3315  }
3318  m_stdin_forward = false;
3319 
3320  if (m_process_input_reader) {
3321  m_process_input_reader->SetIsDone(true);
3322  m_process_input_reader->Cancel();
3323  m_process_input_reader.reset();
3324  }
3325 
3326  // If we exited when we were waiting for a process to stop, then forward
3327  // the event here so we don't lose the event
3328  if (exit_event_sp) {
3329  // Directly broadcast our exited event because we shut down our private
3330  // state thread above
3331  BroadcastEvent(exit_event_sp);
3332  }
3333 
3334  // If we have been interrupted (to kill us) in the middle of running, we
3335  // may not end up propagating the last events through the event system, in
3336  // which case we might strand the write lock. Unlock it here so when we do
3337  // to tear down the process we don't get an error destroying the lock.
3339  }
3340 
3341  m_destroy_in_process = false;
3342 
3343  return error;
3344 }
3345 
3347  Status error(WillSignal());
3348  if (error.Success()) {
3349  error = DoSignal(signal);
3350  if (error.Success())
3351  DidSignal();
3352  }
3353  return error;
3354 }
3355 
3356 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) {
3357  assert(signals_sp && "null signals_sp");
3358  m_unix_signals_sp = signals_sp;
3359 }
3360 
3361 const lldb::UnixSignalsSP &Process::GetUnixSignals() {
3362  assert(m_unix_signals_sp && "null m_unix_signals_sp");
3363  return m_unix_signals_sp;
3364 }
3365 
3367  return GetTarget().GetArchitecture().GetByteOrder();
3368 }
3369 
3372 }
3373 
3374 bool Process::ShouldBroadcastEvent(Event *event_ptr) {
3375  const StateType state =
3377  bool return_value = true;
3380 
3381  switch (state) {
3382  case eStateDetached:
3383  case eStateExited:
3384  case eStateUnloaded:
3388  m_stdin_forward = false;
3389 
3390  LLVM_FALLTHROUGH;
3391  case eStateConnected:
3392  case eStateAttaching:
3393  case eStateLaunching:
3394  // These events indicate changes in the state of the debugging session,
3395  // always report them.
3396  return_value = true;
3397  break;
3398  case eStateInvalid:
3399  // We stopped for no apparent reason, don't report it.
3400  return_value = false;
3401  break;
3402  case eStateRunning:
3403  case eStateStepping:
3404  // If we've started the target running, we handle the cases where we are
3405  // already running and where there is a transition from stopped to running
3406  // differently. running -> running: Automatically suppress extra running
3407  // events stopped -> running: Report except when there is one or more no
3408  // votes
3409  // and no yes votes.
3412  return_value = true;
3413  else {
3414  switch (m_last_broadcast_state) {
3415  case eStateRunning:
3416  case eStateStepping:
3417  // We always suppress multiple runnings with no PUBLIC stop in between.
3418  return_value = false;
3419  break;
3420  default:
3421  // TODO: make this work correctly. For now always report
3422  // run if we aren't running so we don't miss any running events. If I
3423  // run the lldb/test/thread/a.out file and break at main.cpp:58, run
3424  // and hit the breakpoints on multiple threads, then somehow during the
3425  // stepping over of all breakpoints no run gets reported.
3426 
3427  // This is a transition from stop to run.
3428  switch (m_thread_list.ShouldReportRun(event_ptr)) {
3429  case eVoteYes:
3430  case eVoteNoOpinion:
3431  return_value = true;
3432  break;
3433  case eVoteNo:
3434  return_value = false;
3435  break;
3436  }
3437  break;
3438  }
3439  }
3440  break;
3441  case eStateStopped:
3442  case eStateCrashed:
3443  case eStateSuspended:
3444  // We've stopped. First see if we're going to restart the target. If we
3445  // are going to stop, then we always broadcast the event. If we aren't
3446  // going to stop, let the thread plans decide if we're going to report this
3447  // event. If no thread has an opinion, we don't report it.
3448 
3452  if (log)
3453  log->Printf("Process::ShouldBroadcastEvent (%p) stopped due to an "
3454  "interrupt, state: %s",
3455  static_cast<void *>(event_ptr), StateAsCString(state));
3456  // Even though we know we are going to stop, we should let the threads
3457  // have a look at the stop, so they can properly set their state.
3458  m_thread_list.ShouldStop(event_ptr);
3459  return_value = true;
3460  } else {
3461  bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr);
3462  bool should_resume = false;
3463 
3464  // It makes no sense to ask "ShouldStop" if we've already been
3465  // restarted... Asking the thread list is also not likely to go well,
3466  // since we are running again. So in that case just report the event.
3467 
3468  if (!was_restarted)
3469  should_resume = !m_thread_list.ShouldStop(event_ptr);
3470 
3471  if (was_restarted || should_resume || m_resume_requested) {
3472  Vote stop_vote = m_thread_list.ShouldReportStop(event_ptr);
3473  if (log)
3474  log->Printf("Process::ShouldBroadcastEvent: should_resume: %i state: "
3475  "%s was_restarted: %i stop_vote: %d.",
3476  should_resume, StateAsCString(state), was_restarted,
3477  stop_vote);
3478 
3479  switch (stop_vote) {
3480  case eVoteYes:
3481  return_value = true;
3482  break;
3483  case eVoteNoOpinion:
3484  case eVoteNo:
3485  return_value = false;
3486  break;
3487  }
3488 
3489  if (!was_restarted) {
3490  if (log)
3491  log->Printf("Process::ShouldBroadcastEvent (%p) Restarting process "
3492  "from state: %s",
3493  static_cast<void *>(event_ptr), StateAsCString(state));
3494  ProcessEventData::SetRestartedInEvent(event_ptr, true);
3495  PrivateResume();
3496  }
3497  } else {
3498  return_value = true;
3500  }
3501  }
3502  break;
3503  }
3504 
3505  // Forcing the next event delivery is a one shot deal. So reset it here.
3507 
3508  // We do some coalescing of events (for instance two consecutive running
3509  // events get coalesced.) But we only coalesce against events we actually
3510  // broadcast. So we use m_last_broadcast_state to track that. NB - you
3511  // can't use "m_public_state.GetValue()" for that purpose, as was originally
3512  // done, because the PublicState reflects the last event pulled off the
3513  // queue, and there may be several events stacked up on the queue unserviced.
3514  // So the PublicState may not reflect the last broadcasted event yet.
3515  // m_last_broadcast_state gets updated here.
3516 
3517  if (return_value)
3518  m_last_broadcast_state = state;
3519 
3520  if (log)
3521  log->Printf("Process::ShouldBroadcastEvent (%p) => new state: %s, last "
3522  "broadcast state: %s - %s",
3523  static_cast<void *>(event_ptr), StateAsCString(state),
3525  return_value ? "YES" : "NO");
3526  return return_value;
3527 }
3528 
3529 bool Process::StartPrivateStateThread(bool is_secondary_thread) {
3531 
3532  bool already_running = PrivateStateThreadIsValid();
3533  if (log)
3534  log->Printf("Process::%s()%s ", __FUNCTION__,
3535  already_running ? " already running"
3536  : " starting private state thread");
3537 
3538  if (!is_secondary_thread && already_running)
3539  return true;
3540 
3541  // Create a thread that watches our internal state and controls which events
3542  // make it to clients (into the DCProcess event queue).
3543  char thread_name[1024];
3544  uint32_t max_len = llvm::get_max_thread_name_length();
3545  if (max_len > 0 && max_len <= 30) {
3546  // On platforms with abbreviated thread name lengths, choose thread names
3547  // that fit within the limit.
3548  if (already_running)
3549  snprintf(thread_name, sizeof(thread_name), "intern-state-OV");
3550  else
3551  snprintf(thread_name, sizeof(thread_name), "intern-state");
3552  } else {
3553  if (already_running)
3554  snprintf(thread_name, sizeof(thread_name),
3555  "<lldb.process.internal-state-override(pid=%" PRIu64 ")>",
3556  GetID());
3557  else
3558  snprintf(thread_name, sizeof(thread_name),
3559  "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID());
3560  }
3561 
3562  // Create the private state thread, and start it running.
3563  PrivateStateThreadArgs *args_ptr =
3564  new PrivateStateThreadArgs(this, is_secondary_thread);
3566  ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread,
3567  (void *)args_ptr, nullptr, 8 * 1024 * 1024);
3570  return true;
3571  } else
3572  return false;
3573 }
3574 
3576  ControlPrivateStateThread(eBroadcastInternalStateControlPause);
3577 }
3578 
3580  ControlPrivateStateThread(eBroadcastInternalStateControlResume);
3581 }
3582 
3585  ControlPrivateStateThread(eBroadcastInternalStateControlStop);
3586  else {
3588  if (log)
3589  log->Printf(
3590  "Went to stop the private state thread, but it was already invalid.");
3591  }
3592 }
3593 
3594 void Process::ControlPrivateStateThread(uint32_t signal) {
3596 
3597  assert(signal == eBroadcastInternalStateControlStop ||
3600 
3601  if (log)
3602  log->Printf("Process::%s (signal = %d)", __FUNCTION__, signal);
3603 
3604  // Signal the private state thread
3606  // Broadcast the event.
3607  // It is important to do this outside of the if below, because it's
3608  // possible that the thread state is invalid but that the thread is waiting
3609  // on a control event instead of simply being on its way out (this should
3610  // not happen, but it apparently can).
3611  if (log)
3612  log->Printf("Sending control event of type: %d.", signal);
3613  std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt());
3615  event_receipt_sp);
3616 
3617  // Wait for the event receipt or for the private state thread to exit
3618  bool receipt_received = false;
3619  if (PrivateStateThreadIsValid()) {
3620  while (!receipt_received) {
3621  // Check for a receipt for n seconds and then check if the private
3622  // state thread is still around.
3623  receipt_received =
3624  event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout());
3625  if (!receipt_received) {
3626  // Check if the private state thread is still around. If it isn't
3627  // then we are done waiting
3629  break; // Private state thread exited or is exiting, we are done
3630  }
3631  }
3632  }
3633 
3634  if (signal == eBroadcastInternalStateControlStop) {
3635  thread_result_t result = NULL;
3636  m_private_state_thread.Join(&result);
3638  }
3639  } else {
3640  if (log)
3641  log->Printf(
3642  "Private state thread already dead, no need to signal it to stop.");
3643  }
3644 }
3645 
3649  nullptr);
3650  else
3652 }
3653 
3654 void Process::HandlePrivateEvent(EventSP &event_sp) {
3656  m_resume_requested = false;
3657 
3658  const StateType new_state =
3660 
3661  // First check to see if anybody wants a shot at this event:
3662  if (m_next_event_action_up) {
3663  NextEventAction::EventActionResult action_result =
3664  m_next_event_action_up->PerformAction(event_sp);
3665  if (log)
3666  log->Printf("Ran next event action, result was %d.", action_result);
3667 
3668  switch (action_result) {
3670  SetNextEventAction(nullptr);
3671  break;
3672 
3674  break;
3675 
3677  // Handle Exiting Here. If we already got an exited event, we should
3678  // just propagate it. Otherwise, swallow this event, and set our state
3679  // to exit so the next event will kill us.
3680  if (new_state != eStateExited) {
3681  // FIXME: should cons up an exited event, and discard this one.
3682  SetExitStatus(0, m_next_event_action_up->GetExitString());
3683  SetNextEventAction(nullptr);
3684  return;
3685  }
3686  SetNextEventAction(nullptr);
3687  break;
3688  }
3689  }
3690 
3691  // See if we should broadcast this state to external clients?
3692  const bool should_broadcast = ShouldBroadcastEvent(event_sp.get());
3693 
3694  if (should_broadcast) {
3695  const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged);
3696  if (log) {
3697  log->Printf("Process::%s (pid = %" PRIu64
3698  ") broadcasting new state %s (old state %s) to %s",
3699  __FUNCTION__, GetID(), StateAsCString(new_state),
3701  is_hijacked ? "hijacked" : "public");
3702  }
3703  Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get());
3704  if (StateIsRunningState(new_state)) {
3705  // Only push the input handler if we aren't fowarding events, as this
3706  // means the curses GUI is in use... Or don't push it if we are launching
3707  // since it will come up stopped.
3709  new_state != eStateLaunching && new_state != eStateAttaching) {
3713  if (log)
3714  log->Printf("Process::%s updated m_iohandler_sync to %d",
3715  __FUNCTION__, m_iohandler_sync.GetValue());
3716  }
3717  } else if (StateIsStoppedState(new_state, false)) {
3718  if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) {
3719  // If the lldb_private::Debugger is handling the events, we don't want
3720  // to pop the process IOHandler here, we want to do it when we receive
3721  // the stopped event so we can carefully control when the process
3722  // IOHandler is popped because when we stop we want to display some
3723  // text stating how and why we stopped, then maybe some
3724  // process/thread/frame info, and then we want the "(lldb) " prompt to
3725  // show up. If we pop the process IOHandler here, then we will cause
3726  // the command interpreter to become the top IOHandler after the
3727  // process pops off and it will update its prompt right away... See the
3728  // Debugger.cpp file where it calls the function as
3729  // "process_sp->PopProcessIOHandler()" to see where I am talking about.
3730  // Otherwise we end up getting overlapping "(lldb) " prompts and
3731  // garbled output.
3732  //
3733  // If we aren't handling the events in the debugger (which is indicated
3734  // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or
3735  // we are hijacked, then we always pop the process IO handler manually.
3736  // Hijacking happens when the internal process state thread is running
3737  // thread plans, or when commands want to run in synchronous mode and
3738  // they call "process->WaitForProcessToStop()". An example of something
3739  // that will hijack the events is a simple expression:
3740  //
3741  // (lldb) expr (int)puts("hello")
3742  //
3743  // This will cause the internal process state thread to resume and halt
3744  // the process (and _it_ will hijack the eBroadcastBitStateChanged
3745  // events) and we do need the IO handler to be pushed and popped
3746  // correctly.
3747 
3748  if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents())
3750  }
3751  }
3752 
3753  BroadcastEvent(event_sp);
3754  } else {
3755  if (log) {
3756  log->Printf(
3757  "Process::%s (pid = %" PRIu64
3758  ") suppressing state %s (old state %s): should_broadcast == false",
3759  __FUNCTION__, GetID(), StateAsCString(new_state),
3761  }
3762  }
3763 }
3764 
3766  EventSP event_sp;
3767  Status error(WillHalt());
3768  if (error.Fail())
3769  return error;
3770 
3771  // Ask the process subclass to actually halt our process
3772  bool caused_stop;
3773  error = DoHalt(caused_stop);
3774 
3775  DidHalt();
3776  return error;
3777 }
3778 
3779 thread_result_t Process::PrivateStateThread(void *arg) {
3780  std::unique_ptr<PrivateStateThreadArgs> args_up(
3781  static_cast<PrivateStateThreadArgs *>(arg));
3782  thread_result_t result =
3783  args_up->process->RunPrivateStateThread(args_up->is_secondary_thread);
3784  return result;
3785 }
3786 
3787 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) {
3788  bool control_only = true;
3789 
3791  if (log)
3792  log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...",
3793  __FUNCTION__, static_cast<void *>(this), GetID());
3794 
3795  bool exit_now = false;
3796  bool interrupt_requested = false;
3797  while (!exit_now) {
3798  EventSP event_sp;
3799  GetEventsPrivate(event_sp, llvm::None, control_only);
3800  if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) {
3801  if (log)
3802  log->Printf("Process::%s (arg = %p, pid = %" PRIu64
3803  ") got a control event: %d",
3804  __FUNCTION__, static_cast<void *>(this), GetID(),
3805  event_sp->GetType());
3806 
3807  switch (event_sp->GetType()) {
3809  exit_now = true;
3810  break; // doing any internal state management below
3811 
3813  control_only = true;
3814  break;
3815 
3817  control_only = false;
3818  break;
3819  }
3820 
3821  continue;
3822  } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
3824  if (log)
3825  log->Printf("Process::%s (arg = %p, pid = %" PRIu64
3826  ") woke up with an interrupt while attaching - "
3827  "forwarding interrupt.",
3828  __FUNCTION__, static_cast<void *>(this), GetID());
3831  if (log)
3832  log->Printf("Process::%s (arg = %p, pid = %" PRIu64
3833  ") woke up with an interrupt - Halting.",
3834  __FUNCTION__, static_cast<void *>(this), GetID());
3835  Status error = HaltPrivate();
3836  if (error.Fail() && log)
3837  log->Printf("Process::%s (arg = %p, pid = %" PRIu64
3838  ") failed to halt the process: %s",
3839  __FUNCTION__, static_cast<void *>(this), GetID(),
3840  error.AsCString());
3841  // Halt should generate a stopped event. Make a note of the fact that
3842  // we were doing the interrupt, so we can set the interrupted flag
3843  // after we receive the event. We deliberately set this to true even if
3844  // HaltPrivate failed, so that we can interrupt on the next natural
3845  // stop.
3846  interrupt_requested = true;
3847  } else {
3848  // This can happen when someone (e.g. Process::Halt) sees that we are
3849  // running and sends an interrupt request, but the process actually
3850  // stops before we receive it. In that case, we can just ignore the
3851  // request. We use m_last_broadcast_state, because the Stopped event
3852  // may not have been popped of the event queue yet, which is when the
3853  // public state gets updated.
3854  if (log)
3855  log->Printf(
3856  "Process::%s ignoring interrupt as we have already stopped.",
3857  __FUNCTION__);
3858  }
3859  continue;
3860  }
3861 
3862  const StateType internal_state =
3864 
3865  if (internal_state != eStateInvalid) {
3867  StateIsStoppedState(internal_state, true)) {
3870  }
3871 
3872  if (interrupt_requested) {
3873  if (StateIsStoppedState(internal_state, true)) {
3874  // We requested the interrupt, so mark this as such in the stop event
3875  // so clients can tell an interrupted process from a natural stop
3876  ProcessEventData::SetInterruptedInEvent(event_sp.get(), true);
3877  interrupt_requested = false;
3878  } else if (log) {
3879  log->Printf("Process::%s interrupt_requested, but a non-stopped "
3880  "state '%s' received.",
3881  __FUNCTION__, StateAsCString(internal_state));
3882  }
3883  }
3884 
3885  HandlePrivateEvent(event_sp);
3886  }
3887 
3888  if (internal_state == eStateInvalid || internal_state == eStateExited ||
3889  internal_state == eStateDetached) {
3890  if (log)
3891  log->Printf("Process::%s (arg = %p, pid = %" PRIu64
3892  ") about to exit with internal state %s...",
3893  __FUNCTION__, static_cast<void *>(this), GetID(),
3894  StateAsCString(internal_state));
3895 
3896  break;
3897  }
3898  }
3899 
3900  // Verify log is still enabled before attempting to write to it...
3901  if (log)
3902  log->Printf("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...",
3903  __FUNCTION__, static_cast<void *>(this), GetID());
3904 
3905  // If we are a secondary thread, then the primary thread we are working for
3906  // will have already acquired the public_run_lock, and isn't done with what
3907  // it was doing yet, so don't try to change it on the way out.
3908  if (!is_secondary_thread)
3910  return NULL;
3911 }
3912 
3913 // Process Event Data
3914 
3916  : EventData(), m_process_wp(), m_state(eStateInvalid), m_restarted(false),
3917  m_update_state(0), m_interrupted(false) {}
3918 
3919 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp,
3920  StateType state)
3921  : EventData(), m_process_wp(), m_state(state), m_restarted(false),
3922  m_update_state(0), m_interrupted(false) {
3923  if (process_sp)
3924  m_process_wp = process_sp;
3925 }
3926 
3928 
3930  static ConstString g_flavor("Process::ProcessEventData");
3931  return g_flavor;
3932 }
3933 
3936 }
3937 
3939  ProcessSP process_sp(m_process_wp.lock());
3940 
3941  if (!process_sp)
3942  return;
3943 
3944  // This function gets called twice for each event, once when the event gets
3945  // pulled off of the private process event queue, and then any number of
3946  // times, first when it gets pulled off of the public event queue, then other
3947  // times when we're pretending that this is where we stopped at the end of
3948  // expression evaluation. m_update_state is used to distinguish these three
3949  // cases; it is 0 when we're just pulling it off for private handling, and >
3950  // 1 for expression evaluation, and we don't want to do the breakpoint
3951  // command handling then.
3952  if (m_update_state != 1)
3953  return;
3954 
3955  process_sp->SetPublicState(
3957 
3958  if (m_state == eStateStopped && !m_restarted) {
3959  // Let process subclasses know we are about to do a public stop and do
3960  // anything they might need to in order to speed up register and memory
3961  // accesses.
3962  process_sp->WillPublicStop();
3963  }
3964 
3965  // If this is a halt event, even if the halt stopped with some reason other
3966  // than a plain interrupt (e.g. we had already stopped for a breakpoint when
3967  // the halt request came through) don't do the StopInfo actions, as they may
3968  // end up restarting the process.
3969  if (m_interrupted)
3970  return;
3971 
3972  // If we're stopped and haven't restarted, then do the StopInfo actions here:
3973  if (m_state == eStateStopped && !m_restarted) {
3974  ThreadList &curr_thread_list = process_sp->GetThreadList();
3975  uint32_t num_threads = curr_thread_list.GetSize();
3976  uint32_t idx;
3977 
3978  // The actions might change one of the thread's stop_info's opinions about
3979  // whether we should stop the process, so we need to query that as we go.
3980 
3981  // One other complication here, is that we try to catch any case where the
3982  // target has run (except for expressions) and immediately exit, but if we
3983  // get that wrong (which is possible) then the thread list might have
3984  // changed, and that would cause our iteration here to crash. We could
3985  // make a copy of the thread list, but we'd really like to also know if it
3986  // has changed at all, so we make up a vector of the thread ID's and check
3987  // what we get back against this list & bag out if anything differs.
3988  std::vector<uint32_t> thread_index_array(num_threads);
3989  for (idx = 0; idx < num_threads; ++idx)
3990  thread_index_array[idx] =
3991  curr_thread_list.GetThreadAtIndex(idx)->GetIndexID();
3992 
3993  // Use this to track whether we should continue from here. We will only
3994  // continue the target running if no thread says we should stop. Of course
3995  // if some thread's PerformAction actually sets the target running, then it
3996  // doesn't matter what the other threads say...
3997 
3998  bool still_should_stop = false;
3999 
4000  // Sometimes - for instance if we have a bug in the stub we are talking to,
4001  // we stop but no thread has a valid stop reason. In that case we should
4002  // just stop, because we have no way of telling what the right thing to do
4003  // is, and it's better to let the user decide than continue behind their
4004  // backs.
4005 
4006  bool does_anybody_have_an_opinion = false;
4007 
4008  for (idx = 0; idx < num_threads; ++idx) {
4009  curr_thread_list = process_sp->GetThreadList();
4010  if (curr_thread_list.GetSize() != num_threads) {
4013  if (log)
4014  log->Printf(
4015  "Number of threads changed from %u to %u while processing event.",
4016  num_threads, curr_thread_list.GetSize());
4017  break;
4018  }
4019 
4020  lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx);
4021 
4022  if (thread_sp->GetIndexID() != thread_index_array[idx]) {
4025  if (log)
4026  log->Printf("The thread at position %u changed from %u to %u while "
4027  "processing event.",
4028  idx, thread_index_array[idx], thread_sp->GetIndexID());
4029  break;
4030  }
4031 
4032  StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
4033  if (stop_info_sp && stop_info_sp->IsValid()) {
4034  does_anybody_have_an_opinion = true;
4035  bool this_thread_wants_to_stop;
4036  if (stop_info_sp->GetOverrideShouldStop()) {
4037  this_thread_wants_to_stop =
4038  stop_info_sp->GetOverriddenShouldStopValue();
4039  } else {
4040  stop_info_sp->PerformAction(event_ptr);
4041  // The stop action might restart the target. If it does, then we
4042  // want to mark that in the event so that whoever is receiving it
4043  // will know to wait for the running event and reflect that state
4044  // appropriately. We also need to stop processing actions, since they
4045  // aren't expecting the target to be running.
4046 
4047  // FIXME: we might have run.
4048  if (stop_info_sp->HasTargetRunSinceMe()) {
4049  SetRestarted(true);
4050  break;
4051  }
4052 
4053  this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr);
4054  }
4055 
4056  if (!still_should_stop)
4057  still_should_stop = this_thread_wants_to_stop;
4058  }
4059  }
4060 
4061  if (!GetRestarted()) {
4062  if (!still_should_stop && does_anybody_have_an_opinion) {
4063  // We've been asked to continue, so do that here.
4064  SetRestarted(true);
4065  // Use the public resume method here, since this is just extending a
4066  // public resume.
4067  process_sp->PrivateResume();
4068  } else {
4069  bool hijacked =
4070  process_sp->IsHijackedForEvent(eBroadcastBitStateChanged)
4071  && !process_sp->StateChangedIsHijackedForSynchronousResume();
4072 
4073  if (!hijacked) {
4074  // If we didn't restart, run the Stop Hooks here.
4075  // Don't do that if state changed events aren't hooked up to the
4076  // public (or SyncResume) broadcasters. StopHooks are just for
4077  // real public stops. They might also restart the target,
4078  // so watch for that.
4079  process_sp->GetTarget().RunStopHooks();
4080  if (process_sp->GetPrivateState() == eStateRunning)
4081  SetRestarted(true);
4082  }
4083  }
4084  }
4085 }
4086 }
4087 
4089  ProcessSP process_sp(m_process_wp.lock());
4090 
4091  if (process_sp)
4092  s->Printf(" process = %p (pid = %" PRIu64 "), ",
4093  static_cast<void *>(process_sp.get()), process_sp->GetID());
4094  else
4095  s->PutCString(" process = NULL, ");
4096 
4097  s->Printf("state = %s", StateAsCString(GetState()));
4098 }
4099 
4102  if (event_ptr) {
4103  const EventData *event_data = event_ptr->GetData();
4104  if (event_data &&
4105  event_data->GetFlavor() == ProcessEventData::GetFlavorString())
4106  return static_cast<const ProcessEventData *>(event_ptr->GetData());
4107  }
4108  return nullptr;
4109 }
4110 
4111 ProcessSP
4113  ProcessSP process_sp;
4114  const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4115  if (data)
4116  process_sp = data->GetProcessSP();
4117  return process_sp;
4118 }
4119 
4121  const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4122  if (data == nullptr)
4123  return eStateInvalid;
4124  else
4125  return data->GetState();
4126 }
4127 
4129  const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4130  if (data == nullptr)
4131  return false;
4132  else
4133  return data->GetRestarted();
4134 }
4135 
4137  bool new_value) {
4138  ProcessEventData *data =
4139  const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4140  if (data != nullptr)
4141  data->SetRestarted(new_value);
4142 }
4143 
4144 size_t
4146  ProcessEventData *data =
4147  const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4148  if (data != nullptr)
4149  return data->GetNumRestartedReasons();
4150  else
4151  return 0;
4152 }
4153 
4154 const char *
4156  size_t idx) {
4157  ProcessEventData *data =
4158  const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4159  if (data != nullptr)
4160  return data->GetRestartedReasonAtIndex(idx);
4161  else
4162  return nullptr;
4163 }
4164 
4166  const char *reason) {
4167  ProcessEventData *data =
4168  const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4169  if (data != nullptr)
4170  data->AddRestartedReason(reason);
4171 }
4172 
4174  const Event *event_ptr) {
4175  const ProcessEventData *data = GetEventDataFromEvent(event_ptr);
4176  if (data == nullptr)
4177  return false;
4178  else
4179  return data->GetInterrupted();
4180 }
4181 
4183  bool new_value) {
4184  ProcessEventData *data =
4185  const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4186  if (data != nullptr)
4187  data->SetInterrupted(new_value);
4188 }
4189 
4190 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) {
4191  ProcessEventData *data =
4192  const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr));
4193  if (data) {
4194  data->SetUpdateStateOnRemoval();
4195  return true;
4196  }
4197  return false;
4198 }
4199 
4200 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); }
4201 
4203  exe_ctx.SetTargetPtr(&GetTarget());
4204  exe_ctx.SetProcessPtr(this);
4205  exe_ctx.SetThreadPtr(nullptr);
4206  exe_ctx.SetFramePtr(nullptr);
4207 }
4208 
4209 // uint32_t
4210 // Process::ListProcessesMatchingName (const char *name, StringList &matches,
4211 // std::vector<lldb::pid_t> &pids)
4212 //{
4213 // return 0;
4214 //}
4215 //
4216 // ArchSpec
4217 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid)
4218 //{
4219 // return Host::GetArchSpecForExistingProcess (pid);
4220 //}
4221 //
4222 // ArchSpec
4223 // Process::GetArchSpecForExistingProcess (const char *process_name)
4224 //{
4225 // return Host::GetArchSpecForExistingProcess (process_name);
4226 //}
4227 
4228 void Process::AppendSTDOUT(const char *s, size_t len) {
4229  std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4230  m_stdout_data.append(s, len);
4232  new ProcessEventData(shared_from_this(), GetState()));
4233 }
4234 
4235 void Process::AppendSTDERR(const char *s, size_t len) {
4236  std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4237  m_stderr_data.append(s, len);
4239  new ProcessEventData(shared_from_this(), GetState()));
4240 }
4241 
4242 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) {
4243  std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4244  m_profile_data.push_back(one_profile_data);
4246  new ProcessEventData(shared_from_this(), GetState()));
4247 }
4248 
4250  const StructuredDataPluginSP &plugin_sp) {
4253  new EventDataStructuredData(shared_from_this(), object_sp, plugin_sp));
4254 }
4255 
4256 StructuredDataPluginSP
4258  auto find_it = m_structured_data_plugin_map.find(type_name);
4259  if (find_it != m_structured_data_plugin_map.end())
4260  return find_it->second;
4261  else
4262  return StructuredDataPluginSP();
4263 }
4264 
4265 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) {
4266  std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex);
4267  if (m_profile_data.empty())
4268  return 0;
4269 
4270  std::string &one_profile_data = m_profile_data.front();
4271  size_t bytes_available = one_profile_data.size();
4272  if (bytes_available > 0) {
4274  if (log)
4275  log->Printf("Process::GetProfileData (buf = %p, size = %" PRIu64 ")",
4276  static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4277  if (bytes_available > buf_size) {
4278  memcpy(buf, one_profile_data.c_str(), buf_size);
4279  one_profile_data.erase(0, buf_size);
4280  bytes_available = buf_size;
4281  } else {
4282  memcpy(buf, one_profile_data.c_str(), bytes_available);
4283  m_profile_data.erase(m_profile_data.begin());
4284  }
4285  }
4286  return bytes_available;
4287 }
4288 
4289 // Process STDIO
4290 
4291 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) {
4292  std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex);
4293  size_t bytes_available = m_stdout_data.size();
4294  if (bytes_available > 0) {
4296  if (log)
4297  log->Printf("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")",
4298  static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4299  if (bytes_available > buf_size) {
4300  memcpy(buf, m_stdout_data.c_str(), buf_size);
4301  m_stdout_data.erase(0, buf_size);
4302  bytes_available = buf_size;
4303  } else {
4304  memcpy(buf, m_stdout_data.c_str(), bytes_available);
4305  m_stdout_data.clear();
4306  }
4307  }
4308  return bytes_available;
4309 }
4310 
4311 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) {
4312  std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex);
4313  size_t bytes_available = m_stderr_data.size();
4314  if (bytes_available > 0) {
4316  if (log)
4317  log->Printf("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")",
4318  static_cast<void *>(buf), static_cast<uint64_t>(buf_size));
4319  if (bytes_available > buf_size) {
4320  memcpy(buf, m_stderr_data.c_str(), buf_size);
4321  m_stderr_data.erase(0, buf_size);
4322  bytes_available = buf_size;
4323  } else {
4324  memcpy(buf, m_stderr_data.c_str(), bytes_available);
4325  m_stderr_data.clear();
4326  }
4327  }
4328  return bytes_available;
4329 }
4330 
4331 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src,
4332  size_t src_len) {
4333  Process *process = (Process *)baton;
4334  process->AppendSTDOUT(static_cast<const char *>(src), src_len);
4335 }
4336 
4338 public:
4339  IOHandlerProcessSTDIO(Process *process, int write_fd)
4340  : IOHandler(process->GetTarget().GetDebugger(),
4341  IOHandler::Type::ProcessIO),
4342  m_process(process), m_write_file(write_fd, false) {
4343  m_pipe.CreateNew(false);
4344  m_read_file.SetDescriptor(GetInputFD(), false);
4345  }
4346 
4347  ~IOHandlerProcessSTDIO() override = default;
4348 
4349  // Each IOHandler gets to run until it is done. It should read data from the
4350  // "in" and place output into "out" and "err and return when done.
4351  void Run() override {
4352  if (!m_read_file.IsValid() || !m_write_file.IsValid() ||
4353  !m_pipe.CanRead() || !m_pipe.CanWrite()) {
4354  SetIsDone(true);
4355  return;
4356  }
4357 
4358  SetIsDone(false);
4359  const int read_fd = m_read_file.GetDescriptor();
4360  TerminalState terminal_state;
4361  terminal_state.Save(read_fd, false);
4362  Terminal terminal(read_fd);
4363  terminal.SetCanonical(false);
4364  terminal.SetEcho(false);
4365 // FD_ZERO, FD_SET are not supported on windows
4366 #ifndef _WIN32
4367  const int pipe_read_fd = m_pipe.GetReadFileDescriptor();
4368  m_is_running = true;
4369  while (!GetIsDone()) {
4370  SelectHelper select_helper;
4371  select_helper.FDSetRead(read_fd);
4372  select_helper.FDSetRead(pipe_read_fd);
4373  Status error = select_helper.Select();
4374 
4375  if (error.Fail()) {
4376  SetIsDone(true);
4377  } else {
4378  char ch = 0;
4379  size_t n;
4380  if (select_helper.FDIsSetRead(read_fd)) {
4381  n = 1;
4382  if (m_read_file.Read(&ch, n).Success() && n == 1) {
4383  if (m_write_file.Write(&ch, n).Fail() || n != 1)
4384  SetIsDone(true);
4385  } else
4386  SetIsDone(true);
4387  }
4388  if (select_helper.FDIsSetRead(pipe_read_fd)) {
4389  size_t bytes_read;
4390  // Consume the interrupt byte
4391  Status error = m_pipe.Read(&ch, 1, bytes_read);
4392  if (error.Success()) {
4393  switch (ch) {
4394  case 'q':
4395  SetIsDone(true);
4396  break;
4397  case 'i':
4400  break;
4401  }
4402  }
4403  }
4404  }
4405  }
4406  m_is_running = false;
4407 #endif
4408  terminal_state.Restore();
4409  }
4410 
4411  void Cancel() override {
4412  SetIsDone(true);
4413  // Only write to our pipe to cancel if we are in
4414  // IOHandlerProcessSTDIO::Run(). We can end up with a python command that
4415  // is being run from the command interpreter:
4416  //
4417  // (lldb) step_process_thousands_of_times
4418  //
4419  // In this case the command interpreter will be in the middle of handling
4420  // the command and if the process pushes and pops the IOHandler thousands
4421  // of times, we can end up writing to m_pipe without ever consuming the
4422  // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up
4423  // deadlocking when the pipe gets fed up and blocks until data is consumed.
4424  if (m_is_running) {
4425  char ch = 'q'; // Send 'q' for quit
4426  size_t bytes_written = 0;
4427  m_pipe.Write(&ch, 1, bytes_written);
4428  }
4429  }
4430 
4431  bool Interrupt() override {
4432  // Do only things that are safe to do in an interrupt context (like in a
4433  // SIGINT handler), like write 1 byte to a file descriptor. This will
4434  // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte
4435  // that was written to the pipe and then call
4436  // m_process->SendAsyncInterrupt() from a much safer location in code.
4437  if (m_active) {
4438  char ch = 'i'; // Send 'i' for interrupt
4439  size_t bytes_written = 0;
4440  Status result = m_pipe.Write(&ch, 1, bytes_written);
4441  return result.Success();
4442  } else {
4443  // This IOHandler might be pushed on the stack, but not being run
4444  // currently so do the right thing if we aren't actively watching for
4445  // STDIN by sending the interrupt to the process. Otherwise the write to
4446  // the pipe above would do nothing. This can happen when the command
4447  // interpreter is running and gets a "expression ...". It will be on the
4448  // IOHandler thread and sending the input is complete to the delegate
4449  // which will cause the expression to run, which will push the process IO
4450  // handler, but not run it.
4451 
4454  return true;
4455  }
4456  }
4457  return false;
4458  }
4459 
4460  void GotEOF() override {}
4461 
4462 protected:
4464  File m_read_file; // Read from this file (usually actual STDIN for LLDB
4465  File m_write_file; // Write to this file (usually the master pty for getting
4466  // io to debuggee)
4468  std::atomic<bool> m_is_running{false};
4469 };
4470 
4472  // First set up the Read Thread for reading/handling process I/O
4473 
4474  std::unique_ptr<ConnectionFileDescriptor> conn_up(
4475  new ConnectionFileDescriptor(fd, true));
4476 
4477  if (conn_up) {
4478  m_stdio_communication.SetConnection(conn_up.release());
4483 
4484  // Now read thread is set up, set up input reader.
4485 
4488  std::make_shared<IOHandlerProcessSTDIO>(this, fd);
4489  }
4490  }
4491 }
4492 
4494  IOHandlerSP io_handler_sp(m_process_input_reader);
4495  if (io_handler_sp)
4496  return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp);
4497  return false;
4498 }
4500  IOHandlerSP io_handler_sp(m_process_input_reader);
4501  if (io_handler_sp) {
4503  if (log)
4504  log->Printf("Process::%s pushing IO handler", __FUNCTION__);
4505 
4506  io_handler_sp->SetIsDone(false);
4507  // If we evaluate an utility function, then we don't cancel the current
4508  // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the
4509  // existing IOHandler that potentially provides the user interface (e.g.
4510  // the IOHandler for Editline).
4511  bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction();
4512  GetTarget().GetDebugger().PushIOHandler(io_handler_sp, cancel_top_handler);
4513  return true;
4514  }
4515  return false;
4516 }
4517 
4519  IOHandlerSP io_handler_sp(m_process_input_reader);
4520  if (io_handler_sp)
4521  return GetTarget().GetDebugger().PopIOHandler(io_handler_sp);
4522  return false;
4523 }
4524 
4525 // The process needs to know about installed plug-ins
4527 
4529 
4530 namespace {
4531 // RestorePlanState is used to record the "is private", "is master" and "okay
4532 // to discard" fields of the plan we are running, and reset it on Clean or on
4533 // destruction. It will only reset the state once, so you can call Clean and
4534 // then monkey with the state and it won't get reset on you again.
4535 
4536 class RestorePlanState {
4537 public:
4538  RestorePlanState(lldb::ThreadPlanSP thread_plan_sp)
4539  : m_thread_plan_sp(thread_plan_sp), m_already_reset(false) {
4540  if (m_thread_plan_sp) {
4541  m_private = m_thread_plan_sp->GetPrivate();
4542  m_is_master = m_thread_plan_sp->IsMasterPlan();
4543  m_okay_to_discard = m_thread_plan_sp->OkayToDiscard();
4544  }
4545  }
4546 
4547  ~RestorePlanState() { Clean(); }
4548 
4549  void Clean() {
4550  if (!m_already_reset && m_thread_plan_sp) {
4551  m_already_reset = true;
4552  m_thread_plan_sp->SetPrivate(m_private);
4553  m_thread_plan_sp->SetIsMasterPlan(m_is_master);
4554  m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard);
4555  }
4556  }
4557 
4558 private:
4559  lldb::ThreadPlanSP m_thread_plan_sp;
4560  bool m_already_reset;
4561  bool m_private;
4562  bool m_is_master;
4563  bool m_okay_to_discard;
4564 };
4565 } // anonymous namespace
4566 
4567 static microseconds
4569  const milliseconds default_one_thread_timeout(250);
4570 
4571  // If the overall wait is forever, then we don't need to worry about it.
4572  if (!options.GetTimeout()) {
4573  return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout()
4574  : default_one_thread_timeout;
4575  }
4576 
4577  // If the one thread timeout is set, use it.
4578  if (options.GetOneThreadTimeout())
4579  return *options.GetOneThreadTimeout();
4580 
4581  // Otherwise use half the total timeout, bounded by the
4582  // default_one_thread_timeout.
4583  return std::min<microseconds>(default_one_thread_timeout,
4584  *options.GetTimeout() / 2);
4585 }
4586 
4587 static Timeout<std::micro>
4589  bool before_first_timeout) {
4590  // If we are going to run all threads the whole time, or if we are only going
4591  // to run one thread, we can just return the overall timeout.
4592  if (!options.GetStopOthers() || !options.GetTryAllThreads())
4593  return options.GetTimeout();
4594 
4595  if (before_first_timeout)
4596  return GetOneThreadExpressionTimeout(options);
4597 
4598  if (!options.GetTimeout())
4599  return llvm::None;
4600  else
4601  return *options.GetTimeout() - GetOneThreadExpressionTimeout(options);
4602 }
4603 
4604 static llvm::Optional<ExpressionResults>
4605 HandleStoppedEvent(Thread &thread, const ThreadPlanSP &thread_plan_sp,
4606  RestorePlanState &restorer, const EventSP &event_sp,
4607  EventSP &event_to_broadcast_sp,
4608  const EvaluateExpressionOptions &options, bool handle_interrupts) {
4610 
4611  ThreadPlanSP plan = thread.GetCompletedPlan();
4612  if (plan == thread_plan_sp && plan->PlanSucceeded()) {
4613  LLDB_LOG(log, "execution completed successfully");
4614 
4615  // Restore the plan state so it will get reported as intended when we are
4616  // done.
4617  restorer.Clean();
4618  return eExpressionCompleted;
4619  }
4620 
4621  StopInfoSP stop_info_sp = thread.GetStopInfo();
4622  if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint &&
4623  stop_info_sp->ShouldNotify(event_sp.get())) {
4624  LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription());
4625  if (!options.DoesIgnoreBreakpoints()) {
4626  // Restore the plan state and then force Private to false. We are going
4627  // to stop because of this plan so we need it to become a public plan or
4628  // it won't report correctly when we continue to its termination later
4629  // on.
4630  restorer.Clean();
4631  thread_plan_sp->SetPrivate(false);
4632  event_to_broadcast_sp = event_sp;
4633  }
4634  return eExpressionHitBreakpoint;
4635  }
4636 
4637  if (!handle_interrupts &&
4639  return llvm::None;
4640 
4641  LLDB_LOG(log, "thread plan did not successfully complete");
4642  if (!options.DoesUnwindOnError())
4643  event_to_broadcast_sp = event_sp;
4644  return eExpressionInterrupted;
4645 }
4646 
4649  lldb::ThreadPlanSP &thread_plan_sp,
4650  const EvaluateExpressionOptions &options,
4651  DiagnosticManager &diagnostic_manager) {
4653 
4654  std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock);
4655 
4656  if (!thread_plan_sp) {
4657  diagnostic_manager.PutString(
4659  "RunThreadPlan called with empty thread plan.");
4660  return eExpressionSetupError;
4661  }
4662 
4663  if (!thread_plan_sp->ValidatePlan(nullptr)) {
4664  diagnostic_manager.PutString(
4666  "RunThreadPlan called with an invalid thread plan.");
4667  return eExpressionSetupError;
4668  }
4669 
4670  if (exe_ctx.GetProcessPtr() != this) {
4671  diagnostic_manager.PutString(eDiagnosticSeverityError,
4672  "RunThreadPlan called on wrong process.");
4673  return eExpressionSetupError;
4674  }
4675 
4676  Thread *thread = exe_ctx.GetThreadPtr();
4677  if (thread == nullptr) {
4678  diagnostic_manager.PutString(eDiagnosticSeverityError,
4679  "RunThreadPlan called with invalid thread.");
4680  return eExpressionSetupError;
4681  }
4682 
4683  // We need to change some of the thread plan attributes for the thread plan
4684  // runner. This will restore them when we are done:
4685 
4686  RestorePlanState thread_plan_restorer(thread_plan_sp);
4687 
4688  // We rely on the thread plan we are running returning "PlanCompleted" if
4689  // when it successfully completes. For that to be true the plan can't be
4690  // private - since private plans suppress themselves in the GetCompletedPlan
4691  // call.
4692 
4693  thread_plan_sp->SetPrivate(false);
4694 
4695  // The plans run with RunThreadPlan also need to be terminal master plans or
4696  // when they are done we will end up asking the plan above us whether we
4697  // should stop, which may give the wrong answer.
4698 
4699  thread_plan_sp->SetIsMasterPlan(true);
4700  thread_plan_sp->SetOkayToDiscard(false);
4701 
4702  // If we are running some utility expression for LLDB, we now have to mark
4703  // this in the ProcesModID of this process. This RAII takes care of marking
4704  // and reverting the mark it once we are done running the expression.
4705  UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr);
4706 
4708  diagnostic_manager.PutString(
4710  "RunThreadPlan called while the private state was not stopped.");
4711  return eExpressionSetupError;
4712  }
4713 
4714  // Save the thread & frame from the exe_ctx for restoration after we run
4715  const uint32_t thread_idx_id = thread->GetIndexID();
4716  StackFrameSP selected_frame_sp = thread->GetSelectedFrame();
4717  if (!selected_frame_sp) {
4718  thread->SetSelectedFrame(nullptr);
4719  selected_frame_sp = thread->GetSelectedFrame();
4720  if (!selected_frame_sp) {
4721  diagnostic_manager.Printf(
4723  "RunThreadPlan called without a selected frame on thread %d",
4724  thread_idx_id);
4725  return eExpressionSetupError;
4726  }
4727  }
4728 
4729  // Make sure the timeout values make sense. The one thread timeout needs to
4730  // be smaller than the overall timeout.
4731  if (options.GetOneThreadTimeout() && options.GetTimeout() &&
4732  *options.GetTimeout() < *options.GetOneThreadTimeout()) {
4733  diagnostic_manager.PutString(eDiagnosticSeverityError,
4734  "RunThreadPlan called with one thread "
4735  "timeout greater than total timeout");
4736  return eExpressionSetupError;
4737  }
4738 
4739  StackID ctx_frame_id = selected_frame_sp->GetStackID();
4740 
4741  // N.B. Running the target may unset the currently selected thread and frame.
4742  // We don't want to do that either, so we should arrange to reset them as
4743  // well.
4744 
4745  lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread();
4746 
4747  uint32_t selected_tid;
4748  StackID selected_stack_id;
4749  if (selected_thread_sp) {
4750  selected_tid = selected_thread_sp->GetIndexID();
4751  selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID();
4752  } else {
4753  selected_tid = LLDB_INVALID_THREAD_ID;
4754  }
4755 
4756  HostThread backup_private_state_thread;
4757  lldb::StateType old_state = eStateInvalid;
4758  lldb::ThreadPlanSP stopper_base_plan_sp;
4759 
4763  // Yikes, we are running on the private state thread! So we can't wait for
4764  // public events on this thread, since we are the thread that is generating
4765  // public events. The simplest thing to do is to spin up a temporary thread
4766  // to handle private state thread events while we are fielding public
4767  // events here.
4768  if (log)
4769  log->Printf("Running thread plan on private state thread, spinning up "
4770  "another state thread to handle the events.");
4771 
4772  backup_private_state_thread = m_private_state_thread;
4773 
4774  // One other bit of business: we want to run just this thread plan and
4775  // anything it pushes, and then stop, returning control here. But in the
4776  // normal course of things, the plan above us on the stack would be given a
4777  // shot at the stop event before deciding to stop, and we don't want that.
4778  // So we insert a "stopper" base plan on the stack before the plan we want
4779  // to run. Since base plans always stop and return control to the user,
4780  // that will do just what we want.
4781  stopper_base_plan_sp.reset(new ThreadPlanBase(*thread));
4782  thread->QueueThreadPlan(stopper_base_plan_sp, false);
4783  // Have to make sure our public state is stopped, since otherwise the
4784  // reporting logic below doesn't work correctly.
4785  old_state = m_public_state.GetValue();
4787 
4788  // Now spin up the private state thread:
4790  }
4791 
4792  thread->QueueThreadPlan(
4793  thread_plan_sp, false); // This used to pass "true" does that make sense?
4794 
4795  if (options.GetDebug()) {
4796  // In this case, we aren't actually going to run, we just want to stop
4797  // right away. Flush this thread so we will refetch the stacks and show the
4798  // correct backtrace.
4799  // FIXME: To make this prettier we should invent some stop reason for this,
4800  // but that
4801  // is only cosmetic, and this functionality is only of use to lldb
4802  // developers who can live with not pretty...
4803  thread->Flush();
4805  }
4806 
4807  ListenerSP listener_sp(
4808  Listener::MakeListener("lldb.process.listener.run-thread-plan"));
4809 
4810  lldb::EventSP event_to_broadcast_sp;
4811 
4812  {
4813  // This process event hijacker Hijacks the Public events and its destructor
4814  // makes sure that the process events get restored on exit to the function.
4815  //
4816  // If the event needs to propagate beyond the hijacker (e.g., the process
4817  // exits during execution), then the event is put into
4818  // event_to_broadcast_sp for rebroadcasting.
4819 
4820  ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp);
4821 
4822  if (log) {
4823  StreamString s;
4824  thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose);
4825  log->Printf("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64
4826  " to run thread plan \"%s\".",
4827  thread->GetIndexID(), thread->GetID(), s.GetData());
4828  }
4829 
4830  bool got_event;
4831  lldb::EventSP event_sp;
4832  lldb::StateType stop_state = lldb::eStateInvalid;
4833 
4834  bool before_first_timeout = true; // This is set to false the first time
4835  // that we have to halt the target.
4836  bool do_resume = true;
4837  bool handle_running_event = true;
4838 
4839  // This is just for accounting:
4840  uint32_t num_resumes = 0;
4841 
4842  // If we are going to run all threads the whole time, or if we are only
4843  // going to run one thread, then we don't need the first timeout. So we
4844  // pretend we are after the first timeout already.
4845  if (!options.GetStopOthers() || !options.GetTryAllThreads())
4846  before_first_timeout = false;
4847 
4848  if (log)
4849  log->Printf("Stop others: %u, try all: %u, before_first: %u.\n",
4850  options.GetStopOthers(), options.GetTryAllThreads(),
4851  before_first_timeout);
4852 
4853  // This isn't going to work if there are unfetched events on the queue. Are
4854  // there cases where we might want to run the remaining events here, and
4855  // then try to call the function? That's probably being too tricky for our
4856  // own good.
4857 
4858  Event *other_events = listener_sp->PeekAtNextEvent();
4859  if (other_events != nullptr) {
4860  diagnostic_manager.PutString(
4862  "RunThreadPlan called with pending events on the queue.");
4863  return eExpressionSetupError;
4864  }
4865 
4866  // We also need to make sure that the next event is delivered. We might be
4867  // calling a function as part of a thread plan, in which case the last
4868  // delivered event could be the running event, and we don't want event
4869  // coalescing to cause us to lose OUR running event...
4871 
4872 // This while loop must exit out the bottom, there's cleanup that we need to do
4873 // when we are done. So don't call return anywhere within it.
4874 
4875 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4876  // It's pretty much impossible to write test cases for things like: One
4877  // thread timeout expires, I go to halt, but the process already stopped on
4878  // the function call stop breakpoint. Turning on this define will make us
4879  // not fetch the first event till after the halt. So if you run a quick
4880  // function, it will have completed, and the completion event will be
4881  // waiting, when you interrupt for halt. The expression evaluation should
4882  // still succeed.
4883  bool miss_first_event = true;
4884 #endif
4885  while (true) {
4886  // We usually want to resume the process if we get to the top of the
4887  // loop. The only exception is if we get two running events with no
4888  // intervening stop, which can happen, we will just wait for then next
4889  // stop event.
4890  if (log)
4891  log->Printf("Top of while loop: do_resume: %i handle_running_event: %i "
4892  "before_first_timeout: %i.",
4893  do_resume, handle_running_event, before_first_timeout);
4894 
4895  if (do_resume || handle_running_event) {
4896  // Do the initial resume and wait for the running event before going
4897  // further.
4898 
4899  if (do_resume) {
4900  num_resumes++;
4901  Status resume_error = PrivateResume();
4902  if (!resume_error.Success()) {
4903  diagnostic_manager.Printf(
4905  "couldn't resume inferior the %d time: \"%s\".", num_resumes,
4906  resume_error.AsCString());
4907  return_value = eExpressionSetupError;
4908  break;
4909  }
4910  }
4911 
4912  got_event =
4913  listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
4914  if (!got_event) {
4915  if (log)
4916  log->Printf("Process::RunThreadPlan(): didn't get any event after "
4917  "resume %" PRIu32 ", exiting.",
4918  num_resumes);
4919 
4920  diagnostic_manager.Printf(eDiagnosticSeverityError,
4921  "didn't get any event after resume %" PRIu32
4922  ", exiting.",
4923  num_resumes);
4924  return_value = eExpressionSetupError;
4925  break;
4926  }
4927 
4928  stop_state =
4930 
4931  if (stop_state != eStateRunning) {
4932  bool restarted = false;
4933 
4934  if (stop_state == eStateStopped) {
4936  event_sp.get());
4937  if (log)
4938  log->Printf(
4939  "Process::RunThreadPlan(): didn't get running event after "
4940  "resume %d, got %s instead (restarted: %i, do_resume: %i, "
4941  "handle_running_event: %i).",
4942  num_resumes, StateAsCString(stop_state), restarted, do_resume,
4943  handle_running_event);
4944  }
4945 
4946  if (restarted) {
4947  // This is probably an overabundance of caution, I don't think I
4948  // should ever get a stopped & restarted event here. But if I do,
4949  // the best thing is to Halt and then get out of here.
4950  const bool clear_thread_plans = false;
4951  const bool use_run_lock = false;
4952  Halt(clear_thread_plans, use_run_lock);
4953  }
4954 
4955  diagnostic_manager.Printf(
4957  "didn't get running event after initial resume, got %s instead.",
4958  StateAsCString(stop_state));
4959  return_value = eExpressionSetupError;
4960  break;
4961  }
4962 
4963  if (log)
4964  log->PutCString("Process::RunThreadPlan(): resuming succeeded.");
4965  // We need to call the function synchronously, so spin waiting for it
4966  // to return. If we get interrupted while executing, we're going to
4967  // lose our context, and won't be able to gather the result at this
4968  // point. We set the timeout AFTER the resume, since the resume takes
4969  // some time and we don't want to charge that to the timeout.
4970  } else {
4971  if (log)
4972  log->PutCString("Process::RunThreadPlan(): waiting for next event.");
4973  }
4974 
4975  do_resume = true;
4976  handle_running_event = true;
4977 
4978  // Now wait for the process to stop again:
4979  event_sp.reset();
4980 
4981  Timeout<std::micro> timeout =
4982  GetExpressionTimeout(options, before_first_timeout);
4983  if (log) {
4984  if (timeout) {
4985  auto now = system_clock::now();
4986  log->Printf("Process::RunThreadPlan(): about to wait - now is %s - "
4987  "endpoint is %s",
4988  llvm::to_string(now).c_str(),
4989  llvm::to_string(now + *timeout).c_str());
4990  } else {
4991  log->Printf("Process::RunThreadPlan(): about to wait forever.");
4992  }
4993  }
4994 
4995 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT
4996  // See comment above...
4997  if (miss_first_event) {
4998  usleep(1000);
4999  miss_first_event = false;
5000  got_event = false;
5001  } else
5002 #endif
5003  got_event = listener_sp->GetEvent(event_sp, timeout);
5004 
5005  if (got_event) {
5006  if (event_sp) {
5007  bool keep_going = false;
5008  if (event_sp->GetType() == eBroadcastBitInterrupt) {
5009  const bool clear_thread_plans = false;
5010  const bool use_run_lock = false;
5011  Halt(clear_thread_plans, use_run_lock);
5012  return_value = eExpressionInterrupted;
5013  diagnostic_manager.PutString(eDiagnosticSeverityRemark,
5014  "execution halted by user interrupt.");
5015  if (log)
5016  log->Printf("Process::RunThreadPlan(): Got interrupted by "
5017  "eBroadcastBitInterrupted, exiting.");
5018  break;
5019  } else {
5020  stop_state =
5022  if (log)
5023  log->Printf(
5024  "Process::RunThreadPlan(): in while loop, got event: %s.",
5025  StateAsCString(stop_state));
5026 
5027  switch (stop_state) {
5028  case lldb::eStateStopped: {
5029  // We stopped, figure out what we are going to do now.
5030  ThreadSP thread_sp =
5031  GetThreadList().FindThreadByIndexID(thread_idx_id);
5032  if (!thread_sp) {
5033  // Ooh, our thread has vanished. Unlikely that this was
5034  // successful execution...
5035  if (log)
5036  log->Printf("Process::RunThreadPlan(): execution completed "
5037  "but our thread (index-id=%u) has vanished.",
5038  thread_idx_id);
5039  return_value = eExpressionInterrupted;
5041  event_sp.get())) {
5042  // If we were restarted, we just need to go back up to fetch
5043  // another event.
5044  if (log) {
5045  log->Printf("Process::RunThreadPlan(): Got a stop and "
5046  "restart, so we'll continue waiting.");
5047  }
5048  keep_going = true;
5049  do_resume = false;
5050  handle_running_event = true;
5051  } else {
5052  const bool handle_interrupts = true;
5053  return_value = *HandleStoppedEvent(
5054  *thread, thread_plan_sp, thread_plan_restorer, event_sp,
5055  event_to_broadcast_sp, options, handle_interrupts);
5056  }
5057  } break;
5058 
5059  case lldb::eStateRunning:
5060  // This shouldn't really happen, but sometimes we do get two
5061  // running events without an intervening stop, and in that case
5062  // we should just go back to waiting for the stop.
5063  do_resume = false;
5064  keep_going = true;
5065  handle_running_event = false;
5066  break;
5067 
5068  default:
5069  if (log)
5070  log->Printf("Process::RunThreadPlan(): execution stopped with "
5071  "unexpected state: %s.",
5072  StateAsCString(stop_state));
5073 
5074  if (stop_state == eStateExited)
5075  event_to_broadcast_sp = event_sp;
5076 
5077  diagnostic_manager.PutString(
5079  "execution stopped with unexpected state.");
5080  return_value = eExpressionInterrupted;
5081  break;
5082  }
5083  }
5084 
5085  if (keep_going)
5086  continue;
5087  else
5088  break;
5089  } else {
5090  if (log)
5091  log->PutCString("Process::RunThreadPlan(): got_event was true, but "
5092  "the event pointer was null. How odd...");
5093  return_value = eExpressionInterrupted;
5094  break;
5095  }
5096  } else {
5097  // If we didn't get an event that means we've timed out... We will
5098  // interrupt the process here. Depending on what we were asked to do
5099  // we will either exit, or try with all threads running for the same
5100  // timeout.
5101 
5102  if (log) {
5103  if (options.GetTryAllThreads()) {
5104  if (before_first_timeout) {
5105  LLDB_LOG(log,
5106  "Running function with one thread timeout timed out.");
5107  } else
5108  LLDB_LOG(log, "Restarting function with all threads enabled and "
5109  "timeout: {0} timed out, abandoning execution.",
5110  timeout);
5111  } else
5112  LLDB_LOG(log, "Running function with timeout: {0} timed out, "
5113  "abandoning execution.",
5114  timeout);
5115  }
5116 
5117  // It is possible that between the time we issued the Halt, and we get
5118  // around to calling Halt the target could have stopped. That's fine,
5119  // Halt will figure that out and send the appropriate Stopped event.
5120  // BUT it is also possible that we stopped & restarted (e.g. hit a
5121  // signal with "stop" set to false.) In
5122  // that case, we'll get the stopped & restarted event, and we should go
5123  // back to waiting for the Halt's stopped event. That's what this
5124  // while loop does.
5125 
5126  bool back_to_top = true;
5127  uint32_t try_halt_again = 0;
5128  bool do_halt = true;
5129  const uint32_t num_retries = 5;
5130  while (try_halt_again < num_retries) {
5131  Status halt_error;
5132  if (do_halt) {
5133  if (log)
5134  log->Printf("Process::RunThreadPlan(): Running Halt.");
5135  const bool clear_thread_plans = false;
5136  const bool use_run_lock = false;
5137  Halt(clear_thread_plans, use_run_lock);
5138  }
5139  if (halt_error.Success()) {
5140  if (log)
5141  log->PutCString("Process::RunThreadPlan(): Halt succeeded.");
5142 
5143  got_event =
5144  listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout());
5145 
5146  if (got_event) {
5147  stop_state =
5149  if (log) {
5150  log->Printf("Process::RunThreadPlan(): Stopped with event: %s",
5151  StateAsCString(stop_state));
5152  if (stop_state == lldb::eStateStopped &&
5154  event_sp.get()))
5155  log->PutCString(" Event was the Halt interruption event.");
5156  }
5157 
5158  if (stop_state == lldb::eStateStopped) {
5160  event_sp.get())) {
5161  if (log)
5162  log->PutCString("Process::RunThreadPlan(): Went to halt "
5163  "but got a restarted event, there must be "
5164  "an un-restarted stopped event so try "
5165  "again... "
5166  "Exiting wait loop.");
5167  try_halt_again++;
5168  do_halt = false;
5169  continue;
5170  }
5171 
5172  // Between the time we initiated the Halt and the time we
5173  // delivered it, the process could have already finished its
5174  // job. Check that here:
5175  const bool handle_interrupts = false;
5176  if (auto result = HandleStoppedEvent(
5177  *thread, thread_plan_sp, thread_plan_restorer, event_sp,
5178  event_to_broadcast_sp, options, handle_interrupts)) {
5179  return_value = *result;
5180  back_to_top = false;
5181  break;
5182  }
5183 
5184  if (!options.GetTryAllThreads()) {
5185  if (log)
5186  log->PutCString("Process::RunThreadPlan(): try_all_threads "
5187  "was false, we stopped so now we're "
5188  "quitting.");
5189  return_value = eExpressionInterrupted;
5190  back_to_top = false;
5191  break;
5192  }
5193 
5194  if (before_first_timeout) {
5195  // Set all the other threads to run, and return to the top of
5196  // the loop, which will continue;
5197  before_first_timeout = false;
5198  thread_plan_sp->SetStopOthers(false);
5199  if (log)
5200  log->PutCString(
5201  "Process::RunThreadPlan(): about to resume.");
5202 
5203  back_to_top = true;
5204  break;
5205  } else {
5206  // Running all threads failed, so return Interrupted.
5207  if (log)
5208  log->PutCString("Process::RunThreadPlan(): running all "
5209  "threads timed out.");
5210  return_value = eExpressionInterrupted;
5211  back_to_top = false;
5212  break;
5213  }
5214  }
5215  } else {
5216  if (log)
5217  log->PutCString("Process::RunThreadPlan(): halt said it "
5218  "succeeded, but I got no event. "
5219  "I'm getting out of here passing Interrupted.");
5220  return_value = eExpressionInterrupted;
5221  back_to_top = false;
5222  break;
5223  }
5224  } else {
5225  try_halt_again++;
5226  continue;
5227  }
5228  }
5229 
5230  if (!back_to_top || try_halt_again > num_retries)
5231  break;
5232  else
5233  continue;
5234  }
5235  } // END WAIT LOOP
5236 
5237  // If we had to start up a temporary private state thread to run this
5238  // thread plan, shut it down now.
5239  if (backup_private_state_thread.IsJoinable()) {
5241  Status error;
5242  m_private_state_thread = backup_private_state_thread;
5243  if (stopper_base_plan_sp) {
5244  thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp);
5245  }
5246  if (old_state != eStateInvalid)
5247  m_public_state.SetValueNoLock(old_state);
5248  }
5249 
5250  if (return_value != eExpressionCompleted && log) {
5251  // Print a backtrace into the log so we can figure out where we are:
5252  StreamString s;
5253  s.PutCString("Thread state after unsuccessful completion: \n");
5254  thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX);
5255  log->PutString(s.GetString());
5256  }
5257  // Restore the thread state if we are going to discard the plan execution.
5258  // There are three cases where this could happen: 1) The execution
5259  // successfully completed 2) We hit a breakpoint, and ignore_breakpoints
5260  // was true 3) We got some other error, and discard_on_error was true
5261  bool should_unwind = (return_value == eExpressionInterrupted &&
5262  options.DoesUnwindOnError()) ||
5263  (return_value == eExpressionHitBreakpoint &&
5264  options.DoesIgnoreBreakpoints());
5265 
5266  if (return_value == eExpressionCompleted || should_unwind) {
5267  thread_plan_sp->RestoreThreadState();
5268  }
5269 
5270  // Now do some processing on the results of the run:
5271  if (return_value == eExpressionInterrupted ||
5272  return_value == eExpressionHitBreakpoint) {
5273  if (log) {
5274  StreamString s;
5275  if (event_sp)
5276  event_sp->Dump(&s);
5277  else {
5278  log->PutCString("Process::RunThreadPlan(): Stop event that "
5279  "interrupted us is NULL.");
5280  }
5281 
5282  StreamString ts;
5283 
5284  const char *event_explanation = nullptr;
5285 
5286  do {
5287  if (!event_sp) {
5288  event_explanation = "<no event>";
5289  break;
5290  } else if (event_sp->GetType() == eBroadcastBitInterrupt) {
5291  event_explanation = "<user interrupt>";
5292  break;
5293  } else {
5294  const Process::ProcessEventData *event_data =
5296  event_sp.get());
5297 
5298  if (!event_data) {
5299  event_explanation = "<no event data>";
5300  break;
5301  }
5302 
5303  Process *process = event_data->GetProcessSP().get();
5304 
5305  if (!process) {
5306  event_explanation = "<no process>";
5307  break;
5308  }
5309 
5310  ThreadList &thread_list = process->GetThreadList();
5311 
5312  uint32_t num_threads = thread_list.GetSize();
5313  uint32_t thread_index;
5314 
5315  ts.Printf("<%u threads> ", num_threads);
5316 
5317  for (thread_index = 0; thread_index < num_threads; ++thread_index) {
5318  Thread *thread = thread_list.GetThreadAtIndex(thread_index).get();
5319 
5320  if (!thread) {
5321  ts.Printf("<?> ");
5322  continue;
5323  }
5324 
5325  ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID());
5326  RegisterContext *register_context =
5327  thread->GetRegisterContext().get();
5328 
5329  if (register_context)
5330  ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC());
5331  else
5332  ts.Printf("[ip unknown] ");
5333 
5334  // Show the private stop info here, the public stop info will be
5335  // from the last natural stop.
5336  lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo();
5337  if (stop_info_sp) {
5338  const char *stop_desc = stop_info_sp->GetDescription();
5339  if (stop_desc)
5340  ts.PutCString(stop_desc);
5341  }
5342  ts.Printf(">");
5343  }
5344 
5345  event_explanation = ts.GetData();
5346  }
5347  } while (0);
5348 
5349  if (event_explanation)
5350  log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s",
5351  s.GetData(), event_explanation);
5352  else
5353  log->Printf("Process::RunThreadPlan(): execution interrupted: %s",
5354  s.GetData());
5355  }
5356 
5357  if (should_unwind) {
5358  if (log)
5359  log->Printf("Process::RunThreadPlan: ExecutionInterrupted - "
5360  "discarding thread plans up to %p.",
5361  static_cast<void *>(thread_plan_sp.get()));
5362  thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5363  } else {
5364  if (log)
5365  log->Printf("Process::RunThreadPlan: ExecutionInterrupted - for "
5366  "plan: %p not discarding.",
5367  static_cast<void *>(thread_plan_sp.get()));
5368  }
5369  } else if (return_value == eExpressionSetupError) {
5370  if (log)
5371  log->PutCString("Process::RunThreadPlan(): execution set up error.");
5372 
5373  if (options.DoesUnwindOnError()) {
5374  thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5375  }
5376  } else {
5377  if (thread->IsThreadPlanDone(thread_plan_sp.get())) {
5378  if (log)
5379  log->PutCString("Process::RunThreadPlan(): thread plan is done");
5380  return_value = eExpressionCompleted;
5381  } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) {
5382  if (log)
5383  log->PutCString(
5384  "Process::RunThreadPlan(): thread plan was discarded");
5385  return_value = eExpressionDiscarded;
5386  } else {
5387  if (log)
5388  log->PutCString(
5389  "Process::RunThreadPlan(): thread plan stopped in mid course");
5390  if (options.DoesUnwindOnError() && thread_plan_sp) {
5391  if (log)
5392  log->PutCString("Process::RunThreadPlan(): discarding thread plan "
5393  "'cause unwind_on_error is set.");
5394  thread->DiscardThreadPlansUpToPlan(thread_plan_sp);
5395  }
5396  }
5397  }
5398 
5399  // Thread we ran the function in may have gone away because we ran the
5400  // target Check that it's still there, and if it is put it back in the
5401  // context. Also restore the frame in the context if it is still present.
5402  thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get();
5403  if (thread) {
5404  exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id));
5405  }
5406 
5407  // Also restore the current process'es selected frame & thread, since this
5408  // function calling may be done behind the user's back.
5409 
5410  if (selected_tid != LLDB_INVALID_THREAD_ID) {
5411  if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) &&
5412  selected_stack_id.IsValid()) {
5413  // We were able to restore the selected thread, now restore the frame:
5414  std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5415  StackFrameSP old_frame_sp =
5416  GetThreadList().GetSelectedThread()->GetFrameWithStackID(
5417  selected_stack_id);
5418  if (old_frame_sp)
5419  GetThreadList().GetSelectedThread()->SetSelectedFrame(
5420  old_frame_sp.get());
5421  }
5422  }
5423  }
5424 
5425  // If the process exited during the run of the thread plan, notify everyone.
5426 
5427  if (event_to_broadcast_sp) {
5428  if (log)
5429  log->PutCString("Process::RunThreadPlan(): rebroadcasting event.");
5430  BroadcastEvent(event_to_broadcast_sp);
5431  }
5432 
5433  return return_value;
5434 }
5435 
5437  const char *result_name;
5438 
5439  switch (result) {
5440  case eExpressionCompleted:
5441  result_name = "eExpressionCompleted";
5442  break;
5443  case eExpressionDiscarded:
5444  result_name = "eExpressionDiscarded";
5445  break;
5447  result_name = "eExpressionInterrupted";
5448  break;
5450  result_name = "eExpressionHitBreakpoint";
5451  break;
5452  case eExpressionSetupError:
5453  result_name = "eExpressionSetupError";
5454  break;
5455  case eExpressionParseError:
5456  result_name = "eExpressionParseError";
5457  break;
5459  result_name = "eExpressionResultUnavailable";
5460  break;
5461  case eExpressionTimedOut:
5462  result_name = "eExpressionTimedOut";
5463  break;
5465  result_name = "eExpressionStoppedForDebug";
5466  break;
5467  }
5468  return result_name;
5469 }
5470 
5472  const StateType state = GetState();
5473  if (StateIsStoppedState(state, false)) {
5474  if (state == eStateExited) {
5475  int exit_status = GetExitStatus();
5476  const char *exit_description = GetExitDescription();
5477  strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n",
5478  GetID(), exit_status, exit_status,
5479  exit_description ? exit_description : "");
5480  } else {
5481  if (state == eStateConnected)
5482  strm.Printf("Connected to remote target.\n");
5483  else
5484  strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state));
5485  }
5486  } else {
5487  strm.Printf("Process %" PRIu64 " is running.\n", GetID());
5488  }
5489 }
5490 
5492  bool only_threads_with_stop_reason,
5493  uint32_t start_frame, uint32_t num_frames,
5494  uint32_t num_frames_with_source,
5495  bool stop_format) {
5496  size_t num_thread_infos_dumped = 0;
5497 
5498  // You can't hold the thread list lock while calling Thread::GetStatus. That
5499  // very well might run code (e.g. if we need it to get return values or
5500  // arguments.) For that to work the process has to be able to acquire it.
5501  // So instead copy the thread ID's, and look them up one by one:
5502 
5503  uint32_t num_threads;
5504  std::vector<lldb::tid_t> thread_id_array;
5505  // Scope for thread list locker;
5506  {
5507  std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex());
5508  ThreadList &curr_thread_list = GetThreadList();
5509  num_threads = curr_thread_list.GetSize();
5510  uint32_t idx;
5511  thread_id_array.resize(num_threads);
5512  for (idx = 0; idx < num_threads; ++idx)
5513  thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID();
5514  }
5515 
5516  for (uint32_t i = 0; i < num_threads; i++) {
5517  ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i]));
5518  if (thread_sp) {
5519  if (only_threads_with_stop_reason) {
5520  StopInfoSP stop_info_sp = thread_sp->GetStopInfo();
5521  if (!stop_info_sp || !stop_info_sp->IsValid())
5522  continue;
5523  }
5524  thread_sp->GetStatus(strm, start_frame, num_frames,
5525  num_frames_with_source,
5526  stop_format);
5527  ++num_thread_infos_dumped;
5528  } else {
5530  if (log)
5531  log->Printf("Process::GetThreadStatus - thread 0x" PRIu64
5532  " vanished while running Thread::GetStatus.");
5533  }
5534  }
5535  return num_thread_infos_dumped;
5536 }
5537 
5540 }
5541 
5544  region.GetByteSize());
5545 }
5546 
5548  void *baton) {
5549  m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton));
5550 }
5551 
5553  bool result = true;
5554  while (!m_pre_resume_actions.empty()) {
5555  struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back();
5556  m_pre_resume_actions.pop_back();
5557  bool this_result = action.callback(action.baton);
5558  if (result)
5559  result = this_result;
5560  }
5561  return result;
5562 }
5563 
5565 
5567 {
5568  PreResumeCallbackAndBaton element(callback, baton);
5569  auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element);
5570  if (found_iter != m_pre_resume_actions.end())
5571  {
5572  m_pre_resume_actions.erase(found_iter);
5573  }
5574 }
5575 
5578  return m_private_run_lock;
5579  else
5580  return m_public_run_lock;
5581 }
5582 
5584  m_thread_list.Flush();
5587  m_queue_list.Clear();
5589 }
5590 
5593  if (log)
5594  log->Printf("Process::%s()", __FUNCTION__);
5595 
5596  Target &target = GetTarget();
5597  target.CleanupProcess();
5598  target.ClearModules(false);
5599  m_dynamic_checkers_up.reset();
5600  m_abi_sp.reset();
5601  m_system_runtime_up.reset();
5602  m_os_up.reset();
5603  m_dyld_up.reset();
5604  m_jit_loaders_up.reset();
5605  m_image_tokens.clear();
5607  m_language_runtimes.clear();
5610  m_memory_cache.Clear(true);
5611  DoDidExec();
5612  CompleteAttach();
5613  // Flush the process (threads and all stack frames) after running
5614  // CompleteAttach() in case the dynamic loader loaded things in new
5615  // locations.
5616  Flush();
5617 
5618  // After we figure out what was loaded/unloaded in CompleteAttach, we need to
5619  // let the target know so it can do any cleanup it needs to.
5620  target.DidExec();
5621 }
5622 
5624  if (address == nullptr) {
5625  error.SetErrorString("Invalid address argument");
5626  return LLDB_INVALID_ADDRESS;
5627  }
5628 
5629  addr_t function_addr = LLDB_INVALID_ADDRESS;
5630 
5631  addr_t addr = address->GetLoadAddress(&GetTarget());
5632  std::map<addr_t, addr_t>::const_iterator iter =
5633  m_resolved_indirect_addresses.find(addr);
5634  if (iter != m_resolved_indirect_addresses.end()) {
5635  function_addr = (*iter).second;
5636  } else {
5637  if (!InferiorCall(this, address, function_addr)) {
5638  Symbol *symbol = address->CalculateSymbolContextSymbol();
5640  "Unable to call resolver for indirect function %s",
5641  symbol ? symbol->GetName().AsCString() : "<UNKNOWN>");
5642  function_addr = LLDB_INVALID_ADDRESS;
5643  } else {
5645  std::pair<addr_t, addr_t>(addr, function_addr));
5646  }
5647  }
5648  return function_addr;
5649 }
5650