LLDB mainline
DisassemblerLLVMC.cpp
Go to the documentation of this file.
1//===-- DisassemblerLLVMC.cpp ---------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "DisassemblerLLVMC.h"
10
11#include "llvm-c/Disassembler.h"
12#include "llvm/ADT/SmallString.h"
13#include "llvm/ADT/StringExtras.h"
14#include "llvm/MC/MCAsmInfo.h"
15#include "llvm/MC/MCContext.h"
16#include "llvm/MC/MCDisassembler/MCDisassembler.h"
17#include "llvm/MC/MCDisassembler/MCExternalSymbolizer.h"
18#include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
19#include "llvm/MC/MCInst.h"
20#include "llvm/MC/MCInstPrinter.h"
21#include "llvm/MC/MCInstrAnalysis.h"
22#include "llvm/MC/MCInstrInfo.h"
23#include "llvm/MC/MCRegisterInfo.h"
24#include "llvm/MC/MCSubtargetInfo.h"
25#include "llvm/MC/MCTargetOptions.h"
26#include "llvm/MC/TargetRegistry.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/ScopedPrinter.h"
29#include "llvm/Support/TargetSelect.h"
30#include "llvm/TargetParser/AArch64TargetParser.h"
31
32#include "lldb/Core/Address.h"
33#include "lldb/Core/Module.h"
36#include "lldb/Target/Process.h"
40#include "lldb/Target/Target.h"
43#include "lldb/Utility/Log.h"
45#include "lldb/Utility/Stream.h"
46#include <optional>
47
48using namespace lldb;
49using namespace lldb_private;
50
52
54public:
55 static std::unique_ptr<MCDisasmInstance>
56 Create(const char *triple, const char *cpu, const char *features_str,
57 unsigned flavor, DisassemblerLLVMC &owner);
58
59 ~MCDisasmInstance() = default;
60
61 uint64_t GetMCInst(const uint8_t *opcode_data, size_t opcode_data_len,
62 lldb::addr_t pc, llvm::MCInst &mc_inst) const;
63 void PrintMCInst(llvm::MCInst &mc_inst, lldb::addr_t pc,
64 std::string &inst_string, std::string &comments_string);
65 void SetStyle(bool use_hex_immed, HexImmediateStyle hex_style);
66 void SetUseColor(bool use_color);
67 bool GetUseColor() const;
68 bool CanBranch(llvm::MCInst &mc_inst) const;
69 bool HasDelaySlot(llvm::MCInst &mc_inst) const;
70 bool IsCall(llvm::MCInst &mc_inst) const;
71 bool IsLoad(llvm::MCInst &mc_inst) const;
72 bool IsAuthenticated(llvm::MCInst &mc_inst) const;
73
74private:
75 MCDisasmInstance(std::unique_ptr<llvm::MCInstrInfo> &&instr_info_up,
76 std::unique_ptr<llvm::MCRegisterInfo> &&reg_info_up,
77 std::unique_ptr<llvm::MCSubtargetInfo> &&subtarget_info_up,
78 std::unique_ptr<llvm::MCAsmInfo> &&asm_info_up,
79 std::unique_ptr<llvm::MCContext> &&context_up,
80 std::unique_ptr<llvm::MCDisassembler> &&disasm_up,
81 std::unique_ptr<llvm::MCInstPrinter> &&instr_printer_up,
82 std::unique_ptr<llvm::MCInstrAnalysis> &&instr_analysis_up);
83
84 std::unique_ptr<llvm::MCInstrInfo> m_instr_info_up;
85 std::unique_ptr<llvm::MCRegisterInfo> m_reg_info_up;
86 std::unique_ptr<llvm::MCSubtargetInfo> m_subtarget_info_up;
87 std::unique_ptr<llvm::MCAsmInfo> m_asm_info_up;
88 std::unique_ptr<llvm::MCContext> m_context_up;
89 std::unique_ptr<llvm::MCDisassembler> m_disasm_up;
90 std::unique_ptr<llvm::MCInstPrinter> m_instr_printer_up;
91 std::unique_ptr<llvm::MCInstrAnalysis> m_instr_analysis_up;
92};
93
94namespace x86 {
95
96/// These are the three values deciding instruction control flow kind.
97/// InstructionLengthDecode function decodes an instruction and get this struct.
98///
99/// primary_opcode
100/// Primary opcode of the instruction.
101/// For one-byte opcode instruction, it's the first byte after prefix.
102/// For two- and three-byte opcodes, it's the second byte.
103///
104/// opcode_len
105/// The length of opcode in bytes. Valid opcode lengths are 1, 2, or 3.
106///
107/// modrm
108/// ModR/M byte of the instruction.
109/// Bits[7:6] indicate MOD. Bits[5:3] specify a register and R/M bits[2:0]
110/// may contain a register or specify an addressing mode, depending on MOD.
113 uint8_t opcode_len;
114 uint8_t modrm;
115};
116
117/// Determine the InstructionControlFlowKind based on opcode and modrm bytes.
118/// Refer to http://ref.x86asm.net/coder.html for the full list of opcode and
119/// instruction set.
120///
121/// \param[in] opcode_and_modrm
122/// Contains primary_opcode byte, its length, and ModR/M byte.
123/// Refer to the struct InstructionOpcodeAndModrm for details.
124///
125/// \return
126/// The control flow kind of the instruction or
127/// eInstructionControlFlowKindOther if the instruction doesn't affect
128/// the control flow of the program.
131 uint8_t opcode = opcode_and_modrm.primary_opcode;
132 uint8_t opcode_len = opcode_and_modrm.opcode_len;
133 uint8_t modrm = opcode_and_modrm.modrm;
134
135 if (opcode_len > 2)
137
138 if (opcode >= 0x70 && opcode <= 0x7F) {
139 if (opcode_len == 1)
141 else
143 }
144
145 if (opcode >= 0x80 && opcode <= 0x8F) {
146 if (opcode_len == 2)
148 else
150 }
151
152 switch (opcode) {
153 case 0x9A:
154 if (opcode_len == 1)
156 break;
157 case 0xFF:
158 if (opcode_len == 1) {
159 uint8_t modrm_reg = (modrm >> 3) & 7;
160 if (modrm_reg == 2)
162 else if (modrm_reg == 3)
164 else if (modrm_reg == 4)
166 else if (modrm_reg == 5)
168 }
169 break;
170 case 0xE8:
171 if (opcode_len == 1)
173 break;
174 case 0xCD:
175 case 0xCC:
176 case 0xCE:
177 case 0xF1:
178 if (opcode_len == 1)
180 break;
181 case 0xCF:
182 if (opcode_len == 1)
184 break;
185 case 0xE9:
186 case 0xEB:
187 if (opcode_len == 1)
189 break;
190 case 0xEA:
191 if (opcode_len == 1)
193 break;
194 case 0xE3:
195 case 0xE0:
196 case 0xE1:
197 case 0xE2:
198 if (opcode_len == 1)
200 break;
201 case 0xC3:
202 case 0xC2:
203 if (opcode_len == 1)
205 break;
206 case 0xCB:
207 case 0xCA:
208 if (opcode_len == 1)
210 break;
211 case 0x05:
212 case 0x34:
213 if (opcode_len == 2)
215 break;
216 case 0x35:
217 case 0x07:
218 if (opcode_len == 2)
220 break;
221 case 0x01:
222 if (opcode_len == 2) {
223 switch (modrm) {
224 case 0xc1:
226 case 0xc2:
227 case 0xc3:
229 default:
230 break;
231 }
232 }
233 break;
234 default:
235 break;
236 }
237
239}
240
241/// Decode an instruction into opcode, modrm and opcode_len.
242/// Refer to http://ref.x86asm.net/coder.html for the instruction bytes layout.
243/// Opcodes in x86 are generally the first byte of instruction, though two-byte
244/// instructions and prefixes exist. ModR/M is the byte following the opcode
245/// and adds additional information for how the instruction is executed.
246///
247/// \param[in] inst_bytes
248/// Raw bytes of the instruction
249///
250///
251/// \param[in] bytes_len
252/// The length of the inst_bytes array.
253///
254/// \param[in] is_exec_mode_64b
255/// If true, the execution mode is 64 bit.
256///
257/// \return
258/// Returns decoded instruction as struct InstructionOpcodeAndModrm, holding
259/// primary_opcode, opcode_len and modrm byte. Refer to the struct definition
260/// for more details.
261/// Otherwise if the given instruction is invalid, returns std::nullopt.
262std::optional<InstructionOpcodeAndModrm>
263InstructionLengthDecode(const uint8_t *inst_bytes, int bytes_len,
264 bool is_exec_mode_64b) {
265 int op_idx = 0;
266 bool prefix_done = false;
267 InstructionOpcodeAndModrm ret = {0, 0, 0};
268
269 // In most cases, the primary_opcode is the first byte of the instruction
270 // but some instructions have a prefix to be skipped for these calculations.
271 // The following mapping is inspired from libipt's instruction decoding logic
272 // in `src/pt_ild.c`
273 while (!prefix_done) {
274 if (op_idx >= bytes_len)
275 return std::nullopt;
276
277 ret.primary_opcode = inst_bytes[op_idx];
278 switch (ret.primary_opcode) {
279 // prefix_ignore
280 case 0x26:
281 case 0x2e:
282 case 0x36:
283 case 0x3e:
284 case 0x64:
285 case 0x65:
286 // prefix_osz, prefix_asz
287 case 0x66:
288 case 0x67:
289 // prefix_lock, prefix_f2, prefix_f3
290 case 0xf0:
291 case 0xf2:
292 case 0xf3:
293 op_idx++;
294 break;
295
296 // prefix_rex
297 case 0x40:
298 case 0x41:
299 case 0x42:
300 case 0x43:
301 case 0x44:
302 case 0x45:
303 case 0x46:
304 case 0x47:
305 case 0x48:
306 case 0x49:
307 case 0x4a:
308 case 0x4b:
309 case 0x4c:
310 case 0x4d:
311 case 0x4e:
312 case 0x4f:
313 if (is_exec_mode_64b)
314 op_idx++;
315 else
316 prefix_done = true;
317 break;
318
319 // prefix_vex_c4, c5
320 case 0xc5:
321 if (!is_exec_mode_64b && (inst_bytes[op_idx + 1] & 0xc0) != 0xc0) {
322 prefix_done = true;
323 break;
324 }
325
326 ret.opcode_len = 2;
327 ret.primary_opcode = inst_bytes[op_idx + 2];
328 ret.modrm = inst_bytes[op_idx + 3];
329 return ret;
330
331 case 0xc4:
332 if (!is_exec_mode_64b && (inst_bytes[op_idx + 1] & 0xc0) != 0xc0) {
333 prefix_done = true;
334 break;
335 }
336 ret.opcode_len = inst_bytes[op_idx + 1] & 0x1f;
337 ret.primary_opcode = inst_bytes[op_idx + 3];
338 ret.modrm = inst_bytes[op_idx + 4];
339 return ret;
340
341 // prefix_evex
342 case 0x62:
343 if (!is_exec_mode_64b && (inst_bytes[op_idx + 1] & 0xc0) != 0xc0) {
344 prefix_done = true;
345 break;
346 }
347 ret.opcode_len = inst_bytes[op_idx + 1] & 0x03;
348 ret.primary_opcode = inst_bytes[op_idx + 4];
349 ret.modrm = inst_bytes[op_idx + 5];
350 return ret;
351
352 default:
353 prefix_done = true;
354 break;
355 }
356 } // prefix done
357
358 ret.primary_opcode = inst_bytes[op_idx];
359 ret.modrm = inst_bytes[op_idx + 1];
360 ret.opcode_len = 1;
361
362 // If the first opcode is 0F, it's two- or three- byte opcodes.
363 if (ret.primary_opcode == 0x0F) {
364 ret.primary_opcode = inst_bytes[++op_idx]; // get the next byte
365
366 if (ret.primary_opcode == 0x38) {
367 ret.opcode_len = 3;
368 ret.primary_opcode = inst_bytes[++op_idx]; // get the next byte
369 ret.modrm = inst_bytes[op_idx + 1];
370 } else if (ret.primary_opcode == 0x3A) {
371 ret.opcode_len = 3;
372 ret.primary_opcode = inst_bytes[++op_idx];
373 ret.modrm = inst_bytes[op_idx + 1];
374 } else if ((ret.primary_opcode & 0xf8) == 0x38) {
375 ret.opcode_len = 0;
376 ret.primary_opcode = inst_bytes[++op_idx];
377 ret.modrm = inst_bytes[op_idx + 1];
378 } else if (ret.primary_opcode == 0x0F) {
379 ret.opcode_len = 3;
380 // opcode is 0x0F, no needs to update
381 ret.modrm = inst_bytes[op_idx + 1];
382 } else {
383 ret.opcode_len = 2;
384 ret.modrm = inst_bytes[op_idx + 1];
385 }
386 }
387
388 return ret;
389}
390
392 Opcode m_opcode) {
393 std::optional<InstructionOpcodeAndModrm> ret;
394
395 if (m_opcode.GetOpcodeBytes() == nullptr || m_opcode.GetByteSize() <= 0) {
396 // x86_64 and i386 instructions are categorized as Opcode::Type::eTypeBytes
398 }
399
400 // Opcode bytes will be decoded into primary_opcode, modrm and opcode length.
401 // These are the three values deciding instruction control flow kind.
402 ret = InstructionLengthDecode((const uint8_t *)m_opcode.GetOpcodeBytes(),
403 m_opcode.GetByteSize(), is_exec_mode_64b);
404 if (!ret)
406 else
407 return MapOpcodeIntoControlFlowKind(*ret);
408}
409
410} // namespace x86
411
413public:
415 const lldb_private::Address &address,
416 AddressClass addr_class)
417 : Instruction(address, addr_class),
418 m_disasm_wp(std::static_pointer_cast<DisassemblerLLVMC>(
419 disasm.shared_from_this())) {}
420
421 ~InstructionLLVMC() override = default;
422
423 bool DoesBranch() override {
425 return m_does_branch;
426 }
427
428 bool HasDelaySlot() override {
430 return m_has_delay_slot;
431 }
432
433 bool IsLoad() override {
435 return m_is_load;
436 }
437
438 bool IsAuthenticated() override {
440 return m_is_authenticated;
441 }
442
444 DisassemblerScope disasm(*this);
445 return GetDisasmToUse(is_alternate_isa, disasm);
446 }
447
448 size_t Decode(const lldb_private::Disassembler &disassembler,
449 const lldb_private::DataExtractor &data,
450 lldb::offset_t data_offset) override {
451 // All we have to do is read the opcode which can be easy for some
452 // architectures
453 bool got_op = false;
454 DisassemblerScope disasm(*this);
455 if (disasm) {
456 const ArchSpec &arch = disasm->GetArchitecture();
457 const lldb::ByteOrder byte_order = data.GetByteOrder();
458
459 const uint32_t min_op_byte_size = arch.GetMinimumOpcodeByteSize();
460 const uint32_t max_op_byte_size = arch.GetMaximumOpcodeByteSize();
461 if (min_op_byte_size == max_op_byte_size) {
462 // Fixed size instructions, just read that amount of data.
463 if (!data.ValidOffsetForDataOfSize(data_offset, min_op_byte_size))
464 return false;
465
466 switch (min_op_byte_size) {
467 case 1:
468 m_opcode.SetOpcode8(data.GetU8(&data_offset), byte_order);
469 got_op = true;
470 break;
471
472 case 2:
473 m_opcode.SetOpcode16(data.GetU16(&data_offset), byte_order);
474 got_op = true;
475 break;
476
477 case 4:
478 m_opcode.SetOpcode32(data.GetU32(&data_offset), byte_order);
479 got_op = true;
480 break;
481
482 case 8:
483 m_opcode.SetOpcode64(data.GetU64(&data_offset), byte_order);
484 got_op = true;
485 break;
486
487 default:
488 m_opcode.SetOpcodeBytes(data.PeekData(data_offset, min_op_byte_size),
489 min_op_byte_size);
490 got_op = true;
491 break;
492 }
493 }
494 if (!got_op) {
495 bool is_alternate_isa = false;
497 GetDisasmToUse(is_alternate_isa, disasm);
498
499 const llvm::Triple::ArchType machine = arch.GetMachine();
500 if (machine == llvm::Triple::arm || machine == llvm::Triple::thumb) {
501 if (machine == llvm::Triple::thumb || is_alternate_isa) {
502 uint32_t thumb_opcode = data.GetU16(&data_offset);
503 if ((thumb_opcode & 0xe000) != 0xe000 ||
504 ((thumb_opcode & 0x1800u) == 0)) {
505 m_opcode.SetOpcode16(thumb_opcode, byte_order);
506 m_is_valid = true;
507 } else {
508 thumb_opcode <<= 16;
509 thumb_opcode |= data.GetU16(&data_offset);
510 m_opcode.SetOpcode16_2(thumb_opcode, byte_order);
511 m_is_valid = true;
512 }
513 } else {
514 m_opcode.SetOpcode32(data.GetU32(&data_offset), byte_order);
515 m_is_valid = true;
516 }
517 } else {
518 // The opcode isn't evenly sized, so we need to actually use the llvm
519 // disassembler to parse it and get the size.
520 uint8_t *opcode_data =
521 const_cast<uint8_t *>(data.PeekData(data_offset, 1));
522 const size_t opcode_data_len = data.BytesLeft(data_offset);
524 llvm::MCInst inst;
525
526 const size_t inst_size =
527 mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len, pc, inst);
528 if (inst_size == 0)
529 m_opcode.Clear();
530 else {
531 m_opcode.SetOpcodeBytes(opcode_data, inst_size);
532 m_is_valid = true;
533 }
534 }
535 }
536 return m_opcode.GetByteSize();
537 }
538 return 0;
539 }
540
541 void AppendComment(std::string &description) {
542 if (m_comment.empty())
543 m_comment.swap(description);
544 else {
545 m_comment.append(", ");
546 m_comment.append(description);
547 }
548 }
549
552 DisassemblerScope disasm(*this, exe_ctx);
553 if (disasm){
554 if (disasm->GetArchitecture().GetMachine() == llvm::Triple::x86)
555 return x86::GetControlFlowKind(/*is_64b=*/false, m_opcode);
556 else if (disasm->GetArchitecture().GetMachine() == llvm::Triple::x86_64)
557 return x86::GetControlFlowKind(/*is_64b=*/true, m_opcode);
558 }
559
561 }
562
564 const lldb_private::ExecutionContext *exe_ctx) override {
565 DataExtractor data;
566 const AddressClass address_class = GetAddressClass();
567
568 if (m_opcode.GetData(data)) {
569 std::string out_string;
570 std::string markup_out_string;
571 std::string comment_string;
572 std::string markup_comment_string;
573
574 DisassemblerScope disasm(*this, exe_ctx);
575 if (disasm) {
577
578 if (address_class == AddressClass::eCodeAlternateISA)
579 mc_disasm_ptr = disasm->m_alternate_disasm_up.get();
580 else
581 mc_disasm_ptr = disasm->m_disasm_up.get();
582
584 m_using_file_addr = true;
585
586 bool use_hex_immediates = true;
588
589 if (exe_ctx) {
590 Target *target = exe_ctx->GetTargetPtr();
591 if (target) {
592 use_hex_immediates = target->GetUseHexImmediates();
593 hex_style = target->GetHexImmediateStyle();
594
595 const lldb::addr_t load_addr = m_address.GetLoadAddress(target);
596 if (load_addr != LLDB_INVALID_ADDRESS) {
597 pc = load_addr;
598 m_using_file_addr = false;
599 }
600 }
601 }
602
603 const uint8_t *opcode_data = data.GetDataStart();
604 const size_t opcode_data_len = data.GetByteSize();
605 llvm::MCInst inst;
606 size_t inst_size =
607 mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len, pc, inst);
608
609 if (inst_size > 0) {
610 mc_disasm_ptr->SetStyle(use_hex_immediates, hex_style);
611
612 const bool saved_use_color = mc_disasm_ptr->GetUseColor();
613 mc_disasm_ptr->SetUseColor(false);
614 mc_disasm_ptr->PrintMCInst(inst, pc, out_string, comment_string);
615 mc_disasm_ptr->SetUseColor(true);
616 mc_disasm_ptr->PrintMCInst(inst, pc, markup_out_string,
617 markup_comment_string);
618 mc_disasm_ptr->SetUseColor(saved_use_color);
619
620 if (!comment_string.empty()) {
621 AppendComment(comment_string);
622 }
623 }
624
625 if (inst_size == 0) {
626 m_comment.assign("unknown opcode");
627 inst_size = m_opcode.GetByteSize();
628 StreamString mnemonic_strm;
629 lldb::offset_t offset = 0;
630 lldb::ByteOrder byte_order = data.GetByteOrder();
631 switch (inst_size) {
632 case 1: {
633 const uint8_t uval8 = data.GetU8(&offset);
634 m_opcode.SetOpcode8(uval8, byte_order);
635 m_opcode_name.assign(".byte");
636 mnemonic_strm.Printf("0x%2.2x", uval8);
637 } break;
638 case 2: {
639 const uint16_t uval16 = data.GetU16(&offset);
640 m_opcode.SetOpcode16(uval16, byte_order);
641 m_opcode_name.assign(".short");
642 mnemonic_strm.Printf("0x%4.4x", uval16);
643 } break;
644 case 4: {
645 const uint32_t uval32 = data.GetU32(&offset);
646 m_opcode.SetOpcode32(uval32, byte_order);
647 m_opcode_name.assign(".long");
648 mnemonic_strm.Printf("0x%8.8x", uval32);
649 } break;
650 case 8: {
651 const uint64_t uval64 = data.GetU64(&offset);
652 m_opcode.SetOpcode64(uval64, byte_order);
653 m_opcode_name.assign(".quad");
654 mnemonic_strm.Printf("0x%16.16" PRIx64, uval64);
655 } break;
656 default:
657 if (inst_size == 0)
658 return;
659 else {
660 const uint8_t *bytes = data.PeekData(offset, inst_size);
661 if (bytes == nullptr)
662 return;
663 m_opcode_name.assign(".byte");
664 m_opcode.SetOpcodeBytes(bytes, inst_size);
665 mnemonic_strm.Printf("0x%2.2x", bytes[0]);
666 for (uint32_t i = 1; i < inst_size; ++i)
667 mnemonic_strm.Printf(" 0x%2.2x", bytes[i]);
668 }
669 break;
670 }
671 m_mnemonics = std::string(mnemonic_strm.GetString());
672 return;
673 }
674
675 static RegularExpression s_regex(
676 llvm::StringRef("[ \t]*([^ ^\t]+)[ \t]*([^ ^\t].*)?"));
677
678 llvm::SmallVector<llvm::StringRef, 4> matches;
679 if (s_regex.Execute(out_string, &matches)) {
680 m_opcode_name = matches[1].str();
681 m_mnemonics = matches[2].str();
682 }
683 matches.clear();
684 if (s_regex.Execute(markup_out_string, &matches)) {
685 m_markup_opcode_name = matches[1].str();
686 m_markup_mnemonics = matches[2].str();
687 }
688 }
689 }
690 }
691
692 bool IsValid() const { return m_is_valid; }
693
694 bool UsingFileAddress() const { return m_using_file_addr; }
695 size_t GetByteSize() const { return m_opcode.GetByteSize(); }
696
697 /// Grants exclusive access to the disassembler and initializes it with the
698 /// given InstructionLLVMC and an optional ExecutionContext.
700 std::shared_ptr<DisassemblerLLVMC> m_disasm;
701
702 public:
705 const lldb_private::ExecutionContext *exe_ctx = nullptr)
706 : m_disasm(i.m_disasm_wp.lock()) {
707 m_disasm->m_mutex.lock();
708 m_disasm->m_inst = &i;
709 m_disasm->m_exe_ctx = exe_ctx;
710 }
711 ~DisassemblerScope() { m_disasm->m_mutex.unlock(); }
712
713 /// Evaluates to true if this scope contains a valid disassembler.
714 operator bool() const { return static_cast<bool>(m_disasm); }
715
716 std::shared_ptr<DisassemblerLLVMC> operator->() { return m_disasm; }
717 };
718
719 static llvm::StringRef::const_iterator
720 ConsumeWhitespace(llvm::StringRef::const_iterator osi,
721 llvm::StringRef::const_iterator ose) {
722 while (osi != ose) {
723 switch (*osi) {
724 default:
725 return osi;
726 case ' ':
727 case '\t':
728 break;
729 }
730 ++osi;
731 }
732
733 return osi;
734 }
735
736 static std::pair<bool, llvm::StringRef::const_iterator>
737 ConsumeChar(llvm::StringRef::const_iterator osi, const char c,
738 llvm::StringRef::const_iterator ose) {
739 bool found = false;
740
741 osi = ConsumeWhitespace(osi, ose);
742 if (osi != ose && *osi == c) {
743 found = true;
744 ++osi;
745 }
746
747 return std::make_pair(found, osi);
748 }
749
750 static std::pair<Operand, llvm::StringRef::const_iterator>
751 ParseRegisterName(llvm::StringRef::const_iterator osi,
752 llvm::StringRef::const_iterator ose) {
753 Operand ret;
754 ret.m_type = Operand::Type::Register;
755 std::string str;
756
757 osi = ConsumeWhitespace(osi, ose);
758
759 while (osi != ose) {
760 if (*osi >= '0' && *osi <= '9') {
761 if (str.empty()) {
762 return std::make_pair(Operand(), osi);
763 } else {
764 str.push_back(*osi);
765 }
766 } else if (*osi >= 'a' && *osi <= 'z') {
767 str.push_back(*osi);
768 } else {
769 switch (*osi) {
770 default:
771 if (str.empty()) {
772 return std::make_pair(Operand(), osi);
773 } else {
774 ret.m_register = ConstString(str);
775 return std::make_pair(ret, osi);
776 }
777 case '%':
778 if (!str.empty()) {
779 return std::make_pair(Operand(), osi);
780 }
781 break;
782 }
783 }
784 ++osi;
785 }
786
787 ret.m_register = ConstString(str);
788 return std::make_pair(ret, osi);
789 }
790
791 static std::pair<Operand, llvm::StringRef::const_iterator>
792 ParseImmediate(llvm::StringRef::const_iterator osi,
793 llvm::StringRef::const_iterator ose) {
794 Operand ret;
795 ret.m_type = Operand::Type::Immediate;
796 std::string str;
797 bool is_hex = false;
798
799 osi = ConsumeWhitespace(osi, ose);
800
801 while (osi != ose) {
802 if (*osi >= '0' && *osi <= '9') {
803 str.push_back(*osi);
804 } else if (*osi >= 'a' && *osi <= 'f') {
805 if (is_hex) {
806 str.push_back(*osi);
807 } else {
808 return std::make_pair(Operand(), osi);
809 }
810 } else {
811 switch (*osi) {
812 default:
813 if (str.empty()) {
814 return std::make_pair(Operand(), osi);
815 } else {
816 ret.m_immediate = strtoull(str.c_str(), nullptr, 0);
817 return std::make_pair(ret, osi);
818 }
819 case 'x':
820 if (!str.compare("0")) {
821 is_hex = true;
822 str.push_back(*osi);
823 } else {
824 return std::make_pair(Operand(), osi);
825 }
826 break;
827 case '#':
828 case '$':
829 if (!str.empty()) {
830 return std::make_pair(Operand(), osi);
831 }
832 break;
833 case '-':
834 if (str.empty()) {
835 ret.m_negative = true;
836 } else {
837 return std::make_pair(Operand(), osi);
838 }
839 }
840 }
841 ++osi;
842 }
843
844 ret.m_immediate = strtoull(str.c_str(), nullptr, 0);
845 return std::make_pair(ret, osi);
846 }
847
848 // -0x5(%rax,%rax,2)
849 static std::pair<Operand, llvm::StringRef::const_iterator>
850 ParseIntelIndexedAccess(llvm::StringRef::const_iterator osi,
851 llvm::StringRef::const_iterator ose) {
852 std::pair<Operand, llvm::StringRef::const_iterator> offset_and_iterator =
853 ParseImmediate(osi, ose);
854 if (offset_and_iterator.first.IsValid()) {
855 osi = offset_and_iterator.second;
856 }
857
858 bool found = false;
859 std::tie(found, osi) = ConsumeChar(osi, '(', ose);
860 if (!found) {
861 return std::make_pair(Operand(), osi);
862 }
863
864 std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
865 ParseRegisterName(osi, ose);
866 if (base_and_iterator.first.IsValid()) {
867 osi = base_and_iterator.second;
868 } else {
869 return std::make_pair(Operand(), osi);
870 }
871
872 std::tie(found, osi) = ConsumeChar(osi, ',', ose);
873 if (!found) {
874 return std::make_pair(Operand(), osi);
875 }
876
877 std::pair<Operand, llvm::StringRef::const_iterator> index_and_iterator =
878 ParseRegisterName(osi, ose);
879 if (index_and_iterator.first.IsValid()) {
880 osi = index_and_iterator.second;
881 } else {
882 return std::make_pair(Operand(), osi);
883 }
884
885 std::tie(found, osi) = ConsumeChar(osi, ',', ose);
886 if (!found) {
887 return std::make_pair(Operand(), osi);
888 }
889
890 std::pair<Operand, llvm::StringRef::const_iterator>
891 multiplier_and_iterator = ParseImmediate(osi, ose);
892 if (index_and_iterator.first.IsValid()) {
893 osi = index_and_iterator.second;
894 } else {
895 return std::make_pair(Operand(), osi);
896 }
897
898 std::tie(found, osi) = ConsumeChar(osi, ')', ose);
899 if (!found) {
900 return std::make_pair(Operand(), osi);
901 }
902
903 Operand product;
904 product.m_type = Operand::Type::Product;
905 product.m_children.push_back(index_and_iterator.first);
906 product.m_children.push_back(multiplier_and_iterator.first);
907
908 Operand index;
909 index.m_type = Operand::Type::Sum;
910 index.m_children.push_back(base_and_iterator.first);
911 index.m_children.push_back(product);
912
913 if (offset_and_iterator.first.IsValid()) {
914 Operand offset;
915 offset.m_type = Operand::Type::Sum;
916 offset.m_children.push_back(offset_and_iterator.first);
917 offset.m_children.push_back(index);
918
919 Operand deref;
920 deref.m_type = Operand::Type::Dereference;
921 deref.m_children.push_back(offset);
922 return std::make_pair(deref, osi);
923 } else {
924 Operand deref;
925 deref.m_type = Operand::Type::Dereference;
926 deref.m_children.push_back(index);
927 return std::make_pair(deref, osi);
928 }
929 }
930
931 // -0x10(%rbp)
932 static std::pair<Operand, llvm::StringRef::const_iterator>
933 ParseIntelDerefAccess(llvm::StringRef::const_iterator osi,
934 llvm::StringRef::const_iterator ose) {
935 std::pair<Operand, llvm::StringRef::const_iterator> offset_and_iterator =
936 ParseImmediate(osi, ose);
937 if (offset_and_iterator.first.IsValid()) {
938 osi = offset_and_iterator.second;
939 }
940
941 bool found = false;
942 std::tie(found, osi) = ConsumeChar(osi, '(', ose);
943 if (!found) {
944 return std::make_pair(Operand(), osi);
945 }
946
947 std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
948 ParseRegisterName(osi, ose);
949 if (base_and_iterator.first.IsValid()) {
950 osi = base_and_iterator.second;
951 } else {
952 return std::make_pair(Operand(), osi);
953 }
954
955 std::tie(found, osi) = ConsumeChar(osi, ')', ose);
956 if (!found) {
957 return std::make_pair(Operand(), osi);
958 }
959
960 if (offset_and_iterator.first.IsValid()) {
961 Operand offset;
962 offset.m_type = Operand::Type::Sum;
963 offset.m_children.push_back(offset_and_iterator.first);
964 offset.m_children.push_back(base_and_iterator.first);
965
966 Operand deref;
967 deref.m_type = Operand::Type::Dereference;
968 deref.m_children.push_back(offset);
969 return std::make_pair(deref, osi);
970 } else {
971 Operand deref;
972 deref.m_type = Operand::Type::Dereference;
973 deref.m_children.push_back(base_and_iterator.first);
974 return std::make_pair(deref, osi);
975 }
976 }
977
978 // [sp, #8]!
979 static std::pair<Operand, llvm::StringRef::const_iterator>
980 ParseARMOffsetAccess(llvm::StringRef::const_iterator osi,
981 llvm::StringRef::const_iterator ose) {
982 bool found = false;
983 std::tie(found, osi) = ConsumeChar(osi, '[', ose);
984 if (!found) {
985 return std::make_pair(Operand(), osi);
986 }
987
988 std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
989 ParseRegisterName(osi, ose);
990 if (base_and_iterator.first.IsValid()) {
991 osi = base_and_iterator.second;
992 } else {
993 return std::make_pair(Operand(), osi);
994 }
995
996 std::tie(found, osi) = ConsumeChar(osi, ',', ose);
997 if (!found) {
998 return std::make_pair(Operand(), osi);
999 }
1000
1001 std::pair<Operand, llvm::StringRef::const_iterator> offset_and_iterator =
1002 ParseImmediate(osi, ose);
1003 if (offset_and_iterator.first.IsValid()) {
1004 osi = offset_and_iterator.second;
1005 }
1006
1007 std::tie(found, osi) = ConsumeChar(osi, ']', ose);
1008 if (!found) {
1009 return std::make_pair(Operand(), osi);
1010 }
1011
1012 Operand offset;
1013 offset.m_type = Operand::Type::Sum;
1014 offset.m_children.push_back(offset_and_iterator.first);
1015 offset.m_children.push_back(base_and_iterator.first);
1016
1017 Operand deref;
1018 deref.m_type = Operand::Type::Dereference;
1019 deref.m_children.push_back(offset);
1020 return std::make_pair(deref, osi);
1021 }
1022
1023 // [sp]
1024 static std::pair<Operand, llvm::StringRef::const_iterator>
1025 ParseARMDerefAccess(llvm::StringRef::const_iterator osi,
1026 llvm::StringRef::const_iterator ose) {
1027 bool found = false;
1028 std::tie(found, osi) = ConsumeChar(osi, '[', ose);
1029 if (!found) {
1030 return std::make_pair(Operand(), osi);
1031 }
1032
1033 std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
1034 ParseRegisterName(osi, ose);
1035 if (base_and_iterator.first.IsValid()) {
1036 osi = base_and_iterator.second;
1037 } else {
1038 return std::make_pair(Operand(), osi);
1039 }
1040
1041 std::tie(found, osi) = ConsumeChar(osi, ']', ose);
1042 if (!found) {
1043 return std::make_pair(Operand(), osi);
1044 }
1045
1046 Operand deref;
1047 deref.m_type = Operand::Type::Dereference;
1048 deref.m_children.push_back(base_and_iterator.first);
1049 return std::make_pair(deref, osi);
1050 }
1051
1052 static void DumpOperand(const Operand &op, Stream &s) {
1053 switch (op.m_type) {
1054 case Operand::Type::Dereference:
1055 s.PutCString("*");
1056 DumpOperand(op.m_children[0], s);
1057 break;
1058 case Operand::Type::Immediate:
1059 if (op.m_negative) {
1060 s.PutCString("-");
1061 }
1062 s.PutCString(llvm::to_string(op.m_immediate));
1063 break;
1064 case Operand::Type::Invalid:
1065 s.PutCString("Invalid");
1066 break;
1067 case Operand::Type::Product:
1068 s.PutCString("(");
1069 DumpOperand(op.m_children[0], s);
1070 s.PutCString("*");
1071 DumpOperand(op.m_children[1], s);
1072 s.PutCString(")");
1073 break;
1074 case Operand::Type::Register:
1076 break;
1077 case Operand::Type::Sum:
1078 s.PutCString("(");
1079 DumpOperand(op.m_children[0], s);
1080 s.PutCString("+");
1081 DumpOperand(op.m_children[1], s);
1082 s.PutCString(")");
1083 break;
1084 }
1085 }
1086
1089 const char *operands_string = GetOperands(nullptr);
1090
1091 if (!operands_string) {
1092 return false;
1093 }
1094
1095 llvm::StringRef operands_ref(operands_string);
1096
1097 llvm::StringRef::const_iterator osi = operands_ref.begin();
1098 llvm::StringRef::const_iterator ose = operands_ref.end();
1099
1100 while (osi != ose) {
1101 Operand operand;
1102 llvm::StringRef::const_iterator iter;
1103
1104 if ((std::tie(operand, iter) = ParseIntelIndexedAccess(osi, ose),
1105 operand.IsValid()) ||
1106 (std::tie(operand, iter) = ParseIntelDerefAccess(osi, ose),
1107 operand.IsValid()) ||
1108 (std::tie(operand, iter) = ParseARMOffsetAccess(osi, ose),
1109 operand.IsValid()) ||
1110 (std::tie(operand, iter) = ParseARMDerefAccess(osi, ose),
1111 operand.IsValid()) ||
1112 (std::tie(operand, iter) = ParseRegisterName(osi, ose),
1113 operand.IsValid()) ||
1114 (std::tie(operand, iter) = ParseImmediate(osi, ose),
1115 operand.IsValid())) {
1116 osi = iter;
1117 operands.push_back(operand);
1118 } else {
1119 return false;
1120 }
1121
1122 std::pair<bool, llvm::StringRef::const_iterator> found_and_iter =
1123 ConsumeChar(osi, ',', ose);
1124 if (found_and_iter.first) {
1125 osi = found_and_iter.second;
1126 }
1127
1128 osi = ConsumeWhitespace(osi, ose);
1129 }
1130
1131 DisassemblerSP disasm_sp = m_disasm_wp.lock();
1132
1133 if (disasm_sp && operands.size() > 1) {
1134 // TODO tie this into the MC Disassembler's notion of clobbers.
1135 switch (disasm_sp->GetArchitecture().GetMachine()) {
1136 default:
1137 break;
1138 case llvm::Triple::x86:
1139 case llvm::Triple::x86_64:
1140 operands[operands.size() - 1].m_clobbered = true;
1141 break;
1142 case llvm::Triple::arm:
1143 operands[0].m_clobbered = true;
1144 break;
1145 }
1146 }
1147
1148 if (Log *log = GetLog(LLDBLog::Process)) {
1149 StreamString ss;
1150
1151 ss.Printf("[%s] expands to %zu operands:\n", operands_string,
1152 operands.size());
1153 for (const Operand &operand : operands) {
1154 ss.PutCString(" ");
1155 DumpOperand(operand, ss);
1156 ss.PutCString("\n");
1157 }
1158
1159 log->PutString(ss.GetString());
1160 }
1161
1162 return true;
1163 }
1164
1165 bool IsCall() override {
1167 return m_is_call;
1168 }
1169
1170protected:
1171 std::weak_ptr<DisassemblerLLVMC> m_disasm_wp;
1172
1173 bool m_is_valid = false;
1174 bool m_using_file_addr = false;
1176
1177 // Be conservative. If we didn't understand the instruction, say it:
1178 // - Might branch
1179 // - Does not have a delay slot
1180 // - Is not a call
1181 // - Is not a load
1182 // - Is not an authenticated instruction
1183 bool m_does_branch = true;
1184 bool m_has_delay_slot = false;
1185 bool m_is_call = false;
1186 bool m_is_load = false;
1188
1191 return;
1192
1193 DisassemblerScope disasm(*this);
1194 if (!disasm)
1195 return;
1196
1197 DataExtractor data;
1198 if (!m_opcode.GetData(data))
1199 return;
1200
1201 bool is_alternate_isa;
1204 GetDisasmToUse(is_alternate_isa, disasm);
1205 const uint8_t *opcode_data = data.GetDataStart();
1206 const size_t opcode_data_len = data.GetByteSize();
1207 llvm::MCInst inst;
1208 const size_t inst_size =
1209 mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len, pc, inst);
1210 if (inst_size == 0)
1211 return;
1212
1214 m_does_branch = mc_disasm_ptr->CanBranch(inst);
1215 m_has_delay_slot = mc_disasm_ptr->HasDelaySlot(inst);
1216 m_is_call = mc_disasm_ptr->IsCall(inst);
1217 m_is_load = mc_disasm_ptr->IsLoad(inst);
1218 m_is_authenticated = mc_disasm_ptr->IsAuthenticated(inst);
1219 }
1220
1221private:
1223 GetDisasmToUse(bool &is_alternate_isa, DisassemblerScope &disasm) {
1224 is_alternate_isa = false;
1225 if (disasm) {
1226 if (disasm->m_alternate_disasm_up) {
1227 const AddressClass address_class = GetAddressClass();
1228
1229 if (address_class == AddressClass::eCodeAlternateISA) {
1230 is_alternate_isa = true;
1231 return disasm->m_alternate_disasm_up.get();
1232 }
1233 }
1234 return disasm->m_disasm_up.get();
1235 }
1236 return nullptr;
1237 }
1238};
1239
1240std::unique_ptr<DisassemblerLLVMC::MCDisasmInstance>
1241DisassemblerLLVMC::MCDisasmInstance::Create(const char *triple, const char *cpu,
1242 const char *features_str,
1243 unsigned flavor,
1244 DisassemblerLLVMC &owner) {
1245 using Instance = std::unique_ptr<DisassemblerLLVMC::MCDisasmInstance>;
1246
1247 std::string Status;
1248 const llvm::Target *curr_target =
1249 llvm::TargetRegistry::lookupTarget(triple, Status);
1250 if (!curr_target)
1251 return Instance();
1252
1253 std::unique_ptr<llvm::MCInstrInfo> instr_info_up(
1254 curr_target->createMCInstrInfo());
1255 if (!instr_info_up)
1256 return Instance();
1257
1258 std::unique_ptr<llvm::MCRegisterInfo> reg_info_up(
1259 curr_target->createMCRegInfo(triple));
1260 if (!reg_info_up)
1261 return Instance();
1262
1263 std::unique_ptr<llvm::MCSubtargetInfo> subtarget_info_up(
1264 curr_target->createMCSubtargetInfo(triple, cpu, features_str));
1265 if (!subtarget_info_up)
1266 return Instance();
1267
1268 llvm::MCTargetOptions MCOptions;
1269 std::unique_ptr<llvm::MCAsmInfo> asm_info_up(
1270 curr_target->createMCAsmInfo(*reg_info_up, triple, MCOptions));
1271 if (!asm_info_up)
1272 return Instance();
1273
1274 std::unique_ptr<llvm::MCContext> context_up(
1275 new llvm::MCContext(llvm::Triple(triple), asm_info_up.get(),
1276 reg_info_up.get(), subtarget_info_up.get()));
1277 if (!context_up)
1278 return Instance();
1279
1280 std::unique_ptr<llvm::MCDisassembler> disasm_up(
1281 curr_target->createMCDisassembler(*subtarget_info_up, *context_up));
1282 if (!disasm_up)
1283 return Instance();
1284
1285 std::unique_ptr<llvm::MCRelocationInfo> rel_info_up(
1286 curr_target->createMCRelocationInfo(triple, *context_up));
1287 if (!rel_info_up)
1288 return Instance();
1289
1290 std::unique_ptr<llvm::MCSymbolizer> symbolizer_up(
1291 curr_target->createMCSymbolizer(
1292 triple, nullptr, DisassemblerLLVMC::SymbolLookupCallback, &owner,
1293 context_up.get(), std::move(rel_info_up)));
1294 disasm_up->setSymbolizer(std::move(symbolizer_up));
1295
1296 unsigned asm_printer_variant =
1297 flavor == ~0U ? asm_info_up->getAssemblerDialect() : flavor;
1298
1299 std::unique_ptr<llvm::MCInstPrinter> instr_printer_up(
1300 curr_target->createMCInstPrinter(llvm::Triple{triple},
1301 asm_printer_variant, *asm_info_up,
1302 *instr_info_up, *reg_info_up));
1303 if (!instr_printer_up)
1304 return Instance();
1305
1306 instr_printer_up->setPrintBranchImmAsAddress(true);
1307
1308 // Not all targets may have registered createMCInstrAnalysis().
1309 std::unique_ptr<llvm::MCInstrAnalysis> instr_analysis_up(
1310 curr_target->createMCInstrAnalysis(instr_info_up.get()));
1311
1312 return Instance(new MCDisasmInstance(
1313 std::move(instr_info_up), std::move(reg_info_up),
1314 std::move(subtarget_info_up), std::move(asm_info_up),
1315 std::move(context_up), std::move(disasm_up), std::move(instr_printer_up),
1316 std::move(instr_analysis_up)));
1317}
1318
1320 std::unique_ptr<llvm::MCInstrInfo> &&instr_info_up,
1321 std::unique_ptr<llvm::MCRegisterInfo> &&reg_info_up,
1322 std::unique_ptr<llvm::MCSubtargetInfo> &&subtarget_info_up,
1323 std::unique_ptr<llvm::MCAsmInfo> &&asm_info_up,
1324 std::unique_ptr<llvm::MCContext> &&context_up,
1325 std::unique_ptr<llvm::MCDisassembler> &&disasm_up,
1326 std::unique_ptr<llvm::MCInstPrinter> &&instr_printer_up,
1327 std::unique_ptr<llvm::MCInstrAnalysis> &&instr_analysis_up)
1328 : m_instr_info_up(std::move(instr_info_up)),
1329 m_reg_info_up(std::move(reg_info_up)),
1330 m_subtarget_info_up(std::move(subtarget_info_up)),
1331 m_asm_info_up(std::move(asm_info_up)),
1332 m_context_up(std::move(context_up)), m_disasm_up(std::move(disasm_up)),
1333 m_instr_printer_up(std::move(instr_printer_up)),
1334 m_instr_analysis_up(std::move(instr_analysis_up)) {
1337}
1338
1340 const uint8_t *opcode_data, size_t opcode_data_len, lldb::addr_t pc,
1341 llvm::MCInst &mc_inst) const {
1342 llvm::ArrayRef<uint8_t> data(opcode_data, opcode_data_len);
1343 llvm::MCDisassembler::DecodeStatus status;
1344
1345 uint64_t new_inst_size;
1346 status = m_disasm_up->getInstruction(mc_inst, new_inst_size, data, pc,
1347 llvm::nulls());
1348 if (status == llvm::MCDisassembler::Success)
1349 return new_inst_size;
1350 else
1351 return 0;
1352}
1353
1355 llvm::MCInst &mc_inst, lldb::addr_t pc, std::string &inst_string,
1356 std::string &comments_string) {
1357 llvm::raw_string_ostream inst_stream(inst_string);
1358 llvm::raw_string_ostream comments_stream(comments_string);
1359
1360 inst_stream.enable_colors(m_instr_printer_up->getUseColor());
1361 m_instr_printer_up->setCommentStream(comments_stream);
1362 m_instr_printer_up->printInst(&mc_inst, pc, llvm::StringRef(),
1363 *m_subtarget_info_up, inst_stream);
1364 m_instr_printer_up->setCommentStream(llvm::nulls());
1365
1366 static std::string g_newlines("\r\n");
1367
1368 for (size_t newline_pos = 0;
1369 (newline_pos = comments_string.find_first_of(g_newlines, newline_pos)) !=
1370 comments_string.npos;
1371 /**/) {
1372 comments_string.replace(comments_string.begin() + newline_pos,
1373 comments_string.begin() + newline_pos + 1, 1, ' ');
1374 }
1375}
1376
1378 bool use_hex_immed, HexImmediateStyle hex_style) {
1379 m_instr_printer_up->setPrintImmHex(use_hex_immed);
1380 switch (hex_style) {
1381 case eHexStyleC:
1382 m_instr_printer_up->setPrintHexStyle(llvm::HexStyle::C);
1383 break;
1384 case eHexStyleAsm:
1385 m_instr_printer_up->setPrintHexStyle(llvm::HexStyle::Asm);
1386 break;
1387 }
1388}
1389
1391 m_instr_printer_up->setUseColor(use_color);
1392}
1393
1395 return m_instr_printer_up->getUseColor();
1396}
1397
1399 llvm::MCInst &mc_inst) const {
1400 if (m_instr_analysis_up)
1401 return m_instr_analysis_up->mayAffectControlFlow(mc_inst, *m_reg_info_up);
1402 return m_instr_info_up->get(mc_inst.getOpcode())
1403 .mayAffectControlFlow(mc_inst, *m_reg_info_up);
1404}
1405
1407 llvm::MCInst &mc_inst) const {
1408 return m_instr_info_up->get(mc_inst.getOpcode()).hasDelaySlot();
1409}
1410
1411bool DisassemblerLLVMC::MCDisasmInstance::IsCall(llvm::MCInst &mc_inst) const {
1412 if (m_instr_analysis_up)
1413 return m_instr_analysis_up->isCall(mc_inst);
1414 return m_instr_info_up->get(mc_inst.getOpcode()).isCall();
1415}
1416
1417bool DisassemblerLLVMC::MCDisasmInstance::IsLoad(llvm::MCInst &mc_inst) const {
1418 return m_instr_info_up->get(mc_inst.getOpcode()).mayLoad();
1419}
1420
1422 llvm::MCInst &mc_inst) const {
1423 const auto &InstrDesc = m_instr_info_up->get(mc_inst.getOpcode());
1424
1425 // Treat software auth traps (brk 0xc470 + aut key, where 0x70 == 'p', 0xc4
1426 // == 'a' + 'c') as authenticated instructions for reporting purposes, in
1427 // addition to the standard authenticated instructions specified in ARMv8.3.
1428 bool IsBrkC47x = false;
1429 if (InstrDesc.isTrap() && mc_inst.getNumOperands() == 1) {
1430 const llvm::MCOperand &Op0 = mc_inst.getOperand(0);
1431 if (Op0.isImm() && Op0.getImm() >= 0xc470 && Op0.getImm() <= 0xc474)
1432 IsBrkC47x = true;
1433 }
1434
1435 return InstrDesc.isAuthenticated() || IsBrkC47x;
1436}
1437
1439 const char *flavor_string,
1440 const char *cpu_string,
1441 const char *features_string)
1442 : Disassembler(arch, flavor_string), m_exe_ctx(nullptr), m_inst(nullptr),
1444 m_adrp_insn() {
1445 if (!FlavorValidForArchSpec(arch, m_flavor.c_str())) {
1446 m_flavor.assign("default");
1447 }
1448
1449 const bool cpu_or_features_overriden = cpu_string || features_string;
1450 unsigned flavor = ~0U;
1451 llvm::Triple triple = arch.GetTriple();
1452
1453 // So far the only supported flavor is "intel" on x86. The base class will
1454 // set this correctly coming in.
1455 if (triple.getArch() == llvm::Triple::x86 ||
1456 triple.getArch() == llvm::Triple::x86_64) {
1457 if (m_flavor == "intel") {
1458 flavor = 1;
1459 } else if (m_flavor == "att") {
1460 flavor = 0;
1461 }
1462 }
1463
1464 ArchSpec thumb_arch(arch);
1465 if (triple.getArch() == llvm::Triple::arm) {
1466 std::string thumb_arch_name(thumb_arch.GetTriple().getArchName().str());
1467 // Replace "arm" with "thumb" so we get all thumb variants correct
1468 if (thumb_arch_name.size() > 3) {
1469 thumb_arch_name.erase(0, 3);
1470 thumb_arch_name.insert(0, "thumb");
1471 } else {
1472 thumb_arch_name = "thumbv9.3a";
1473 }
1474 thumb_arch.GetTriple().setArchName(llvm::StringRef(thumb_arch_name));
1475 }
1476
1477 // If no sub architecture specified then use the most recent arm architecture
1478 // so the disassembler will return all instructions. Without it we will see a
1479 // lot of unknown opcodes if the code uses instructions which are not
1480 // available in the oldest arm version (which is used when no sub architecture
1481 // is specified).
1482 if (triple.getArch() == llvm::Triple::arm &&
1483 triple.getSubArch() == llvm::Triple::NoSubArch)
1484 triple.setArchName("armv9.3a");
1485
1486 std::string features_str =
1487 features_string ? std::string(features_string) : "";
1488 const char *triple_str = triple.getTriple().c_str();
1489
1490 // ARM Cortex M0-M7 devices only execute thumb instructions
1491 if (arch.IsAlwaysThumbInstructions()) {
1492 triple_str = thumb_arch.GetTriple().getTriple().c_str();
1493 if (!features_string)
1494 features_str += "+fp-armv8,";
1495 }
1496
1497 const char *cpu = cpu_string;
1498
1499 if (!cpu_or_features_overriden) {
1500 switch (arch.GetCore()) {
1503 cpu = "mips32";
1504 break;
1507 cpu = "mips32r2";
1508 break;
1511 cpu = "mips32r3";
1512 break;
1515 cpu = "mips32r5";
1516 break;
1519 cpu = "mips32r6";
1520 break;
1523 cpu = "mips64";
1524 break;
1527 cpu = "mips64r2";
1528 break;
1531 cpu = "mips64r3";
1532 break;
1535 cpu = "mips64r5";
1536 break;
1539 cpu = "mips64r6";
1540 break;
1541 default:
1542 cpu = "";
1543 break;
1544 }
1545 }
1546
1547 if (arch.IsMIPS() && !cpu_or_features_overriden) {
1548 uint32_t arch_flags = arch.GetFlags();
1549 if (arch_flags & ArchSpec::eMIPSAse_msa)
1550 features_str += "+msa,";
1551 if (arch_flags & ArchSpec::eMIPSAse_dsp)
1552 features_str += "+dsp,";
1553 if (arch_flags & ArchSpec::eMIPSAse_dspr2)
1554 features_str += "+dspr2,";
1555 }
1556
1557 // If any AArch64 variant, enable latest ISA with all extensions unless the
1558 // CPU or features were overridden.
1559 if (triple.isAArch64() && !cpu_or_features_overriden) {
1560 features_str += "+all,";
1561 if (triple.getVendor() == llvm::Triple::Apple)
1562 cpu = "apple-latest";
1563 }
1564
1565 if (triple.isRISCV() && !cpu_or_features_overriden) {
1566 uint32_t arch_flags = arch.GetFlags();
1567 if (arch_flags & ArchSpec::eRISCV_rvc)
1568 features_str += "+c,";
1569 if (arch_flags & ArchSpec::eRISCV_rve)
1570 features_str += "+e,";
1571 if ((arch_flags & ArchSpec::eRISCV_float_abi_single) ==
1573 features_str += "+f,";
1574 if ((arch_flags & ArchSpec::eRISCV_float_abi_double) ==
1576 features_str += "+f,+d,";
1577 if ((arch_flags & ArchSpec::eRISCV_float_abi_quad) ==
1579 features_str += "+f,+d,+q,";
1580 // FIXME: how do we detect features such as `+a`, `+m`?
1581 // Turn them on by default now, since everyone seems to use them
1582 features_str += "+a,+m,";
1583 }
1584
1585 // We use m_disasm_up.get() to tell whether we are valid or not, so if this
1586 // isn't good for some reason, we won't be valid and FindPlugin will fail and
1587 // we won't get used.
1588 m_disasm_up = MCDisasmInstance::Create(triple_str, cpu, features_str.c_str(),
1589 flavor, *this);
1590
1591 llvm::Triple::ArchType llvm_arch = triple.getArch();
1592
1593 // For arm CPUs that can execute arm or thumb instructions, also create a
1594 // thumb instruction disassembler.
1595 if (llvm_arch == llvm::Triple::arm) {
1596 std::string thumb_triple(thumb_arch.GetTriple().getTriple());
1598 MCDisasmInstance::Create(thumb_triple.c_str(), "", features_str.c_str(),
1599 flavor, *this);
1601 m_disasm_up.reset();
1602
1603 } else if (arch.IsMIPS()) {
1604 /* Create alternate disassembler for MIPS16 and microMIPS */
1605 uint32_t arch_flags = arch.GetFlags();
1606 if (arch_flags & ArchSpec::eMIPSAse_mips16)
1607 features_str += "+mips16,";
1608 else if (arch_flags & ArchSpec::eMIPSAse_micromips)
1609 features_str += "+micromips,";
1610
1612 triple_str, cpu, features_str.c_str(), flavor, *this);
1614 m_disasm_up.reset();
1615 }
1616}
1617
1619
1621 const char *flavor,
1622 const char *cpu,
1623 const char *features) {
1624 if (arch.GetTriple().getArch() != llvm::Triple::UnknownArch) {
1625 auto disasm_sp =
1626 std::make_shared<DisassemblerLLVMC>(arch, flavor, cpu, features);
1627 if (disasm_sp && disasm_sp->IsValid())
1628 return disasm_sp;
1629 }
1630 return lldb::DisassemblerSP();
1631}
1632
1634 const DataExtractor &data,
1635 lldb::offset_t data_offset,
1636 size_t num_instructions,
1637 bool append, bool data_from_file) {
1638 if (!append)
1640
1641 if (!IsValid())
1642 return 0;
1643
1644 m_data_from_file = data_from_file;
1645 uint32_t data_cursor = data_offset;
1646 const size_t data_byte_size = data.GetByteSize();
1647 uint32_t instructions_parsed = 0;
1648 Address inst_addr(base_addr);
1649
1650 while (data_cursor < data_byte_size &&
1651 instructions_parsed < num_instructions) {
1652
1653 AddressClass address_class = AddressClass::eCode;
1654
1656 address_class = inst_addr.GetAddressClass();
1657
1658 InstructionSP inst_sp(
1659 new InstructionLLVMC(*this, inst_addr, address_class));
1660
1661 if (!inst_sp)
1662 break;
1663
1664 uint32_t inst_size = inst_sp->Decode(*this, data, data_cursor);
1665
1666 if (inst_size == 0)
1667 break;
1668
1669 m_instruction_list.Append(inst_sp);
1670 data_cursor += inst_size;
1671 inst_addr.Slide(inst_size);
1672 instructions_parsed++;
1673 }
1674
1675 return data_cursor - data_offset;
1676}
1677
1680 "Disassembler that uses LLVM MC to disassemble "
1681 "i386, x86_64, ARM, and ARM64.",
1683
1684 llvm::InitializeAllTargetInfos();
1685 llvm::InitializeAllTargetMCs();
1686 llvm::InitializeAllAsmParsers();
1687 llvm::InitializeAllDisassemblers();
1688}
1689
1692}
1693
1694int DisassemblerLLVMC::OpInfoCallback(void *disassembler, uint64_t pc,
1695 uint64_t offset, uint64_t size,
1696 int tag_type, void *tag_bug) {
1697 return static_cast<DisassemblerLLVMC *>(disassembler)
1698 ->OpInfo(pc, offset, size, tag_type, tag_bug);
1699}
1700
1701const char *DisassemblerLLVMC::SymbolLookupCallback(void *disassembler,
1702 uint64_t value,
1703 uint64_t *type, uint64_t pc,
1704 const char **name) {
1705 return static_cast<DisassemblerLLVMC *>(disassembler)
1706 ->SymbolLookup(value, type, pc, name);
1707}
1708
1710 const lldb_private::ArchSpec &arch, const char *flavor) {
1711 llvm::Triple triple = arch.GetTriple();
1712 if (flavor == nullptr || strcmp(flavor, "default") == 0)
1713 return true;
1714
1715 if (triple.getArch() == llvm::Triple::x86 ||
1716 triple.getArch() == llvm::Triple::x86_64) {
1717 return strcmp(flavor, "intel") == 0 || strcmp(flavor, "att") == 0;
1718 } else
1719 return false;
1720}
1721
1722bool DisassemblerLLVMC::IsValid() const { return m_disasm_up.operator bool(); }
1723
1724int DisassemblerLLVMC::OpInfo(uint64_t PC, uint64_t Offset, uint64_t Size,
1725 int tag_type, void *tag_bug) {
1726 switch (tag_type) {
1727 default:
1728 break;
1729 case 1:
1730 memset(tag_bug, 0, sizeof(::LLVMOpInfo1));
1731 break;
1732 }
1733 return 0;
1734}
1735
1736const char *DisassemblerLLVMC::SymbolLookup(uint64_t value, uint64_t *type_ptr,
1737 uint64_t pc, const char **name) {
1738 if (*type_ptr) {
1739 if (m_exe_ctx && m_inst) {
1740 // std::string remove_this_prior_to_checkin;
1741 Target *target = m_exe_ctx ? m_exe_ctx->GetTargetPtr() : nullptr;
1742 Address value_so_addr;
1743 Address pc_so_addr;
1744 if (target->GetArchitecture().GetMachine() == llvm::Triple::aarch64 ||
1745 target->GetArchitecture().GetMachine() == llvm::Triple::aarch64_be ||
1746 target->GetArchitecture().GetMachine() == llvm::Triple::aarch64_32) {
1747 if (*type_ptr == LLVMDisassembler_ReferenceType_In_ARM64_ADRP) {
1749 m_adrp_insn = value;
1750 *name = nullptr;
1751 *type_ptr = LLVMDisassembler_ReferenceType_InOut_None;
1752 return nullptr;
1753 }
1754 // If this instruction is an ADD and
1755 // the previous instruction was an ADRP and
1756 // the ADRP's register and this ADD's register are the same,
1757 // then this is a pc-relative address calculation.
1758 if (*type_ptr == LLVMDisassembler_ReferenceType_In_ARM64_ADDXri &&
1759 m_adrp_insn && m_adrp_address == pc - 4 &&
1760 (*m_adrp_insn & 0x1f) == ((value >> 5) & 0x1f)) {
1761 uint32_t addxri_inst;
1762 uint64_t adrp_imm, addxri_imm;
1763 // Get immlo and immhi bits, OR them together to get the ADRP imm
1764 // value.
1765 adrp_imm =
1766 ((*m_adrp_insn & 0x00ffffe0) >> 3) | ((*m_adrp_insn >> 29) & 0x3);
1767 // if high bit of immhi after right-shifting set, sign extend
1768 if (adrp_imm & (1ULL << 20))
1769 adrp_imm |= ~((1ULL << 21) - 1);
1770
1771 addxri_inst = value;
1772 addxri_imm = (addxri_inst >> 10) & 0xfff;
1773 // check if 'sh' bit is set, shift imm value up if so
1774 // (this would make no sense, ADRP already gave us this part)
1775 if ((addxri_inst >> (12 + 5 + 5)) & 1)
1776 addxri_imm <<= 12;
1777 value = (m_adrp_address & 0xfffffffffffff000LL) + (adrp_imm << 12) +
1778 addxri_imm;
1779 }
1781 m_adrp_insn.reset();
1782 }
1783
1784 if (m_inst->UsingFileAddress()) {
1785 ModuleSP module_sp(m_inst->GetAddress().GetModule());
1786 if (module_sp) {
1787 module_sp->ResolveFileAddress(value, value_so_addr);
1788 module_sp->ResolveFileAddress(pc, pc_so_addr);
1789 }
1790 } else if (target && !target->GetSectionLoadList().IsEmpty()) {
1791 target->GetSectionLoadList().ResolveLoadAddress(value, value_so_addr);
1792 target->GetSectionLoadList().ResolveLoadAddress(pc, pc_so_addr);
1793 }
1794
1795 SymbolContext sym_ctx;
1796 const SymbolContextItem resolve_scope =
1797 eSymbolContextFunction | eSymbolContextSymbol;
1798 if (pc_so_addr.IsValid() && pc_so_addr.GetModule()) {
1799 pc_so_addr.GetModule()->ResolveSymbolContextForAddress(
1800 pc_so_addr, resolve_scope, sym_ctx);
1801 }
1802
1803 if (value_so_addr.IsValid() && value_so_addr.GetSection()) {
1804 StreamString ss;
1805
1806 bool format_omitting_current_func_name = false;
1807 if (sym_ctx.symbol || sym_ctx.function) {
1808 AddressRange range;
1809 if (sym_ctx.GetAddressRange(resolve_scope, 0, false, range) &&
1810 range.GetBaseAddress().IsValid() &&
1811 range.ContainsLoadAddress(value_so_addr, target)) {
1812 format_omitting_current_func_name = true;
1813 }
1814 }
1815
1816 // If the "value" address (the target address we're symbolicating) is
1817 // inside the same SymbolContext as the current instruction pc
1818 // (pc_so_addr), don't print the full function name - just print it
1819 // with DumpStyleNoFunctionName style, e.g. "<+36>".
1820 if (format_omitting_current_func_name) {
1821 value_so_addr.Dump(&ss, target, Address::DumpStyleNoFunctionName,
1823 } else {
1824 value_so_addr.Dump(
1825 &ss, target,
1828 }
1829
1830 if (!ss.GetString().empty()) {
1831 // If Address::Dump returned a multi-line description, most commonly
1832 // seen when we have multiple levels of inlined functions at an
1833 // address, only show the first line.
1834 std::string str = std::string(ss.GetString());
1835 size_t first_eol_char = str.find_first_of("\r\n");
1836 if (first_eol_char != std::string::npos) {
1837 str.erase(first_eol_char);
1838 }
1839 m_inst->AppendComment(str);
1840 }
1841 }
1842 }
1843 }
1844
1845 // TODO: llvm-objdump sets the type_ptr to the
1846 // LLVMDisassembler_ReferenceType_Out_* values
1847 // based on where value_so_addr is pointing, with
1848 // Mach-O specific augmentations in MachODump.cpp. e.g.
1849 // see what AArch64ExternalSymbolizer::tryAddingSymbolicOperand
1850 // handles.
1851 *type_ptr = LLVMDisassembler_ReferenceType_InOut_None;
1852 *name = nullptr;
1853 return nullptr;
1854}
#define LLDB_PLUGIN_DEFINE(PluginName)
Definition: PluginManager.h:32
bool HasDelaySlot(llvm::MCInst &mc_inst) const
bool IsAuthenticated(llvm::MCInst &mc_inst) const
std::unique_ptr< llvm::MCInstrInfo > m_instr_info_up
std::unique_ptr< llvm::MCRegisterInfo > m_reg_info_up
bool CanBranch(llvm::MCInst &mc_inst) const
std::unique_ptr< llvm::MCContext > m_context_up
std::unique_ptr< llvm::MCAsmInfo > m_asm_info_up
void PrintMCInst(llvm::MCInst &mc_inst, lldb::addr_t pc, std::string &inst_string, std::string &comments_string)
uint64_t GetMCInst(const uint8_t *opcode_data, size_t opcode_data_len, lldb::addr_t pc, llvm::MCInst &mc_inst) const
void SetStyle(bool use_hex_immed, HexImmediateStyle hex_style)
static std::unique_ptr< MCDisasmInstance > Create(const char *triple, const char *cpu, const char *features_str, unsigned flavor, DisassemblerLLVMC &owner)
bool IsLoad(llvm::MCInst &mc_inst) const
bool IsCall(llvm::MCInst &mc_inst) const
std::unique_ptr< llvm::MCSubtargetInfo > m_subtarget_info_up
std::unique_ptr< llvm::MCInstrAnalysis > m_instr_analysis_up
std::unique_ptr< llvm::MCDisassembler > m_disasm_up
std::unique_ptr< llvm::MCInstPrinter > m_instr_printer_up
MCDisasmInstance(std::unique_ptr< llvm::MCInstrInfo > &&instr_info_up, std::unique_ptr< llvm::MCRegisterInfo > &&reg_info_up, std::unique_ptr< llvm::MCSubtargetInfo > &&subtarget_info_up, std::unique_ptr< llvm::MCAsmInfo > &&asm_info_up, std::unique_ptr< llvm::MCContext > &&context_up, std::unique_ptr< llvm::MCDisassembler > &&disasm_up, std::unique_ptr< llvm::MCInstPrinter > &&instr_printer_up, std::unique_ptr< llvm::MCInstrAnalysis > &&instr_analysis_up)
std::optional< uint32_t > m_adrp_insn
DisassemblerLLVMC(const lldb_private::ArchSpec &arch, const char *flavor, const char *cpu, const char *features)
static const char * SymbolLookupCallback(void *DisInfo, uint64_t ReferenceValue, uint64_t *ReferenceType, uint64_t ReferencePC, const char **ReferenceName)
int OpInfo(uint64_t PC, uint64_t Offset, uint64_t Size, int TagType, void *TagBug)
const lldb_private::ExecutionContext * m_exe_ctx
const char * SymbolLookup(uint64_t ReferenceValue, uint64_t *ReferenceType, uint64_t ReferencePC, const char **ReferenceName)
std::unique_ptr< MCDisasmInstance > m_disasm_up
static llvm::StringRef GetPluginNameStatic()
friend class InstructionLLVMC
static int OpInfoCallback(void *DisInfo, uint64_t PC, uint64_t Offset, uint64_t Size, int TagType, void *TagBug)
static lldb::DisassemblerSP CreateInstance(const lldb_private::ArchSpec &arch, const char *flavor, const char *cpu, const char *features)
lldb::addr_t m_adrp_address
bool FlavorValidForArchSpec(const lldb_private::ArchSpec &arch, const char *flavor) override
~DisassemblerLLVMC() override
std::unique_ptr< MCDisasmInstance > m_alternate_disasm_up
InstructionLLVMC * m_inst
size_t DecodeInstructions(const lldb_private::Address &base_addr, const lldb_private::DataExtractor &data, lldb::offset_t data_offset, size_t num_instructions, bool append, bool data_from_file) override
Grants exclusive access to the disassembler and initializes it with the given InstructionLLVMC and an...
std::shared_ptr< DisassemblerLLVMC > m_disasm
DisassemblerScope(InstructionLLVMC &i, const lldb_private::ExecutionContext *exe_ctx=nullptr)
std::shared_ptr< DisassemblerLLVMC > operator->()
static std::pair< Operand, llvm::StringRef::const_iterator > ParseIntelIndexedAccess(llvm::StringRef::const_iterator osi, llvm::StringRef::const_iterator ose)
bool DoesBranch() override
DisassemblerLLVMC::MCDisasmInstance * GetDisasmToUse(bool &is_alternate_isa)
static void DumpOperand(const Operand &op, Stream &s)
size_t GetByteSize() const
static llvm::StringRef::const_iterator ConsumeWhitespace(llvm::StringRef::const_iterator osi, llvm::StringRef::const_iterator ose)
std::weak_ptr< DisassemblerLLVMC > m_disasm_wp
void CalculateMnemonicOperandsAndComment(const lldb_private::ExecutionContext *exe_ctx) override
bool IsLoad() override
static std::pair< Operand, llvm::StringRef::const_iterator > ParseARMOffsetAccess(llvm::StringRef::const_iterator osi, llvm::StringRef::const_iterator ose)
DisassemblerLLVMC::MCDisasmInstance * GetDisasmToUse(bool &is_alternate_isa, DisassemblerScope &disasm)
void AppendComment(std::string &description)
bool UsingFileAddress() const
bool IsAuthenticated() override
static std::pair< Operand, llvm::StringRef::const_iterator > ParseIntelDerefAccess(llvm::StringRef::const_iterator osi, llvm::StringRef::const_iterator ose)
static std::pair< bool, llvm::StringRef::const_iterator > ConsumeChar(llvm::StringRef::const_iterator osi, const char c, llvm::StringRef::const_iterator ose)
size_t Decode(const lldb_private::Disassembler &disassembler, const lldb_private::DataExtractor &data, lldb::offset_t data_offset) override
bool ParseOperands(llvm::SmallVectorImpl< Instruction::Operand > &operands) override
bool HasDelaySlot() override
static std::pair< Operand, llvm::StringRef::const_iterator > ParseARMDerefAccess(llvm::StringRef::const_iterator osi, llvm::StringRef::const_iterator ose)
static std::pair< Operand, llvm::StringRef::const_iterator > ParseRegisterName(llvm::StringRef::const_iterator osi, llvm::StringRef::const_iterator ose)
~InstructionLLVMC() override=default
lldb::InstructionControlFlowKind GetControlFlowKind(const lldb_private::ExecutionContext *exe_ctx) override
InstructionLLVMC(DisassemblerLLVMC &disasm, const lldb_private::Address &address, AddressClass addr_class)
static std::pair< Operand, llvm::StringRef::const_iterator > ParseImmediate(llvm::StringRef::const_iterator osi, llvm::StringRef::const_iterator ose)
bool IsCall() override
A section + offset based address range class.
Definition: AddressRange.h:25
Address & GetBaseAddress()
Get accessor for the base address of the range.
Definition: AddressRange.h:211
bool ContainsLoadAddress(const Address &so_addr, Target *target) const
Check if a section offset so_addr when represented as a load address is contained within this object'...
A section + offset based address class.
Definition: Address.h:62
lldb::addr_t GetLoadAddress(Target *target) const
Get the load address.
Definition: Address.cpp:313
lldb::SectionSP GetSection() const
Get const accessor for the section.
Definition: Address.h:439
@ DumpStyleSectionNameOffset
Display as the section name + offset.
Definition: Address.h:74
@ DumpStyleNoFunctionName
Elide the function name; display an offset into the current function.
Definition: Address.h:109
@ DumpStyleResolvedDescriptionNoFunctionArguments
Definition: Address.h:106
bool Slide(int64_t offset)
Definition: Address.h:459
bool Dump(Stream *s, ExecutionContextScope *exe_scope, DumpStyle style, DumpStyle fallback_style=DumpStyleInvalid, uint32_t addr_byte_size=UINT32_MAX, bool all_ranges=false, std::optional< Stream::HighlightSettings > settings=std::nullopt) const
Dump a description of this object to a Stream.
Definition: Address.cpp:408
lldb::ModuleSP GetModule() const
Get accessor for the module for this address.
Definition: Address.cpp:285
lldb::addr_t GetFileAddress() const
Get the file address.
Definition: Address.cpp:293
bool IsValid() const
Check if the object state is valid.
Definition: Address.h:355
AddressClass GetAddressClass() const
Definition: Address.cpp:1033
An architecture specification class.
Definition: ArchSpec.h:31
llvm::Triple & GetTriple()
Architecture triple accessor.
Definition: ArchSpec.h:461
bool IsAlwaysThumbInstructions() const
Detect whether this architecture uses thumb code exclusively.
Definition: ArchSpec.cpp:1445
bool IsMIPS() const
if MIPS architecture return true.
Definition: ArchSpec.cpp:577
uint32_t GetMinimumOpcodeByteSize() const
Definition: ArchSpec.cpp:948
uint32_t GetFlags() const
Definition: ArchSpec.h:532
llvm::Triple::ArchType GetMachine() const
Returns a machine family for the current architecture.
Definition: ArchSpec.cpp:701
@ eRISCV_float_abi_double
single precision floating point, +f
Definition: ArchSpec.h:97
@ eRISCV_float_abi_quad
double precision floating point, +d
Definition: ArchSpec.h:98
@ eRISCV_float_abi_single
soft float
Definition: ArchSpec.h:96
uint32_t GetMaximumOpcodeByteSize() const
Definition: ArchSpec.cpp:955
Core GetCore() const
Definition: ArchSpec.h:440
A uniqued constant string class.
Definition: ConstString.h:40
llvm::StringRef GetStringRef() const
Get the string value as a llvm::StringRef.
Definition: ConstString.h:197
An data extractor class.
Definition: DataExtractor.h:48
uint64_t GetU64(lldb::offset_t *offset_ptr) const
Extract a uint64_t value from *offset_ptr.
const uint8_t * PeekData(lldb::offset_t offset, lldb::offset_t length) const
Peek at a bytes at offset.
bool ValidOffsetForDataOfSize(lldb::offset_t offset, lldb::offset_t length) const
Test the availability of length bytes of data from offset.
uint32_t GetU32(lldb::offset_t *offset_ptr) const
Extract a uint32_t value from *offset_ptr.
uint64_t GetByteSize() const
Get the number of bytes contained in this object.
uint16_t GetU16(lldb::offset_t *offset_ptr) const
Extract a uint16_t value from *offset_ptr.
const uint8_t * GetDataStart() const
Get the data start pointer.
lldb::offset_t BytesLeft(lldb::offset_t offset) const
lldb::ByteOrder GetByteOrder() const
Get the current byte order value.
uint8_t GetU8(lldb::offset_t *offset_ptr) const
Extract a uint8_t value from *offset_ptr.
InstructionList m_instruction_list
Definition: Disassembler.h:551
"lldb/Target/ExecutionContext.h" A class that contains an execution context.
Target * GetTargetPtr() const
Returns a pointer to the target object.
void Append(lldb::InstructionSP &inst_sp)
std::string m_markup_mnemonics
Definition: Disassembler.h:251
const Address & GetAddress() const
Definition: Disassembler.h:65
const char * GetOperands(const ExecutionContext *exe_ctx, bool markup=false)
Definition: Disassembler.h:73
std::string m_markup_opcode_name
Definition: Disassembler.h:249
AddressClass GetAddressClass()
void SetOpcode16(uint16_t inst, lldb::ByteOrder order)
Definition: Opcode.h:165
void SetOpcodeBytes(const void *bytes, size_t length)
Definition: Opcode.h:189
void SetOpcode16_2(uint32_t inst, lldb::ByteOrder order)
Definition: Opcode.h:171
uint32_t GetByteSize() const
Definition: Opcode.h:208
void SetOpcode64(uint64_t inst, lldb::ByteOrder order)
Definition: Opcode.h:183
const void * GetOpcodeBytes() const
Definition: Opcode.h:204
void SetOpcode8(uint8_t inst, lldb::ByteOrder order)
Definition: Opcode.h:159
uint32_t GetData(DataExtractor &data) const
Definition: Opcode.cpp:81
void SetOpcode32(uint32_t inst, lldb::ByteOrder order)
Definition: Opcode.h:177
static bool RegisterPlugin(llvm::StringRef name, llvm::StringRef description, ABICreateInstance create_callback)
static bool UnregisterPlugin(ABICreateInstance create_callback)
bool Execute(llvm::StringRef string, llvm::SmallVectorImpl< llvm::StringRef > *matches=nullptr) const
Execute a regular expression match using the compiled regular expression that is already in this obje...
bool ResolveLoadAddress(lldb::addr_t load_addr, Address &so_addr, bool allow_section_end=false) const
An error handling class.
Definition: Status.h:115
llvm::StringRef GetString() const
A stream class that can stream formatted output to a file.
Definition: Stream.h:28
size_t Printf(const char *format,...) __attribute__((format(printf
Output printf formatted output to the stream.
Definition: Stream.cpp:134
size_t PutCString(llvm::StringRef cstr)
Output a C string to the stream.
Definition: Stream.cpp:65
Defines a symbol context baton that can be handed other debug core functions.
Definition: SymbolContext.h:34
Function * function
The Function for a given query.
bool GetAddressRange(uint32_t scope, uint32_t range_idx, bool use_inline_block_range, AddressRange &range) const
Get the address range contained within a symbol context.
Symbol * symbol
The Symbol for a given query.
bool GetUseHexImmediates() const
Definition: Target.cpp:4889
Disassembler::HexImmediateStyle GetHexImmediateStyle() const
Definition: Target.cpp:4921
SectionLoadList & GetSectionLoadList()
Definition: Target.h:1154
const ArchSpec & GetArchitecture() const
Definition: Target.h:1039
#define LLDB_INVALID_ADDRESS
Definition: lldb-defines.h:82
A class that represents a running process on the host machine.
Log * GetLog(Cat mask)
Retrieve the Log object for the channel associated with the given log enum.
Definition: Log.h:332
Definition: SBAddress.h:15
uint64_t offset_t
Definition: lldb-types.h:85
std::shared_ptr< lldb_private::Instruction > InstructionSP
Definition: lldb-forward.h:358
std::shared_ptr< lldb_private::Disassembler > DisassemblerSP
Definition: lldb-forward.h:341
ByteOrder
Byte ordering definitions.
InstructionControlFlowKind
Architecture-agnostic categorization of instructions for traversing the control flow of a trace.
@ eInstructionControlFlowKindReturn
The instruction is a near (function) return.
@ eInstructionControlFlowKindFarJump
The instruction is a jump-like far transfer.
@ eInstructionControlFlowKindOther
The instruction is something not listed below, i.e.
@ eInstructionControlFlowKindFarCall
The instruction is a call-like far transfer.
@ eInstructionControlFlowKindFarReturn
The instruction is a return-like far transfer.
@ eInstructionControlFlowKindUnknown
The instruction could not be classified.
@ eInstructionControlFlowKindJump
The instruction is a near unconditional jump.
@ eInstructionControlFlowKindCall
The instruction is a near (function) call.
@ eInstructionControlFlowKindCondJump
The instruction is a near conditional jump.
uint64_t addr_t
Definition: lldb-types.h:80
std::shared_ptr< lldb_private::Module > ModuleSP
Definition: lldb-forward.h:373
std::optional< InstructionOpcodeAndModrm > InstructionLengthDecode(const uint8_t *inst_bytes, int bytes_len, bool is_exec_mode_64b)
Decode an instruction into opcode, modrm and opcode_len.
lldb::InstructionControlFlowKind GetControlFlowKind(bool is_exec_mode_64b, Opcode m_opcode)
lldb::InstructionControlFlowKind MapOpcodeIntoControlFlowKind(InstructionOpcodeAndModrm opcode_and_modrm)
Determine the InstructionControlFlowKind based on opcode and modrm bytes.
enum lldb_private::Instruction::Operand::Type m_type
std::vector< Operand > m_children
Definition: Disassembler.h:209
These are the three values deciding instruction control flow kind.