LLDB mainline
DisassemblerLLVMC.cpp
Go to the documentation of this file.
1//===-- DisassemblerLLVMC.cpp ---------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "DisassemblerLLVMC.h"
10
11#include "llvm-c/Disassembler.h"
12#include "llvm/ADT/SmallString.h"
13#include "llvm/ADT/StringExtras.h"
14#include "llvm/MC/MCAsmInfo.h"
15#include "llvm/MC/MCContext.h"
16#include "llvm/MC/MCDisassembler/MCDisassembler.h"
17#include "llvm/MC/MCDisassembler/MCExternalSymbolizer.h"
18#include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
19#include "llvm/MC/MCInst.h"
20#include "llvm/MC/MCInstPrinter.h"
21#include "llvm/MC/MCInstrAnalysis.h"
22#include "llvm/MC/MCInstrInfo.h"
23#include "llvm/MC/MCRegisterInfo.h"
24#include "llvm/MC/MCSubtargetInfo.h"
25#include "llvm/MC/MCTargetOptions.h"
26#include "llvm/MC/TargetRegistry.h"
27#include "llvm/Support/ErrorHandling.h"
28#include "llvm/Support/ScopedPrinter.h"
29#include "llvm/Support/TargetSelect.h"
30#include "llvm/TargetParser/AArch64TargetParser.h"
31
32#include "lldb/Core/Address.h"
33#include "lldb/Core/Module.h"
37#include "lldb/Target/Process.h"
41#include "lldb/Target/Target.h"
44#include "lldb/Utility/Log.h"
46#include "lldb/Utility/Stream.h"
47#include <optional>
48
49using namespace lldb;
50using namespace lldb_private;
51
53
55public:
56 static std::unique_ptr<MCDisasmInstance>
57 Create(const char *triple, const char *cpu, const char *features_str,
58 unsigned flavor, DisassemblerLLVMC &owner);
59
60 ~MCDisasmInstance() = default;
61
62 bool GetMCInst(const uint8_t *opcode_data, size_t opcode_data_len,
63 lldb::addr_t pc, llvm::MCInst &mc_inst, uint64_t &size) const;
64 void PrintMCInst(llvm::MCInst &mc_inst, lldb::addr_t pc,
65 std::string &inst_string, std::string &comments_string);
66 void SetStyle(bool use_hex_immed, HexImmediateStyle hex_style);
67 void SetUseColor(bool use_color);
68 bool GetUseColor() const;
69 bool CanBranch(llvm::MCInst &mc_inst) const;
70 bool HasDelaySlot(llvm::MCInst &mc_inst) const;
71 bool IsCall(llvm::MCInst &mc_inst) const;
72 bool IsLoad(llvm::MCInst &mc_inst) const;
73 bool IsAuthenticated(llvm::MCInst &mc_inst) const;
74
75private:
76 MCDisasmInstance(std::unique_ptr<llvm::MCInstrInfo> &&instr_info_up,
77 std::unique_ptr<llvm::MCRegisterInfo> &&reg_info_up,
78 std::unique_ptr<llvm::MCSubtargetInfo> &&subtarget_info_up,
79 std::unique_ptr<llvm::MCAsmInfo> &&asm_info_up,
80 std::unique_ptr<llvm::MCContext> &&context_up,
81 std::unique_ptr<llvm::MCDisassembler> &&disasm_up,
82 std::unique_ptr<llvm::MCInstPrinter> &&instr_printer_up,
83 std::unique_ptr<llvm::MCInstrAnalysis> &&instr_analysis_up);
84
85 std::unique_ptr<llvm::MCInstrInfo> m_instr_info_up;
86 std::unique_ptr<llvm::MCRegisterInfo> m_reg_info_up;
87 std::unique_ptr<llvm::MCSubtargetInfo> m_subtarget_info_up;
88 std::unique_ptr<llvm::MCAsmInfo> m_asm_info_up;
89 std::unique_ptr<llvm::MCContext> m_context_up;
90 std::unique_ptr<llvm::MCDisassembler> m_disasm_up;
91 std::unique_ptr<llvm::MCInstPrinter> m_instr_printer_up;
92 std::unique_ptr<llvm::MCInstrAnalysis> m_instr_analysis_up;
93};
94
95namespace x86 {
96
97/// These are the three values deciding instruction control flow kind.
98/// InstructionLengthDecode function decodes an instruction and get this struct.
99///
100/// primary_opcode
101/// Primary opcode of the instruction.
102/// For one-byte opcode instruction, it's the first byte after prefix.
103/// For two- and three-byte opcodes, it's the second byte.
104///
105/// opcode_len
106/// The length of opcode in bytes. Valid opcode lengths are 1, 2, or 3.
107///
108/// modrm
109/// ModR/M byte of the instruction.
110/// Bits[7:6] indicate MOD. Bits[5:3] specify a register and R/M bits[2:0]
111/// may contain a register or specify an addressing mode, depending on MOD.
117
118/// Determine the InstructionControlFlowKind based on opcode and modrm bytes.
119/// Refer to http://ref.x86asm.net/coder.html for the full list of opcode and
120/// instruction set.
121///
122/// \param[in] opcode_and_modrm
123/// Contains primary_opcode byte, its length, and ModR/M byte.
124/// Refer to the struct InstructionOpcodeAndModrm for details.
125///
126/// \return
127/// The control flow kind of the instruction or
128/// eInstructionControlFlowKindOther if the instruction doesn't affect
129/// the control flow of the program.
132 uint8_t opcode = opcode_and_modrm.primary_opcode;
133 uint8_t opcode_len = opcode_and_modrm.opcode_len;
134 uint8_t modrm = opcode_and_modrm.modrm;
135
136 if (opcode_len > 2)
138
139 if (opcode >= 0x70 && opcode <= 0x7F) {
140 if (opcode_len == 1)
142 else
144 }
145
146 if (opcode >= 0x80 && opcode <= 0x8F) {
147 if (opcode_len == 2)
149 else
151 }
152
153 switch (opcode) {
154 case 0x9A:
155 if (opcode_len == 1)
157 break;
158 case 0xFF:
159 if (opcode_len == 1) {
160 uint8_t modrm_reg = (modrm >> 3) & 7;
161 if (modrm_reg == 2)
163 else if (modrm_reg == 3)
165 else if (modrm_reg == 4)
167 else if (modrm_reg == 5)
169 }
170 break;
171 case 0xE8:
172 if (opcode_len == 1)
174 break;
175 case 0xCD:
176 case 0xCC:
177 case 0xCE:
178 case 0xF1:
179 if (opcode_len == 1)
181 break;
182 case 0xCF:
183 if (opcode_len == 1)
185 break;
186 case 0xE9:
187 case 0xEB:
188 if (opcode_len == 1)
190 break;
191 case 0xEA:
192 if (opcode_len == 1)
194 break;
195 case 0xE3:
196 case 0xE0:
197 case 0xE1:
198 case 0xE2:
199 if (opcode_len == 1)
201 break;
202 case 0xC3:
203 case 0xC2:
204 if (opcode_len == 1)
206 break;
207 case 0xCB:
208 case 0xCA:
209 if (opcode_len == 1)
211 break;
212 case 0x05:
213 case 0x34:
214 if (opcode_len == 2)
216 break;
217 case 0x35:
218 case 0x07:
219 if (opcode_len == 2)
221 break;
222 case 0x01:
223 if (opcode_len == 2) {
224 switch (modrm) {
225 case 0xc1:
227 case 0xc2:
228 case 0xc3:
230 default:
231 break;
232 }
233 }
234 break;
235 default:
236 break;
237 }
238
240}
241
242/// Decode an instruction into opcode, modrm and opcode_len.
243/// Refer to http://ref.x86asm.net/coder.html for the instruction bytes layout.
244/// Opcodes in x86 are generally the first byte of instruction, though two-byte
245/// instructions and prefixes exist. ModR/M is the byte following the opcode
246/// and adds additional information for how the instruction is executed.
247///
248/// \param[in] inst_bytes
249/// Raw bytes of the instruction
250///
251///
252/// \param[in] bytes_len
253/// The length of the inst_bytes array.
254///
255/// \param[in] is_exec_mode_64b
256/// If true, the execution mode is 64 bit.
257///
258/// \return
259/// Returns decoded instruction as struct InstructionOpcodeAndModrm, holding
260/// primary_opcode, opcode_len and modrm byte. Refer to the struct definition
261/// for more details.
262/// Otherwise if the given instruction is invalid, returns std::nullopt.
263std::optional<InstructionOpcodeAndModrm>
264InstructionLengthDecode(const uint8_t *inst_bytes, int bytes_len,
265 bool is_exec_mode_64b) {
266 int op_idx = 0;
267 bool prefix_done = false;
268 InstructionOpcodeAndModrm ret = {0, 0, 0};
269
270 // In most cases, the primary_opcode is the first byte of the instruction
271 // but some instructions have a prefix to be skipped for these calculations.
272 // The following mapping is inspired from libipt's instruction decoding logic
273 // in `src/pt_ild.c`
274 while (!prefix_done) {
275 if (op_idx >= bytes_len)
276 return std::nullopt;
277
278 ret.primary_opcode = inst_bytes[op_idx];
279 switch (ret.primary_opcode) {
280 // prefix_ignore
281 case 0x26:
282 case 0x2e:
283 case 0x36:
284 case 0x3e:
285 case 0x64:
286 case 0x65:
287 // prefix_osz, prefix_asz
288 case 0x66:
289 case 0x67:
290 // prefix_lock, prefix_f2, prefix_f3
291 case 0xf0:
292 case 0xf2:
293 case 0xf3:
294 op_idx++;
295 break;
296
297 // prefix_rex
298 case 0x40:
299 case 0x41:
300 case 0x42:
301 case 0x43:
302 case 0x44:
303 case 0x45:
304 case 0x46:
305 case 0x47:
306 case 0x48:
307 case 0x49:
308 case 0x4a:
309 case 0x4b:
310 case 0x4c:
311 case 0x4d:
312 case 0x4e:
313 case 0x4f:
314 if (is_exec_mode_64b)
315 op_idx++;
316 else
317 prefix_done = true;
318 break;
319
320 // prefix_vex_c4, c5
321 case 0xc5:
322 if (!is_exec_mode_64b && (inst_bytes[op_idx + 1] & 0xc0) != 0xc0) {
323 prefix_done = true;
324 break;
325 }
326
327 ret.opcode_len = 2;
328 ret.primary_opcode = inst_bytes[op_idx + 2];
329 ret.modrm = inst_bytes[op_idx + 3];
330 return ret;
331
332 case 0xc4:
333 if (!is_exec_mode_64b && (inst_bytes[op_idx + 1] & 0xc0) != 0xc0) {
334 prefix_done = true;
335 break;
336 }
337 ret.opcode_len = inst_bytes[op_idx + 1] & 0x1f;
338 ret.primary_opcode = inst_bytes[op_idx + 3];
339 ret.modrm = inst_bytes[op_idx + 4];
340 return ret;
341
342 // prefix_evex
343 case 0x62:
344 if (!is_exec_mode_64b && (inst_bytes[op_idx + 1] & 0xc0) != 0xc0) {
345 prefix_done = true;
346 break;
347 }
348 ret.opcode_len = inst_bytes[op_idx + 1] & 0x03;
349 ret.primary_opcode = inst_bytes[op_idx + 4];
350 ret.modrm = inst_bytes[op_idx + 5];
351 return ret;
352
353 default:
354 prefix_done = true;
355 break;
356 }
357 } // prefix done
358
359 ret.primary_opcode = inst_bytes[op_idx];
360 ret.modrm = inst_bytes[op_idx + 1];
361 ret.opcode_len = 1;
362
363 // If the first opcode is 0F, it's two- or three- byte opcodes.
364 if (ret.primary_opcode == 0x0F) {
365 ret.primary_opcode = inst_bytes[++op_idx]; // get the next byte
366
367 if (ret.primary_opcode == 0x38) {
368 ret.opcode_len = 3;
369 ret.primary_opcode = inst_bytes[++op_idx]; // get the next byte
370 ret.modrm = inst_bytes[op_idx + 1];
371 } else if (ret.primary_opcode == 0x3A) {
372 ret.opcode_len = 3;
373 ret.primary_opcode = inst_bytes[++op_idx];
374 ret.modrm = inst_bytes[op_idx + 1];
375 } else if ((ret.primary_opcode & 0xf8) == 0x38) {
376 ret.opcode_len = 0;
377 ret.primary_opcode = inst_bytes[++op_idx];
378 ret.modrm = inst_bytes[op_idx + 1];
379 } else if (ret.primary_opcode == 0x0F) {
380 ret.opcode_len = 3;
381 // opcode is 0x0F, no needs to update
382 ret.modrm = inst_bytes[op_idx + 1];
383 } else {
384 ret.opcode_len = 2;
385 ret.modrm = inst_bytes[op_idx + 1];
386 }
387 }
388
389 return ret;
390}
391
393 Opcode m_opcode) {
394 std::optional<InstructionOpcodeAndModrm> ret;
395
396 if (m_opcode.GetOpcodeBytes() == nullptr || m_opcode.GetByteSize() <= 0) {
397 // x86_64 and i386 instructions are categorized as Opcode::Type::eTypeBytes
399 }
400
401 // Opcode bytes will be decoded into primary_opcode, modrm and opcode length.
402 // These are the three values deciding instruction control flow kind.
403 ret = InstructionLengthDecode((const uint8_t *)m_opcode.GetOpcodeBytes(),
404 m_opcode.GetByteSize(), is_exec_mode_64b);
405 if (!ret)
407 else
408 return MapOpcodeIntoControlFlowKind(*ret);
409}
410
411} // namespace x86
412
414public:
416 const lldb_private::Address &address,
417 AddressClass addr_class)
418 : Instruction(address, addr_class),
419 m_disasm_wp(std::static_pointer_cast<DisassemblerLLVMC>(
420 disasm.shared_from_this())) {}
421
422 ~InstructionLLVMC() override = default;
423
424 bool DoesBranch() override {
426 return m_does_branch;
427 }
428
429 bool HasDelaySlot() override {
431 return m_has_delay_slot;
432 }
433
434 bool IsLoad() override {
436 return m_is_load;
437 }
438
439 bool IsAuthenticated() override {
441 return m_is_authenticated;
442 }
443
445 DisassemblerScope disasm(*this);
446 return GetDisasmToUse(is_alternate_isa, disasm);
447 }
448
449 size_t Decode(const lldb_private::Disassembler &disassembler,
450 const lldb_private::DataExtractor &data,
451 lldb::offset_t data_offset) override {
452 // All we have to do is read the opcode which can be easy for some
453 // architectures
454 bool got_op = false;
455 DisassemblerScope disasm(*this);
456 if (disasm) {
457 const ArchSpec &arch = disasm->GetArchitecture();
458 const lldb::ByteOrder byte_order = data.GetByteOrder();
459
460 const uint32_t min_op_byte_size = arch.GetMinimumOpcodeByteSize();
461 const uint32_t max_op_byte_size = arch.GetMaximumOpcodeByteSize();
462 if (min_op_byte_size == max_op_byte_size) {
463 // Fixed size instructions, just read that amount of data.
464 if (!data.ValidOffsetForDataOfSize(data_offset, min_op_byte_size))
465 return false;
466
467 switch (min_op_byte_size) {
468 case 1:
469 m_opcode.SetOpcode8(data.GetU8(&data_offset), byte_order);
470 got_op = true;
471 break;
472
473 case 2:
474 m_opcode.SetOpcode16(data.GetU16(&data_offset), byte_order);
475 got_op = true;
476 break;
477
478 case 4:
479 m_opcode.SetOpcode32(data.GetU32(&data_offset), byte_order);
480 got_op = true;
481 break;
482
483 case 8:
484 m_opcode.SetOpcode64(data.GetU64(&data_offset), byte_order);
485 got_op = true;
486 break;
487
488 default:
489 if (arch.GetTriple().isRISCV())
490 m_opcode.SetOpcode16_32TupleBytes(
491 data.PeekData(data_offset, min_op_byte_size), min_op_byte_size,
492 byte_order);
493 else
494 m_opcode.SetOpcodeBytes(
495 data.PeekData(data_offset, min_op_byte_size), min_op_byte_size);
496 got_op = true;
497 break;
498 }
499 }
500 if (!got_op) {
501 bool is_alternate_isa = false;
503 GetDisasmToUse(is_alternate_isa, disasm);
504
505 const llvm::Triple::ArchType machine = arch.GetMachine();
506 if (machine == llvm::Triple::arm || machine == llvm::Triple::thumb) {
507 if (machine == llvm::Triple::thumb || is_alternate_isa) {
508 uint32_t thumb_opcode = data.GetU16(&data_offset);
509 if ((thumb_opcode & 0xe000) != 0xe000 ||
510 ((thumb_opcode & 0x1800u) == 0)) {
511 m_opcode.SetOpcode16(thumb_opcode, byte_order);
512 m_is_valid = true;
513 } else {
514 thumb_opcode <<= 16;
515 thumb_opcode |= data.GetU16(&data_offset);
516 m_opcode.SetOpcode16_2(thumb_opcode, byte_order);
517 m_is_valid = true;
518 }
519 } else {
520 m_opcode.SetOpcode32(data.GetU32(&data_offset), byte_order);
521 m_is_valid = true;
522 }
523 } else {
524 // The opcode isn't evenly sized, so we need to actually use the llvm
525 // disassembler to parse it and get the size.
526 uint8_t *opcode_data =
527 const_cast<uint8_t *>(data.PeekData(data_offset, 1));
528 const size_t opcode_data_len = data.BytesLeft(data_offset);
529 const addr_t pc = m_address.GetFileAddress();
530 llvm::MCInst inst;
531
532 uint64_t inst_size = 0;
533 m_is_valid = mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len,
534 pc, inst, inst_size);
535 m_opcode.Clear();
536 if (inst_size != 0) {
537 if (arch.GetTriple().isRISCV())
538 m_opcode.SetOpcode16_32TupleBytes(opcode_data, inst_size,
539 byte_order);
540 else
541 m_opcode.SetOpcodeBytes(opcode_data, inst_size);
542 }
543 }
544 }
545 return m_opcode.GetByteSize();
546 }
547 return 0;
548 }
549
550 void AppendComment(std::string &description) {
551 if (m_comment.empty())
552 m_comment.swap(description);
553 else {
554 m_comment.append(", ");
555 m_comment.append(description);
556 }
557 }
558
561 DisassemblerScope disasm(*this, exe_ctx);
562 if (disasm) {
563 if (disasm->GetArchitecture().GetMachine() == llvm::Triple::x86)
564 return x86::GetControlFlowKind(/*is_64b=*/false, m_opcode);
565 else if (disasm->GetArchitecture().GetMachine() == llvm::Triple::x86_64)
566 return x86::GetControlFlowKind(/*is_64b=*/true, m_opcode);
567 }
568
570 }
571
573 const lldb_private::ExecutionContext *exe_ctx) override {
574 DataExtractor data;
575 const AddressClass address_class = GetAddressClass();
576
577 if (m_opcode.GetData(data)) {
578 std::string out_string;
579 std::string markup_out_string;
580 std::string comment_string;
581 std::string markup_comment_string;
582
583 DisassemblerScope disasm(*this, exe_ctx);
584 if (disasm) {
586
587 if (address_class == AddressClass::eCodeAlternateISA)
588 mc_disasm_ptr = disasm->m_alternate_disasm_up.get();
589 else
590 mc_disasm_ptr = disasm->m_disasm_up.get();
591
592 lldb::addr_t pc = m_address.GetFileAddress();
593 m_using_file_addr = true;
594
595 bool use_hex_immediates = true;
597
598 if (exe_ctx) {
599 Target *target = exe_ctx->GetTargetPtr();
600 if (target) {
601 use_hex_immediates = target->GetUseHexImmediates();
602 hex_style = target->GetHexImmediateStyle();
603
604 const lldb::addr_t load_addr = m_address.GetLoadAddress(target);
605 if (load_addr != LLDB_INVALID_ADDRESS) {
606 pc = load_addr;
607 m_using_file_addr = false;
608 }
609 }
610 }
611
612 const uint8_t *opcode_data = data.GetDataStart();
613 const size_t opcode_data_len = data.GetByteSize();
614 llvm::MCInst inst;
615 uint64_t inst_size = 0;
616 bool valid = mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len, pc,
617 inst, inst_size);
618
619 if (valid && inst_size > 0) {
620 mc_disasm_ptr->SetStyle(use_hex_immediates, hex_style);
621
622 const bool saved_use_color = mc_disasm_ptr->GetUseColor();
623 mc_disasm_ptr->SetUseColor(false);
624 mc_disasm_ptr->PrintMCInst(inst, pc, out_string, comment_string);
625 mc_disasm_ptr->SetUseColor(true);
626 mc_disasm_ptr->PrintMCInst(inst, pc, markup_out_string,
627 markup_comment_string);
628 mc_disasm_ptr->SetUseColor(saved_use_color);
629
630 if (!comment_string.empty()) {
631 AppendComment(comment_string);
632 }
633 }
634
635 if (inst_size == 0) {
636 m_comment.assign("unknown opcode");
637 inst_size = m_opcode.GetByteSize();
638 StreamString mnemonic_strm;
639 lldb::offset_t offset = 0;
640 lldb::ByteOrder byte_order = data.GetByteOrder();
641 switch (inst_size) {
642 case 1: {
643 const uint8_t uval8 = data.GetU8(&offset);
644 m_opcode.SetOpcode8(uval8, byte_order);
645 m_opcode_name.assign(".byte");
646 mnemonic_strm.Printf("0x%2.2x", uval8);
647 } break;
648 case 2: {
649 const uint16_t uval16 = data.GetU16(&offset);
650 m_opcode.SetOpcode16(uval16, byte_order);
651 m_opcode_name.assign(".short");
652 mnemonic_strm.Printf("0x%4.4x", uval16);
653 } break;
654 case 4: {
655 const uint32_t uval32 = data.GetU32(&offset);
656 m_opcode.SetOpcode32(uval32, byte_order);
657 m_opcode_name.assign(".long");
658 mnemonic_strm.Printf("0x%8.8x", uval32);
659 } break;
660 case 8: {
661 const uint64_t uval64 = data.GetU64(&offset);
662 m_opcode.SetOpcode64(uval64, byte_order);
663 m_opcode_name.assign(".quad");
664 mnemonic_strm.Printf("0x%16.16" PRIx64, uval64);
665 } break;
666 default:
667 if (inst_size == 0)
668 return;
669 else {
670 const uint8_t *bytes = data.PeekData(offset, inst_size);
671 if (bytes == nullptr)
672 return;
673 m_opcode_name.assign(".byte");
674 m_opcode.SetOpcodeBytes(bytes, inst_size);
675 mnemonic_strm.Printf("0x%2.2x", bytes[0]);
676 for (uint32_t i = 1; i < inst_size; ++i)
677 mnemonic_strm.Printf(" 0x%2.2x", bytes[i]);
678 }
679 break;
680 }
681 m_mnemonics = std::string(mnemonic_strm.GetString());
682 return;
683 }
684
685 static RegularExpression s_regex(
686 llvm::StringRef("[ \t]*([^ ^\t]+)[ \t]*([^ ^\t].*)?"));
687
688 llvm::SmallVector<llvm::StringRef, 4> matches;
689 if (s_regex.Execute(out_string, &matches)) {
690 m_opcode_name = matches[1].str();
691 m_mnemonics = matches[2].str();
692 }
693 matches.clear();
694 if (s_regex.Execute(markup_out_string, &matches)) {
695 m_markup_opcode_name = matches[1].str();
696 m_markup_mnemonics = matches[2].str();
697 }
698 }
699 }
700 }
701
702 bool IsValid() const { return m_is_valid; }
703
704 bool UsingFileAddress() const { return m_using_file_addr; }
705 size_t GetByteSize() const { return m_opcode.GetByteSize(); }
706
707 /// Grants exclusive access to the disassembler and initializes it with the
708 /// given InstructionLLVMC and an optional ExecutionContext.
710 std::shared_ptr<DisassemblerLLVMC> m_disasm;
711
712 public:
715 const lldb_private::ExecutionContext *exe_ctx = nullptr)
716 : m_disasm(i.m_disasm_wp.lock()) {
717 m_disasm->m_mutex.lock();
718 m_disasm->m_inst = &i;
719 m_disasm->m_exe_ctx = exe_ctx;
720 }
721 ~DisassemblerScope() { m_disasm->m_mutex.unlock(); }
722
723 /// Evaluates to true if this scope contains a valid disassembler.
724 operator bool() const { return static_cast<bool>(m_disasm); }
725
726 std::shared_ptr<DisassemblerLLVMC> operator->() { return m_disasm; }
727 };
728
729 static llvm::StringRef::const_iterator
730 ConsumeWhitespace(llvm::StringRef::const_iterator osi,
731 llvm::StringRef::const_iterator ose) {
732 while (osi != ose) {
733 switch (*osi) {
734 default:
735 return osi;
736 case ' ':
737 case '\t':
738 break;
739 }
740 ++osi;
741 }
742
743 return osi;
744 }
745
746 static std::pair<bool, llvm::StringRef::const_iterator>
747 ConsumeChar(llvm::StringRef::const_iterator osi, const char c,
748 llvm::StringRef::const_iterator ose) {
749 bool found = false;
750
751 osi = ConsumeWhitespace(osi, ose);
752 if (osi != ose && *osi == c) {
753 found = true;
754 ++osi;
755 }
756
757 return std::make_pair(found, osi);
758 }
759
760 static std::pair<Operand, llvm::StringRef::const_iterator>
761 ParseRegisterName(llvm::StringRef::const_iterator osi,
762 llvm::StringRef::const_iterator ose) {
763 Operand ret;
764 ret.m_type = Operand::Type::Register;
765 std::string str;
766
767 osi = ConsumeWhitespace(osi, ose);
768
769 while (osi != ose) {
770 if (*osi >= '0' && *osi <= '9') {
771 if (str.empty()) {
772 return std::make_pair(Operand(), osi);
773 } else {
774 str.push_back(*osi);
775 }
776 } else if (*osi >= 'a' && *osi <= 'z') {
777 str.push_back(*osi);
778 } else {
779 switch (*osi) {
780 default:
781 if (str.empty()) {
782 return std::make_pair(Operand(), osi);
783 } else {
784 ret.m_register = ConstString(str);
785 return std::make_pair(ret, osi);
786 }
787 case '%':
788 if (!str.empty()) {
789 return std::make_pair(Operand(), osi);
790 }
791 break;
792 }
793 }
794 ++osi;
795 }
796
797 ret.m_register = ConstString(str);
798 return std::make_pair(ret, osi);
799 }
800
801 static std::pair<Operand, llvm::StringRef::const_iterator>
802 ParseImmediate(llvm::StringRef::const_iterator osi,
803 llvm::StringRef::const_iterator ose) {
804 Operand ret;
805 ret.m_type = Operand::Type::Immediate;
806 std::string str;
807 bool is_hex = false;
808
809 osi = ConsumeWhitespace(osi, ose);
810
811 while (osi != ose) {
812 if (*osi >= '0' && *osi <= '9') {
813 str.push_back(*osi);
814 } else if (*osi >= 'a' && *osi <= 'f') {
815 if (is_hex) {
816 str.push_back(*osi);
817 } else {
818 return std::make_pair(Operand(), osi);
819 }
820 } else {
821 switch (*osi) {
822 default:
823 if (str.empty()) {
824 return std::make_pair(Operand(), osi);
825 } else {
826 ret.m_immediate = strtoull(str.c_str(), nullptr, 0);
827 return std::make_pair(ret, osi);
828 }
829 case 'x':
830 if (str == "0") {
831 is_hex = true;
832 str.push_back(*osi);
833 } else {
834 return std::make_pair(Operand(), osi);
835 }
836 break;
837 case '#':
838 case '$':
839 if (!str.empty()) {
840 return std::make_pair(Operand(), osi);
841 }
842 break;
843 case '-':
844 if (str.empty()) {
845 ret.m_negative = true;
846 } else {
847 return std::make_pair(Operand(), osi);
848 }
849 }
850 }
851 ++osi;
852 }
853
854 ret.m_immediate = strtoull(str.c_str(), nullptr, 0);
855 return std::make_pair(ret, osi);
856 }
857
858 // -0x5(%rax,%rax,2)
859 static std::pair<Operand, llvm::StringRef::const_iterator>
860 ParseIntelIndexedAccess(llvm::StringRef::const_iterator osi,
861 llvm::StringRef::const_iterator ose) {
862 std::pair<Operand, llvm::StringRef::const_iterator> offset_and_iterator =
863 ParseImmediate(osi, ose);
864 if (offset_and_iterator.first.IsValid()) {
865 osi = offset_and_iterator.second;
866 }
867
868 bool found = false;
869 std::tie(found, osi) = ConsumeChar(osi, '(', ose);
870 if (!found) {
871 return std::make_pair(Operand(), osi);
872 }
873
874 std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
875 ParseRegisterName(osi, ose);
876 if (base_and_iterator.first.IsValid()) {
877 osi = base_and_iterator.second;
878 } else {
879 return std::make_pair(Operand(), osi);
880 }
881
882 std::tie(found, osi) = ConsumeChar(osi, ',', ose);
883 if (!found) {
884 return std::make_pair(Operand(), osi);
885 }
886
887 std::pair<Operand, llvm::StringRef::const_iterator> index_and_iterator =
888 ParseRegisterName(osi, ose);
889 if (index_and_iterator.first.IsValid()) {
890 osi = index_and_iterator.second;
891 } else {
892 return std::make_pair(Operand(), osi);
893 }
894
895 std::tie(found, osi) = ConsumeChar(osi, ',', ose);
896 if (!found) {
897 return std::make_pair(Operand(), osi);
898 }
899
900 std::pair<Operand, llvm::StringRef::const_iterator>
901 multiplier_and_iterator = ParseImmediate(osi, ose);
902 if (index_and_iterator.first.IsValid()) {
903 osi = index_and_iterator.second;
904 } else {
905 return std::make_pair(Operand(), osi);
906 }
907
908 std::tie(found, osi) = ConsumeChar(osi, ')', ose);
909 if (!found) {
910 return std::make_pair(Operand(), osi);
911 }
912
913 Operand product;
914 product.m_type = Operand::Type::Product;
915 product.m_children.push_back(index_and_iterator.first);
916 product.m_children.push_back(multiplier_and_iterator.first);
917
918 Operand index;
919 index.m_type = Operand::Type::Sum;
920 index.m_children.push_back(base_and_iterator.first);
921 index.m_children.push_back(product);
922
923 if (offset_and_iterator.first.IsValid()) {
924 Operand offset;
925 offset.m_type = Operand::Type::Sum;
926 offset.m_children.push_back(offset_and_iterator.first);
927 offset.m_children.push_back(index);
928
929 Operand deref;
930 deref.m_type = Operand::Type::Dereference;
931 deref.m_children.push_back(offset);
932 return std::make_pair(deref, osi);
933 } else {
934 Operand deref;
935 deref.m_type = Operand::Type::Dereference;
936 deref.m_children.push_back(index);
937 return std::make_pair(deref, osi);
938 }
939 }
940
941 // -0x10(%rbp)
942 static std::pair<Operand, llvm::StringRef::const_iterator>
943 ParseIntelDerefAccess(llvm::StringRef::const_iterator osi,
944 llvm::StringRef::const_iterator ose) {
945 std::pair<Operand, llvm::StringRef::const_iterator> offset_and_iterator =
946 ParseImmediate(osi, ose);
947 if (offset_and_iterator.first.IsValid()) {
948 osi = offset_and_iterator.second;
949 }
950
951 bool found = false;
952 std::tie(found, osi) = ConsumeChar(osi, '(', ose);
953 if (!found) {
954 return std::make_pair(Operand(), osi);
955 }
956
957 std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
958 ParseRegisterName(osi, ose);
959 if (base_and_iterator.first.IsValid()) {
960 osi = base_and_iterator.second;
961 } else {
962 return std::make_pair(Operand(), osi);
963 }
964
965 std::tie(found, osi) = ConsumeChar(osi, ')', ose);
966 if (!found) {
967 return std::make_pair(Operand(), osi);
968 }
969
970 if (offset_and_iterator.first.IsValid()) {
971 Operand offset;
972 offset.m_type = Operand::Type::Sum;
973 offset.m_children.push_back(offset_and_iterator.first);
974 offset.m_children.push_back(base_and_iterator.first);
975
976 Operand deref;
977 deref.m_type = Operand::Type::Dereference;
978 deref.m_children.push_back(offset);
979 return std::make_pair(deref, osi);
980 } else {
981 Operand deref;
982 deref.m_type = Operand::Type::Dereference;
983 deref.m_children.push_back(base_and_iterator.first);
984 return std::make_pair(deref, osi);
985 }
986 }
987
988 // [sp, #8]!
989 static std::pair<Operand, llvm::StringRef::const_iterator>
990 ParseARMOffsetAccess(llvm::StringRef::const_iterator osi,
991 llvm::StringRef::const_iterator ose) {
992 bool found = false;
993 std::tie(found, osi) = ConsumeChar(osi, '[', ose);
994 if (!found) {
995 return std::make_pair(Operand(), osi);
996 }
997
998 std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
999 ParseRegisterName(osi, ose);
1000 if (base_and_iterator.first.IsValid()) {
1001 osi = base_and_iterator.second;
1002 } else {
1003 return std::make_pair(Operand(), osi);
1004 }
1005
1006 std::tie(found, osi) = ConsumeChar(osi, ',', ose);
1007 if (!found) {
1008 return std::make_pair(Operand(), osi);
1009 }
1010
1011 std::pair<Operand, llvm::StringRef::const_iterator> offset_and_iterator =
1012 ParseImmediate(osi, ose);
1013 if (offset_and_iterator.first.IsValid()) {
1014 osi = offset_and_iterator.second;
1015 }
1016
1017 std::tie(found, osi) = ConsumeChar(osi, ']', ose);
1018 if (!found) {
1019 return std::make_pair(Operand(), osi);
1020 }
1021
1022 Operand offset;
1023 offset.m_type = Operand::Type::Sum;
1024 offset.m_children.push_back(offset_and_iterator.first);
1025 offset.m_children.push_back(base_and_iterator.first);
1026
1027 Operand deref;
1028 deref.m_type = Operand::Type::Dereference;
1029 deref.m_children.push_back(offset);
1030 return std::make_pair(deref, osi);
1031 }
1032
1033 // [sp]
1034 static std::pair<Operand, llvm::StringRef::const_iterator>
1035 ParseARMDerefAccess(llvm::StringRef::const_iterator osi,
1036 llvm::StringRef::const_iterator ose) {
1037 bool found = false;
1038 std::tie(found, osi) = ConsumeChar(osi, '[', ose);
1039 if (!found) {
1040 return std::make_pair(Operand(), osi);
1041 }
1042
1043 std::pair<Operand, llvm::StringRef::const_iterator> base_and_iterator =
1044 ParseRegisterName(osi, ose);
1045 if (base_and_iterator.first.IsValid()) {
1046 osi = base_and_iterator.second;
1047 } else {
1048 return std::make_pair(Operand(), osi);
1049 }
1050
1051 std::tie(found, osi) = ConsumeChar(osi, ']', ose);
1052 if (!found) {
1053 return std::make_pair(Operand(), osi);
1054 }
1055
1056 Operand deref;
1057 deref.m_type = Operand::Type::Dereference;
1058 deref.m_children.push_back(base_and_iterator.first);
1059 return std::make_pair(deref, osi);
1060 }
1061
1062 static void DumpOperand(const Operand &op, Stream &s) {
1063 switch (op.m_type) {
1064 case Operand::Type::Dereference:
1065 s.PutCString("*");
1066 DumpOperand(op.m_children[0], s);
1067 break;
1068 case Operand::Type::Immediate:
1069 if (op.m_negative) {
1070 s.PutCString("-");
1071 }
1072 s.PutCString(llvm::to_string(op.m_immediate));
1073 break;
1074 case Operand::Type::Invalid:
1075 s.PutCString("Invalid");
1076 break;
1077 case Operand::Type::Product:
1078 s.PutCString("(");
1079 DumpOperand(op.m_children[0], s);
1080 s.PutCString("*");
1081 DumpOperand(op.m_children[1], s);
1082 s.PutCString(")");
1083 break;
1084 case Operand::Type::Register:
1086 break;
1087 case Operand::Type::Sum:
1088 s.PutCString("(");
1089 DumpOperand(op.m_children[0], s);
1090 s.PutCString("+");
1091 DumpOperand(op.m_children[1], s);
1092 s.PutCString(")");
1093 break;
1094 }
1095 }
1096
1099 const char *operands_string = GetOperands(nullptr);
1100
1101 if (!operands_string) {
1102 return false;
1103 }
1104
1105 llvm::StringRef operands_ref(operands_string);
1106
1107 llvm::StringRef::const_iterator osi = operands_ref.begin();
1108 llvm::StringRef::const_iterator ose = operands_ref.end();
1109
1110 while (osi != ose) {
1111 Operand operand;
1112 llvm::StringRef::const_iterator iter;
1113
1114 if ((std::tie(operand, iter) = ParseIntelIndexedAccess(osi, ose),
1115 operand.IsValid()) ||
1116 (std::tie(operand, iter) = ParseIntelDerefAccess(osi, ose),
1117 operand.IsValid()) ||
1118 (std::tie(operand, iter) = ParseARMOffsetAccess(osi, ose),
1119 operand.IsValid()) ||
1120 (std::tie(operand, iter) = ParseARMDerefAccess(osi, ose),
1121 operand.IsValid()) ||
1122 (std::tie(operand, iter) = ParseRegisterName(osi, ose),
1123 operand.IsValid()) ||
1124 (std::tie(operand, iter) = ParseImmediate(osi, ose),
1125 operand.IsValid())) {
1126 osi = iter;
1127 operands.push_back(operand);
1128 } else {
1129 return false;
1130 }
1131
1132 std::pair<bool, llvm::StringRef::const_iterator> found_and_iter =
1133 ConsumeChar(osi, ',', ose);
1134 if (found_and_iter.first) {
1135 osi = found_and_iter.second;
1136 }
1137
1138 osi = ConsumeWhitespace(osi, ose);
1139 }
1140
1141 DisassemblerSP disasm_sp = m_disasm_wp.lock();
1142
1143 if (disasm_sp && operands.size() > 1) {
1144 // TODO tie this into the MC Disassembler's notion of clobbers.
1145 switch (disasm_sp->GetArchitecture().GetMachine()) {
1146 default:
1147 break;
1148 case llvm::Triple::x86:
1149 case llvm::Triple::x86_64:
1150 operands[operands.size() - 1].m_clobbered = true;
1151 break;
1152 case llvm::Triple::arm:
1153 operands[0].m_clobbered = true;
1154 break;
1155 }
1156 }
1157
1159 StreamString ss;
1160
1161 ss.Printf("[%s] expands to %zu operands:\n", operands_string,
1162 operands.size());
1163 for (const Operand &operand : operands) {
1164 ss.PutCString(" ");
1165 DumpOperand(operand, ss);
1166 ss.PutCString("\n");
1167 }
1168
1169 log->PutString(ss.GetString());
1170 }
1171
1172 return true;
1173 }
1174
1175 bool IsCall() override {
1177 return m_is_call;
1178 }
1179
1180protected:
1181 std::weak_ptr<DisassemblerLLVMC> m_disasm_wp;
1182
1183 bool m_is_valid = false;
1184 bool m_using_file_addr = false;
1186
1187 // Be conservative. If we didn't understand the instruction, say it:
1188 // - Might branch
1189 // - Does not have a delay slot
1190 // - Is not a call
1191 // - Is not a load
1192 // - Is not an authenticated instruction
1193 bool m_does_branch = true;
1194 bool m_has_delay_slot = false;
1195 bool m_is_call = false;
1196 bool m_is_load = false;
1198
1201 return;
1202
1203 DisassemblerScope disasm(*this);
1204 if (!disasm)
1205 return;
1206
1207 DataExtractor data;
1208 if (!m_opcode.GetData(data))
1209 return;
1210
1211 bool is_alternate_isa;
1212 lldb::addr_t pc = m_address.GetFileAddress();
1214 GetDisasmToUse(is_alternate_isa, disasm);
1215 const uint8_t *opcode_data = data.GetDataStart();
1216 const size_t opcode_data_len = data.GetByteSize();
1217 llvm::MCInst inst;
1218 uint64_t inst_size = 0;
1219 const bool valid = mc_disasm_ptr->GetMCInst(opcode_data, opcode_data_len,
1220 pc, inst, inst_size);
1221 if (!valid)
1222 return;
1223
1225 m_does_branch = mc_disasm_ptr->CanBranch(inst);
1226 m_has_delay_slot = mc_disasm_ptr->HasDelaySlot(inst);
1227 m_is_call = mc_disasm_ptr->IsCall(inst);
1228 m_is_load = mc_disasm_ptr->IsLoad(inst);
1229 m_is_authenticated = mc_disasm_ptr->IsAuthenticated(inst);
1230 }
1231
1232private:
1234 GetDisasmToUse(bool &is_alternate_isa, DisassemblerScope &disasm) {
1235 is_alternate_isa = false;
1236 if (disasm) {
1237 if (disasm->m_alternate_disasm_up) {
1238 const AddressClass address_class = GetAddressClass();
1239
1240 if (address_class == AddressClass::eCodeAlternateISA) {
1241 is_alternate_isa = true;
1242 return disasm->m_alternate_disasm_up.get();
1243 }
1244 }
1245 return disasm->m_disasm_up.get();
1246 }
1247 return nullptr;
1248 }
1249};
1250
1251std::unique_ptr<DisassemblerLLVMC::MCDisasmInstance>
1253 const char *cpu,
1254 const char *features_str,
1255 unsigned flavor,
1256 DisassemblerLLVMC &owner) {
1257 using Instance = std::unique_ptr<DisassemblerLLVMC::MCDisasmInstance>;
1258
1259 llvm::Triple triple(triple_name);
1260
1261 std::string Status;
1262 const llvm::Target *curr_target =
1263 llvm::TargetRegistry::lookupTarget(triple, Status);
1264 if (!curr_target)
1265 return Instance();
1266
1267 std::unique_ptr<llvm::MCInstrInfo> instr_info_up(
1268 curr_target->createMCInstrInfo());
1269 if (!instr_info_up)
1270 return Instance();
1271
1272 std::unique_ptr<llvm::MCRegisterInfo> reg_info_up(
1273 curr_target->createMCRegInfo(triple));
1274 if (!reg_info_up)
1275 return Instance();
1276
1277 std::unique_ptr<llvm::MCSubtargetInfo> subtarget_info_up(
1278 curr_target->createMCSubtargetInfo(triple, cpu, features_str));
1279 if (!subtarget_info_up)
1280 return Instance();
1281
1282 llvm::MCTargetOptions MCOptions;
1283 std::unique_ptr<llvm::MCAsmInfo> asm_info_up(
1284 curr_target->createMCAsmInfo(*reg_info_up, triple, MCOptions));
1285 if (!asm_info_up)
1286 return Instance();
1287
1288 std::unique_ptr<llvm::MCContext> context_up(
1289 new llvm::MCContext(llvm::Triple(triple), asm_info_up.get(),
1290 reg_info_up.get(), subtarget_info_up.get()));
1291 if (!context_up)
1292 return Instance();
1293
1294 std::unique_ptr<llvm::MCDisassembler> disasm_up(
1295 curr_target->createMCDisassembler(*subtarget_info_up, *context_up));
1296 if (!disasm_up)
1297 return Instance();
1298
1299 std::unique_ptr<llvm::MCRelocationInfo> rel_info_up(
1300 curr_target->createMCRelocationInfo(triple, *context_up));
1301 if (!rel_info_up)
1302 return Instance();
1303
1304 std::unique_ptr<llvm::MCSymbolizer> symbolizer_up(
1305 curr_target->createMCSymbolizer(
1306 triple, nullptr, DisassemblerLLVMC::SymbolLookupCallback, &owner,
1307 context_up.get(), std::move(rel_info_up)));
1308 disasm_up->setSymbolizer(std::move(symbolizer_up));
1309
1310 unsigned asm_printer_variant =
1311 flavor == ~0U ? asm_info_up->getAssemblerDialect() : flavor;
1312
1313 std::unique_ptr<llvm::MCInstPrinter> instr_printer_up(
1314 curr_target->createMCInstPrinter(llvm::Triple{triple},
1315 asm_printer_variant, *asm_info_up,
1316 *instr_info_up, *reg_info_up));
1317 if (!instr_printer_up)
1318 return Instance();
1319
1320 instr_printer_up->setPrintBranchImmAsAddress(true);
1321
1322 // Not all targets may have registered createMCInstrAnalysis().
1323 std::unique_ptr<llvm::MCInstrAnalysis> instr_analysis_up(
1324 curr_target->createMCInstrAnalysis(instr_info_up.get()));
1325
1326 return Instance(new MCDisasmInstance(
1327 std::move(instr_info_up), std::move(reg_info_up),
1328 std::move(subtarget_info_up), std::move(asm_info_up),
1329 std::move(context_up), std::move(disasm_up), std::move(instr_printer_up),
1330 std::move(instr_analysis_up)));
1331}
1332
1334 std::unique_ptr<llvm::MCInstrInfo> &&instr_info_up,
1335 std::unique_ptr<llvm::MCRegisterInfo> &&reg_info_up,
1336 std::unique_ptr<llvm::MCSubtargetInfo> &&subtarget_info_up,
1337 std::unique_ptr<llvm::MCAsmInfo> &&asm_info_up,
1338 std::unique_ptr<llvm::MCContext> &&context_up,
1339 std::unique_ptr<llvm::MCDisassembler> &&disasm_up,
1340 std::unique_ptr<llvm::MCInstPrinter> &&instr_printer_up,
1341 std::unique_ptr<llvm::MCInstrAnalysis> &&instr_analysis_up)
1342 : m_instr_info_up(std::move(instr_info_up)),
1343 m_reg_info_up(std::move(reg_info_up)),
1344 m_subtarget_info_up(std::move(subtarget_info_up)),
1345 m_asm_info_up(std::move(asm_info_up)),
1346 m_context_up(std::move(context_up)), m_disasm_up(std::move(disasm_up)),
1347 m_instr_printer_up(std::move(instr_printer_up)),
1348 m_instr_analysis_up(std::move(instr_analysis_up)) {
1351}
1352
1354 size_t opcode_data_len,
1356 llvm::MCInst &mc_inst,
1357 uint64_t &size) const {
1358 llvm::ArrayRef<uint8_t> data(opcode_data, opcode_data_len);
1359 llvm::MCDisassembler::DecodeStatus status;
1360
1361 status = m_disasm_up->getInstruction(mc_inst, size, data, pc, llvm::nulls());
1362 if (status == llvm::MCDisassembler::Success)
1363 return true;
1364 else
1365 return false;
1366}
1367
1369 llvm::MCInst &mc_inst, lldb::addr_t pc, std::string &inst_string,
1370 std::string &comments_string) {
1371 llvm::raw_string_ostream inst_stream(inst_string);
1372 llvm::raw_string_ostream comments_stream(comments_string);
1373
1374 inst_stream.enable_colors(m_instr_printer_up->getUseColor());
1375 m_instr_printer_up->setCommentStream(comments_stream);
1376 m_instr_printer_up->printInst(&mc_inst, pc, llvm::StringRef(),
1377 *m_subtarget_info_up, inst_stream);
1378 m_instr_printer_up->setCommentStream(llvm::nulls());
1379
1380 static std::string g_newlines("\r\n");
1381
1382 for (size_t newline_pos = 0;
1383 (newline_pos = comments_string.find_first_of(g_newlines, newline_pos)) !=
1384 comments_string.npos;
1385 /**/) {
1386 comments_string.replace(comments_string.begin() + newline_pos,
1387 comments_string.begin() + newline_pos + 1, 1, ' ');
1388 }
1389}
1390
1392 bool use_hex_immed, HexImmediateStyle hex_style) {
1393 m_instr_printer_up->setPrintImmHex(use_hex_immed);
1394 switch (hex_style) {
1395 case eHexStyleC:
1396 m_instr_printer_up->setPrintHexStyle(llvm::HexStyle::C);
1397 break;
1398 case eHexStyleAsm:
1399 m_instr_printer_up->setPrintHexStyle(llvm::HexStyle::Asm);
1400 break;
1401 }
1402}
1403
1405 m_instr_printer_up->setUseColor(use_color);
1406}
1407
1409 return m_instr_printer_up->getUseColor();
1410}
1411
1413 llvm::MCInst &mc_inst) const {
1415 return m_instr_analysis_up->mayAffectControlFlow(mc_inst, *m_reg_info_up);
1416 return m_instr_info_up->get(mc_inst.getOpcode())
1417 .mayAffectControlFlow(mc_inst, *m_reg_info_up);
1418}
1419
1421 llvm::MCInst &mc_inst) const {
1422 return m_instr_info_up->get(mc_inst.getOpcode()).hasDelaySlot();
1423}
1424
1425bool DisassemblerLLVMC::MCDisasmInstance::IsCall(llvm::MCInst &mc_inst) const {
1427 return m_instr_analysis_up->isCall(mc_inst);
1428 return m_instr_info_up->get(mc_inst.getOpcode()).isCall();
1429}
1430
1431bool DisassemblerLLVMC::MCDisasmInstance::IsLoad(llvm::MCInst &mc_inst) const {
1432 return m_instr_info_up->get(mc_inst.getOpcode()).mayLoad();
1433}
1434
1436 llvm::MCInst &mc_inst) const {
1437 const auto &InstrDesc = m_instr_info_up->get(mc_inst.getOpcode());
1438
1439 // Treat software auth traps (brk 0xc470 + aut key, where 0x70 == 'p', 0xc4
1440 // == 'a' + 'c') as authenticated instructions for reporting purposes, in
1441 // addition to the standard authenticated instructions specified in ARMv8.3.
1442 bool IsBrkC47x = false;
1443 if (InstrDesc.isTrap() && mc_inst.getNumOperands() == 1) {
1444 const llvm::MCOperand &Op0 = mc_inst.getOperand(0);
1445 if (Op0.isImm() && Op0.getImm() >= 0xc470 && Op0.getImm() <= 0xc474)
1446 IsBrkC47x = true;
1447 }
1448
1449 return InstrDesc.isAuthenticated() || IsBrkC47x;
1450}
1451
1453 const char *flavor_string,
1454 const char *cpu_string,
1455 const char *features_string)
1456 : Disassembler(arch, flavor_string), m_exe_ctx(nullptr), m_inst(nullptr),
1458 m_adrp_insn() {
1459 if (!FlavorValidForArchSpec(arch, m_flavor.c_str())) {
1460 m_flavor.assign("default");
1461 }
1462
1463 const bool cpu_or_features_overriden = cpu_string || features_string;
1464 unsigned flavor = ~0U;
1465 llvm::Triple triple = arch.GetTriple();
1466
1467 // So far the only supported flavor is "intel" on x86. The base class will
1468 // set this correctly coming in.
1469 if (triple.getArch() == llvm::Triple::x86 ||
1470 triple.getArch() == llvm::Triple::x86_64) {
1471 if (m_flavor == "intel") {
1472 flavor = 1;
1473 } else if (m_flavor == "att") {
1474 flavor = 0;
1475 }
1476 }
1477
1478 ArchSpec thumb_arch(arch);
1479 if (triple.getArch() == llvm::Triple::arm) {
1480 std::string thumb_arch_name(thumb_arch.GetTriple().getArchName().str());
1481 // Replace "arm" with "thumb" so we get all thumb variants correct
1482 if (thumb_arch_name.size() > 3) {
1483 thumb_arch_name.erase(0, 3);
1484 thumb_arch_name.insert(0, "thumb");
1485 } else {
1486 thumb_arch_name = "thumbv9.3a";
1487 }
1488 thumb_arch.GetTriple().setArchName(llvm::StringRef(thumb_arch_name));
1489 }
1490
1491 // If no sub architecture specified then use the most recent arm architecture
1492 // so the disassembler will return all instructions. Without it we will see a
1493 // lot of unknown opcodes if the code uses instructions which are not
1494 // available in the oldest arm version (which is used when no sub architecture
1495 // is specified).
1496 if (triple.getArch() == llvm::Triple::arm &&
1497 triple.getSubArch() == llvm::Triple::NoSubArch)
1498 triple.setArchName("armv9.3a");
1499
1500 std::string features_str =
1501 features_string ? std::string(features_string) : "";
1502 const char *triple_str = triple.getTriple().c_str();
1503
1504 // ARM Cortex M0-M7 devices only execute thumb instructions
1505 if (arch.IsAlwaysThumbInstructions()) {
1506 triple_str = thumb_arch.GetTriple().getTriple().c_str();
1507 if (!features_string)
1508 features_str += "+fp-armv8,";
1509 }
1510
1511 const char *cpu = cpu_string;
1512
1513 if (!cpu_or_features_overriden) {
1514 switch (arch.GetCore()) {
1517 cpu = "mips32";
1518 break;
1521 cpu = "mips32r2";
1522 break;
1525 cpu = "mips32r3";
1526 break;
1529 cpu = "mips32r5";
1530 break;
1533 cpu = "mips32r6";
1534 break;
1537 cpu = "mips64";
1538 break;
1541 cpu = "mips64r2";
1542 break;
1545 cpu = "mips64r3";
1546 break;
1549 cpu = "mips64r5";
1550 break;
1553 cpu = "mips64r6";
1554 break;
1555 default:
1556 cpu = "";
1557 break;
1558 }
1559 }
1560
1561 if (arch.IsMIPS() && !cpu_or_features_overriden) {
1562 uint32_t arch_flags = arch.GetFlags();
1563 if (arch_flags & ArchSpec::eMIPSAse_msa)
1564 features_str += "+msa,";
1565 if (arch_flags & ArchSpec::eMIPSAse_dsp)
1566 features_str += "+dsp,";
1567 if (arch_flags & ArchSpec::eMIPSAse_dspr2)
1568 features_str += "+dspr2,";
1569 }
1570
1571 // If any AArch64 variant, enable latest ISA with all extensions unless the
1572 // CPU or features were overridden.
1573 if (triple.isAArch64() && !cpu_or_features_overriden) {
1574 features_str += "+all,";
1575 if (triple.getVendor() == llvm::Triple::Apple)
1576 cpu = "apple-latest";
1577 }
1578
1579 if (triple.isRISCV() && !cpu_or_features_overriden) {
1580 uint32_t arch_flags = arch.GetFlags();
1581 if (arch_flags & ArchSpec::eRISCV_rvc)
1582 features_str += "+c,";
1583 if (arch_flags & ArchSpec::eRISCV_rve)
1584 features_str += "+e,";
1585 if ((arch_flags & ArchSpec::eRISCV_float_abi_single) ==
1587 features_str += "+f,";
1588 if ((arch_flags & ArchSpec::eRISCV_float_abi_double) ==
1590 features_str += "+f,+d,";
1591 if ((arch_flags & ArchSpec::eRISCV_float_abi_quad) ==
1593 features_str += "+f,+d,+q,";
1594 // FIXME: how do we detect features such as `+a`, `+m`?
1595 // Turn them on by default now, since everyone seems to use them
1596 features_str += "+a,+m,";
1597 }
1598
1599 // We use m_disasm_up.get() to tell whether we are valid or not, so if this
1600 // isn't good for some reason, we won't be valid and FindPlugin will fail and
1601 // we won't get used.
1602 m_disasm_up = MCDisasmInstance::Create(triple_str, cpu, features_str.c_str(),
1603 flavor, *this);
1604
1605 llvm::Triple::ArchType llvm_arch = triple.getArch();
1606
1607 // For arm CPUs that can execute arm or thumb instructions, also create a
1608 // thumb instruction disassembler.
1609 if (llvm_arch == llvm::Triple::arm) {
1610 std::string thumb_triple(thumb_arch.GetTriple().getTriple());
1611 m_alternate_disasm_up = MCDisasmInstance::Create(
1612 thumb_triple.c_str(), "", features_str.c_str(), flavor, *this);
1613 if (!m_alternate_disasm_up)
1614 m_disasm_up.reset();
1615
1616 } else if (arch.IsMIPS()) {
1617 /* Create alternate disassembler for MIPS16 and microMIPS */
1618 uint32_t arch_flags = arch.GetFlags();
1619 if (arch_flags & ArchSpec::eMIPSAse_mips16)
1620 features_str += "+mips16,";
1621 else if (arch_flags & ArchSpec::eMIPSAse_micromips)
1622 features_str += "+micromips,";
1623
1624 m_alternate_disasm_up = MCDisasmInstance::Create(
1625 triple_str, cpu, features_str.c_str(), flavor, *this);
1626 if (!m_alternate_disasm_up)
1627 m_disasm_up.reset();
1628 }
1629}
1630
1632
1634 const char *flavor,
1635 const char *cpu,
1636 const char *features) {
1637 if (arch.GetTriple().getArch() != llvm::Triple::UnknownArch) {
1638 auto disasm_sp =
1639 std::make_shared<DisassemblerLLVMC>(arch, flavor, cpu, features);
1640 if (disasm_sp && disasm_sp->IsValid())
1641 return disasm_sp;
1642 }
1643 return lldb::DisassemblerSP();
1644}
1645
1647 const DataExtractor &data,
1648 lldb::offset_t data_offset,
1649 size_t num_instructions,
1650 bool append, bool data_from_file) {
1651 if (!append)
1652 m_instruction_list.Clear();
1653
1654 if (!IsValid())
1655 return 0;
1656
1657 m_data_from_file = data_from_file;
1658 uint32_t data_cursor = data_offset;
1659 const size_t data_byte_size = data.GetByteSize();
1660 uint32_t instructions_parsed = 0;
1661 Address inst_addr(base_addr);
1662
1663 while (data_cursor < data_byte_size &&
1664 instructions_parsed < num_instructions) {
1665
1666 AddressClass address_class = AddressClass::eCode;
1667
1669 address_class = inst_addr.GetAddressClass();
1670
1671 InstructionSP inst_sp(
1672 new InstructionLLVMC(*this, inst_addr, address_class));
1673
1674 if (!inst_sp)
1675 break;
1676
1677 uint32_t inst_size = inst_sp->Decode(*this, data, data_cursor);
1678
1679 if (inst_size == 0)
1680 break;
1681
1682 m_instruction_list.Append(inst_sp);
1683 data_cursor += inst_size;
1684 inst_addr.Slide(inst_size);
1685 instructions_parsed++;
1686 }
1687
1688 return data_cursor - data_offset;
1689}
1690
1693 "Disassembler that uses LLVM MC to disassemble "
1694 "i386, x86_64, ARM, and ARM64.",
1696
1697 llvm::InitializeAllTargetInfos();
1698 llvm::InitializeAllTargetMCs();
1699 llvm::InitializeAllAsmParsers();
1700 llvm::InitializeAllDisassemblers();
1701}
1702
1706
1707int DisassemblerLLVMC::OpInfoCallback(void *disassembler, uint64_t pc,
1708 uint64_t offset, uint64_t size,
1709 int tag_type, void *tag_bug) {
1710 return static_cast<DisassemblerLLVMC *>(disassembler)
1711 ->OpInfo(pc, offset, size, tag_type, tag_bug);
1712}
1713
1714const char *DisassemblerLLVMC::SymbolLookupCallback(void *disassembler,
1715 uint64_t value,
1716 uint64_t *type, uint64_t pc,
1717 const char **name) {
1718 return static_cast<DisassemblerLLVMC *>(disassembler)
1719 ->SymbolLookup(value, type, pc, name);
1720}
1721
1723 const lldb_private::ArchSpec &arch, const char *flavor) {
1724 llvm::Triple triple = arch.GetTriple();
1725 if (flavor == nullptr || strcmp(flavor, "default") == 0)
1726 return true;
1727
1728 if (triple.getArch() == llvm::Triple::x86 ||
1729 triple.getArch() == llvm::Triple::x86_64) {
1730 return strcmp(flavor, "intel") == 0 || strcmp(flavor, "att") == 0;
1731 } else
1732 return false;
1733}
1734
1735bool DisassemblerLLVMC::IsValid() const { return m_disasm_up.operator bool(); }
1736
1737int DisassemblerLLVMC::OpInfo(uint64_t PC, uint64_t Offset, uint64_t Size,
1738 int tag_type, void *tag_bug) {
1739 switch (tag_type) {
1740 default:
1741 break;
1742 case 1:
1743 memset(tag_bug, 0, sizeof(::LLVMOpInfo1));
1744 break;
1745 }
1746 return 0;
1747}
1748
1749const char *DisassemblerLLVMC::SymbolLookup(uint64_t value, uint64_t *type_ptr,
1750 uint64_t pc, const char **name) {
1751 if (*type_ptr) {
1752 if (m_exe_ctx && m_inst) {
1753 // std::string remove_this_prior_to_checkin;
1754 Target *target = m_exe_ctx ? m_exe_ctx->GetTargetPtr() : nullptr;
1755 Address value_so_addr;
1756 Address pc_so_addr;
1757 if (target->GetArchitecture().GetMachine() == llvm::Triple::aarch64 ||
1758 target->GetArchitecture().GetMachine() == llvm::Triple::aarch64_be ||
1759 target->GetArchitecture().GetMachine() == llvm::Triple::aarch64_32) {
1760 if (*type_ptr == LLVMDisassembler_ReferenceType_In_ARM64_ADRP) {
1762 m_adrp_insn = value;
1763 *name = nullptr;
1764 *type_ptr = LLVMDisassembler_ReferenceType_InOut_None;
1765 return nullptr;
1766 }
1767 // If this instruction is an ADD and
1768 // the previous instruction was an ADRP and
1769 // the ADRP's register and this ADD's register are the same,
1770 // then this is a pc-relative address calculation.
1771 if (*type_ptr == LLVMDisassembler_ReferenceType_In_ARM64_ADDXri &&
1772 m_adrp_insn && m_adrp_address == pc - 4 &&
1773 (*m_adrp_insn & 0x1f) == ((value >> 5) & 0x1f)) {
1774 uint32_t addxri_inst;
1775 uint64_t adrp_imm, addxri_imm;
1776 // Get immlo and immhi bits, OR them together to get the ADRP imm
1777 // value.
1778 adrp_imm =
1779 ((*m_adrp_insn & 0x00ffffe0) >> 3) | ((*m_adrp_insn >> 29) & 0x3);
1780 // if high bit of immhi after right-shifting set, sign extend
1781 if (adrp_imm & (1ULL << 20))
1782 adrp_imm |= ~((1ULL << 21) - 1);
1783
1784 addxri_inst = value;
1785 addxri_imm = (addxri_inst >> 10) & 0xfff;
1786 // check if 'sh' bit is set, shift imm value up if so
1787 // (this would make no sense, ADRP already gave us this part)
1788 if ((addxri_inst >> (12 + 5 + 5)) & 1)
1789 addxri_imm <<= 12;
1790 value = (m_adrp_address & 0xfffffffffffff000LL) + (adrp_imm << 12) +
1791 addxri_imm;
1792 }
1794 m_adrp_insn.reset();
1795 }
1796
1797 if (m_inst->UsingFileAddress()) {
1798 ModuleSP module_sp(m_inst->GetAddress().GetModule());
1799 if (module_sp) {
1800 module_sp->ResolveFileAddress(value, value_so_addr);
1801 module_sp->ResolveFileAddress(pc, pc_so_addr);
1802 }
1803 } else if (target && target->HasLoadedSections()) {
1804 target->ResolveLoadAddress(value, value_so_addr);
1805 target->ResolveLoadAddress(pc, pc_so_addr);
1806 }
1807
1808 SymbolContext sym_ctx;
1809 const SymbolContextItem resolve_scope =
1810 eSymbolContextFunction | eSymbolContextSymbol;
1811 if (pc_so_addr.IsValid() && pc_so_addr.GetModule()) {
1812 pc_so_addr.GetModule()->ResolveSymbolContextForAddress(
1813 pc_so_addr, resolve_scope, sym_ctx);
1814 }
1815
1816 if (value_so_addr.IsValid() && value_so_addr.GetSection()) {
1817 StreamString ss;
1818
1819 bool format_omitting_current_func_name = false;
1820 if (sym_ctx.symbol || sym_ctx.function) {
1821 AddressRange range;
1822 for (uint32_t idx = 0;
1823 sym_ctx.GetAddressRange(resolve_scope, idx, false, range);
1824 ++idx) {
1825 if (range.ContainsLoadAddress(value_so_addr, target)) {
1826 format_omitting_current_func_name = true;
1827 break;
1828 }
1829 }
1830 }
1831
1832 // If the "value" address (the target address we're symbolicating) is
1833 // inside the same SymbolContext as the current instruction pc
1834 // (pc_so_addr), don't print the full function name - just print it
1835 // with DumpStyleNoFunctionName style, e.g. "<+36>".
1836 if (format_omitting_current_func_name) {
1837 value_so_addr.Dump(&ss, target, Address::DumpStyleNoFunctionName,
1839 } else {
1840 value_so_addr.Dump(
1841 &ss, target,
1844 }
1845
1846 if (!ss.GetString().empty()) {
1847 // If Address::Dump returned a multi-line description, most commonly
1848 // seen when we have multiple levels of inlined functions at an
1849 // address, only show the first line.
1850 std::string str = std::string(ss.GetString());
1851 size_t first_eol_char = str.find_first_of("\r\n");
1852 if (first_eol_char != std::string::npos) {
1853 str.erase(first_eol_char);
1854 }
1855 m_inst->AppendComment(str);
1856 }
1857 }
1858 }
1859 }
1860
1861 // TODO: llvm-objdump sets the type_ptr to the
1862 // LLVMDisassembler_ReferenceType_Out_* values
1863 // based on where value_so_addr is pointing, with
1864 // Mach-O specific augmentations in MachODump.cpp. e.g.
1865 // see what AArch64ExternalSymbolizer::tryAddingSymbolicOperand
1866 // handles.
1867 *type_ptr = LLVMDisassembler_ReferenceType_InOut_None;
1868 *name = nullptr;
1869 return nullptr;
1870}
#define LLDB_PLUGIN_DEFINE(PluginName)
bool HasDelaySlot(llvm::MCInst &mc_inst) const
bool IsAuthenticated(llvm::MCInst &mc_inst) const
std::unique_ptr< llvm::MCInstrInfo > m_instr_info_up
std::unique_ptr< llvm::MCRegisterInfo > m_reg_info_up
bool CanBranch(llvm::MCInst &mc_inst) const
std::unique_ptr< llvm::MCContext > m_context_up
std::unique_ptr< llvm::MCAsmInfo > m_asm_info_up
void PrintMCInst(llvm::MCInst &mc_inst, lldb::addr_t pc, std::string &inst_string, std::string &comments_string)
void SetStyle(bool use_hex_immed, HexImmediateStyle hex_style)
static std::unique_ptr< MCDisasmInstance > Create(const char *triple, const char *cpu, const char *features_str, unsigned flavor, DisassemblerLLVMC &owner)
bool GetMCInst(const uint8_t *opcode_data, size_t opcode_data_len, lldb::addr_t pc, llvm::MCInst &mc_inst, uint64_t &size) const
bool IsLoad(llvm::MCInst &mc_inst) const
bool IsCall(llvm::MCInst &mc_inst) const
std::unique_ptr< llvm::MCSubtargetInfo > m_subtarget_info_up
std::unique_ptr< llvm::MCInstrAnalysis > m_instr_analysis_up
std::unique_ptr< llvm::MCDisassembler > m_disasm_up
std::unique_ptr< llvm::MCInstPrinter > m_instr_printer_up
MCDisasmInstance(std::unique_ptr< llvm::MCInstrInfo > &&instr_info_up, std::unique_ptr< llvm::MCRegisterInfo > &&reg_info_up, std::unique_ptr< llvm::MCSubtargetInfo > &&subtarget_info_up, std::unique_ptr< llvm::MCAsmInfo > &&asm_info_up, std::unique_ptr< llvm::MCContext > &&context_up, std::unique_ptr< llvm::MCDisassembler > &&disasm_up, std::unique_ptr< llvm::MCInstPrinter > &&instr_printer_up, std::unique_ptr< llvm::MCInstrAnalysis > &&instr_analysis_up)
std::optional< uint32_t > m_adrp_insn
DisassemblerLLVMC(const lldb_private::ArchSpec &arch, const char *flavor, const char *cpu, const char *features)
static const char * SymbolLookupCallback(void *DisInfo, uint64_t ReferenceValue, uint64_t *ReferenceType, uint64_t ReferencePC, const char **ReferenceName)
int OpInfo(uint64_t PC, uint64_t Offset, uint64_t Size, int TagType, void *TagBug)
const lldb_private::ExecutionContext * m_exe_ctx
const char * SymbolLookup(uint64_t ReferenceValue, uint64_t *ReferenceType, uint64_t ReferencePC, const char **ReferenceName)
std::unique_ptr< MCDisasmInstance > m_disasm_up
static llvm::StringRef GetPluginNameStatic()
friend class InstructionLLVMC
static int OpInfoCallback(void *DisInfo, uint64_t PC, uint64_t Offset, uint64_t Size, int TagType, void *TagBug)
static lldb::DisassemblerSP CreateInstance(const lldb_private::ArchSpec &arch, const char *flavor, const char *cpu, const char *features)
lldb::addr_t m_adrp_address
bool FlavorValidForArchSpec(const lldb_private::ArchSpec &arch, const char *flavor) override
~DisassemblerLLVMC() override
std::unique_ptr< MCDisasmInstance > m_alternate_disasm_up
InstructionLLVMC * m_inst
size_t DecodeInstructions(const lldb_private::Address &base_addr, const lldb_private::DataExtractor &data, lldb::offset_t data_offset, size_t num_instructions, bool append, bool data_from_file) override
Grants exclusive access to the disassembler and initializes it with the given InstructionLLVMC and an...
std::shared_ptr< DisassemblerLLVMC > m_disasm
DisassemblerScope(InstructionLLVMC &i, const lldb_private::ExecutionContext *exe_ctx=nullptr)
std::shared_ptr< DisassemblerLLVMC > operator->()
static std::pair< Operand, llvm::StringRef::const_iterator > ParseIntelIndexedAccess(llvm::StringRef::const_iterator osi, llvm::StringRef::const_iterator ose)
bool DoesBranch() override
DisassemblerLLVMC::MCDisasmInstance * GetDisasmToUse(bool &is_alternate_isa)
static void DumpOperand(const Operand &op, Stream &s)
size_t GetByteSize() const
static llvm::StringRef::const_iterator ConsumeWhitespace(llvm::StringRef::const_iterator osi, llvm::StringRef::const_iterator ose)
std::weak_ptr< DisassemblerLLVMC > m_disasm_wp
void CalculateMnemonicOperandsAndComment(const lldb_private::ExecutionContext *exe_ctx) override
bool IsLoad() override
static std::pair< Operand, llvm::StringRef::const_iterator > ParseARMOffsetAccess(llvm::StringRef::const_iterator osi, llvm::StringRef::const_iterator ose)
DisassemblerLLVMC::MCDisasmInstance * GetDisasmToUse(bool &is_alternate_isa, DisassemblerScope &disasm)
void AppendComment(std::string &description)
bool UsingFileAddress() const
bool IsAuthenticated() override
static std::pair< Operand, llvm::StringRef::const_iterator > ParseIntelDerefAccess(llvm::StringRef::const_iterator osi, llvm::StringRef::const_iterator ose)
static std::pair< bool, llvm::StringRef::const_iterator > ConsumeChar(llvm::StringRef::const_iterator osi, const char c, llvm::StringRef::const_iterator ose)
size_t Decode(const lldb_private::Disassembler &disassembler, const lldb_private::DataExtractor &data, lldb::offset_t data_offset) override
bool ParseOperands(llvm::SmallVectorImpl< Instruction::Operand > &operands) override
bool HasDelaySlot() override
static std::pair< Operand, llvm::StringRef::const_iterator > ParseARMDerefAccess(llvm::StringRef::const_iterator osi, llvm::StringRef::const_iterator ose)
static std::pair< Operand, llvm::StringRef::const_iterator > ParseRegisterName(llvm::StringRef::const_iterator osi, llvm::StringRef::const_iterator ose)
~InstructionLLVMC() override=default
lldb::InstructionControlFlowKind GetControlFlowKind(const lldb_private::ExecutionContext *exe_ctx) override
InstructionLLVMC(DisassemblerLLVMC &disasm, const lldb_private::Address &address, AddressClass addr_class)
static std::pair< Operand, llvm::StringRef::const_iterator > ParseImmediate(llvm::StringRef::const_iterator osi, llvm::StringRef::const_iterator ose)
A section + offset based address range class.
bool ContainsLoadAddress(const Address &so_addr, Target *target) const
Check if a section offset so_addr when represented as a load address is contained within this object'...
A section + offset based address class.
Definition Address.h:62
lldb::SectionSP GetSection() const
Get const accessor for the section.
Definition Address.h:432
@ DumpStyleSectionNameOffset
Display as the section name + offset.
Definition Address.h:74
@ DumpStyleNoFunctionName
Elide the function name; display an offset into the current function.
Definition Address.h:109
@ DumpStyleResolvedDescriptionNoFunctionArguments
Definition Address.h:106
bool Slide(int64_t offset)
Definition Address.h:452
bool Dump(Stream *s, ExecutionContextScope *exe_scope, DumpStyle style, DumpStyle fallback_style=DumpStyleInvalid, uint32_t addr_byte_size=UINT32_MAX, bool all_ranges=false, std::optional< Stream::HighlightSettings > settings=std::nullopt) const
Dump a description of this object to a Stream.
Definition Address.cpp:396
lldb::ModuleSP GetModule() const
Get accessor for the module for this address.
Definition Address.cpp:273
bool IsValid() const
Check if the object state is valid.
Definition Address.h:355
AddressClass GetAddressClass() const
Definition Address.cpp:1021
An architecture specification class.
Definition ArchSpec.h:31
llvm::Triple & GetTriple()
Architecture triple accessor.
Definition ArchSpec.h:468
uint32_t GetMinimumOpcodeByteSize() const
Definition ArchSpec.cpp:924
llvm::Triple::ArchType GetMachine() const
Returns a machine family for the current architecture.
Definition ArchSpec.cpp:677
@ eRISCV_float_abi_double
single precision floating point, +f
Definition ArchSpec.h:97
@ eRISCV_float_abi_quad
double precision floating point, +d
Definition ArchSpec.h:98
@ eRISCV_float_abi_single
soft float
Definition ArchSpec.h:96
uint32_t GetMaximumOpcodeByteSize() const
Definition ArchSpec.cpp:931
A uniqued constant string class.
Definition ConstString.h:40
llvm::StringRef GetStringRef() const
Get the string value as a llvm::StringRef.
An data extractor class.
uint64_t GetU64(lldb::offset_t *offset_ptr) const
Extract a uint64_t value from *offset_ptr.
const uint8_t * PeekData(lldb::offset_t offset, lldb::offset_t length) const
Peek at a bytes at offset.
bool ValidOffsetForDataOfSize(lldb::offset_t offset, lldb::offset_t length) const
Test the availability of length bytes of data from offset.
uint32_t GetU32(lldb::offset_t *offset_ptr) const
Extract a uint32_t value from *offset_ptr.
uint64_t GetByteSize() const
Get the number of bytes contained in this object.
uint16_t GetU16(lldb::offset_t *offset_ptr) const
Extract a uint16_t value from *offset_ptr.
const uint8_t * GetDataStart() const
Get the data start pointer.
lldb::offset_t BytesLeft(lldb::offset_t offset) const
lldb::ByteOrder GetByteOrder() const
Get the current byte order value.
uint8_t GetU8(lldb::offset_t *offset_ptr) const
Extract a uint8_t value from *offset_ptr.
InstructionList m_instruction_list
Disassembler(const ArchSpec &arch, const char *flavor)
"lldb/Target/ExecutionContext.h" A class that contains an execution context.
Target * GetTargetPtr() const
Returns a pointer to the target object.
Instruction(const Address &address, AddressClass addr_class=AddressClass::eInvalid)
const char * GetOperands(const ExecutionContext *exe_ctx, bool markup=false)
uint32_t GetByteSize() const
Definition Opcode.h:231
const void * GetOpcodeBytes() const
Definition Opcode.h:225
static bool RegisterPlugin(llvm::StringRef name, llvm::StringRef description, ABICreateInstance create_callback)
static bool UnregisterPlugin(ABICreateInstance create_callback)
bool Execute(llvm::StringRef string, llvm::SmallVectorImpl< llvm::StringRef > *matches=nullptr) const
Execute a regular expression match using the compiled regular expression that is already in this obje...
An error handling class.
Definition Status.h:118
llvm::StringRef GetString() const
A stream class that can stream formatted output to a file.
Definition Stream.h:28
size_t Printf(const char *format,...) __attribute__((format(printf
Output printf formatted output to the stream.
Definition Stream.cpp:134
size_t PutCString(llvm::StringRef cstr)
Output a C string to the stream.
Definition Stream.cpp:65
Defines a symbol context baton that can be handed other debug core functions.
Function * function
The Function for a given query.
bool GetAddressRange(uint32_t scope, uint32_t range_idx, bool use_inline_block_range, AddressRange &range) const
Get the address range contained within a symbol context.
Symbol * symbol
The Symbol for a given query.
Disassembler::HexImmediateStyle GetHexImmediateStyle() const
Definition Target.cpp:5003
bool ResolveLoadAddress(lldb::addr_t load_addr, Address &so_addr, uint32_t stop_id=SectionLoadHistory::eStopIDNow, bool allow_section_end=false)
Definition Target.cpp:3285
const ArchSpec & GetArchitecture() const
Definition Target.h:1056
#define LLDB_INVALID_ADDRESS
A class that represents a running process on the host machine.
Log * GetLog(Cat mask)
Retrieve the Log object for the channel associated with the given log enum.
Definition Log.h:332
uint64_t offset_t
Definition lldb-types.h:85
std::shared_ptr< lldb_private::Instruction > InstructionSP
std::shared_ptr< lldb_private::Disassembler > DisassemblerSP
ByteOrder
Byte ordering definitions.
InstructionControlFlowKind
Architecture-agnostic categorization of instructions for traversing the control flow of a trace.
@ eInstructionControlFlowKindReturn
The instruction is a near (function) return.
@ eInstructionControlFlowKindFarJump
The instruction is a jump-like far transfer.
@ eInstructionControlFlowKindOther
The instruction is something not listed below, i.e.
@ eInstructionControlFlowKindFarCall
The instruction is a call-like far transfer.
@ eInstructionControlFlowKindFarReturn
The instruction is a return-like far transfer.
@ eInstructionControlFlowKindUnknown
The instruction could not be classified.
@ eInstructionControlFlowKindJump
The instruction is a near unconditional jump.
@ eInstructionControlFlowKindCall
The instruction is a near (function) call.
@ eInstructionControlFlowKindCondJump
The instruction is a near conditional jump.
uint64_t addr_t
Definition lldb-types.h:80
std::shared_ptr< lldb_private::Module > ModuleSP
std::optional< InstructionOpcodeAndModrm > InstructionLengthDecode(const uint8_t *inst_bytes, int bytes_len, bool is_exec_mode_64b)
Decode an instruction into opcode, modrm and opcode_len.
lldb::InstructionControlFlowKind GetControlFlowKind(bool is_exec_mode_64b, Opcode m_opcode)
lldb::InstructionControlFlowKind MapOpcodeIntoControlFlowKind(InstructionOpcodeAndModrm opcode_and_modrm)
Determine the InstructionControlFlowKind based on opcode and modrm bytes.
enum lldb_private::Instruction::Operand::Type m_type
std::vector< Operand > m_children
These are the three values deciding instruction control flow kind.