LLDB mainline
GDBRemoteRegisterContext.cpp
Go to the documentation of this file.
1//===-- GDBRemoteRegisterContext.cpp --------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10
11#include "ProcessGDBRemote.h"
12#include "ProcessGDBRemoteLog.h"
13#include "ThreadGDBRemote.h"
18#include "lldb/Target/Target.h"
22#include "lldb/Utility/Scalar.h"
25
26#include <memory>
27
28using namespace lldb;
29using namespace lldb_private;
31
32// GDBRemoteRegisterContext constructor
34 ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
35 GDBRemoteDynamicRegisterInfoSP reg_info_sp, bool read_all_at_once,
36 bool write_all_at_once)
37 : RegisterContext(thread, concrete_frame_idx),
38 m_reg_info_sp(std::move(reg_info_sp)), m_reg_valid(), m_reg_data(),
39 m_read_all_at_once(read_all_at_once),
40 m_write_all_at_once(write_all_at_once), m_gpacket_cached(false) {
41 // Resize our vector of bools to contain one bool for every register. We will
42 // use these boolean values to know when a register value is valid in
43 // m_reg_data.
44 m_reg_valid.resize(m_reg_info_sp->GetNumRegisters());
45
46 // Make a heap based buffer that is big enough to store all registers
47 DataBufferSP reg_data_sp(
48 new DataBufferHeap(m_reg_info_sp->GetRegisterDataByteSize(), 0));
49 m_reg_data.SetData(reg_data_sp);
50 m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
51}
52
53// Destructor
55
58}
59
62 std::vector<bool>::iterator pos, end = m_reg_valid.end();
63 for (pos = m_reg_valid.begin(); pos != end; ++pos)
64 *pos = b;
65}
66
68 return m_reg_info_sp->GetNumRegisters();
69}
70
71const RegisterInfo *
73 return m_reg_info_sp->GetRegisterInfoAtIndex(reg);
74}
75
77 return m_reg_info_sp->GetNumRegisterSets();
78}
79
81 return m_reg_info_sp->GetRegisterSet(reg_set);
82}
83
85 RegisterValue &value) {
86 // Read the register
87 if (ReadRegisterBytes(reg_info)) {
88 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
89 if (m_reg_valid[reg] == false)
90 return false;
91 if (reg_info->value_regs &&
92 reg_info->value_regs[0] != LLDB_INVALID_REGNUM &&
93 reg_info->value_regs[1] != LLDB_INVALID_REGNUM) {
94 std::vector<char> combined_data;
95 uint32_t offset = 0;
96 for (int i = 0; reg_info->value_regs[i] != LLDB_INVALID_REGNUM; i++) {
97 const RegisterInfo *parent_reg = GetRegisterInfo(
98 eRegisterKindLLDB, reg_info->value_regs[i]);
99 if (!parent_reg)
100 return false;
101 combined_data.resize(offset + parent_reg->byte_size);
102 if (m_reg_data.CopyData(parent_reg->byte_offset, parent_reg->byte_size,
103 combined_data.data() + offset) !=
104 parent_reg->byte_size)
105 return false;
106 offset += parent_reg->byte_size;
107 }
108
110 return value.SetFromMemoryData(
111 *reg_info, combined_data.data(), combined_data.size(),
112 m_reg_data.GetByteOrder(), error) == combined_data.size();
113 } else {
114 const bool partial_data_ok = false;
116 *reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
117 return error.Success();
118 }
119 }
120 return false;
121}
122
124 uint32_t reg, llvm::ArrayRef<uint8_t> data) {
125 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
126 if (reg_info == nullptr)
127 return false;
128
129 // Invalidate if needed
130 InvalidateIfNeeded(false);
131
132 const size_t reg_byte_size = reg_info->byte_size;
133 memcpy(const_cast<uint8_t *>(
134 m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
135 data.data(), std::min(data.size(), reg_byte_size));
136 bool success = data.size() >= reg_byte_size;
137 if (success) {
138 SetRegisterIsValid(reg, true);
139 } else if (data.size() > 0) {
140 // Only set register is valid to false if we copied some bytes, else leave
141 // it as it was.
142 SetRegisterIsValid(reg, false);
143 }
144 return success;
145}
146
148 uint64_t new_reg_val) {
149 const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
150 if (reg_info == nullptr)
151 return false;
152
153 // Early in process startup, we can get a thread that has an invalid byte
154 // order because the process hasn't been completely set up yet (see the ctor
155 // where the byte order is setfrom the process). If that's the case, we
156 // can't set the value here.
158 return false;
159 }
160
161 // Invalidate if needed
162 InvalidateIfNeeded(false);
163
164 DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
165 DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *));
166
167 // If our register context and our register info disagree, which should never
168 // happen, don't overwrite past the end of the buffer.
169 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
170 return false;
171
172 // Grab a pointer to where we are going to put this register
173 uint8_t *dst = const_cast<uint8_t *>(
174 m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
175
176 if (dst == nullptr)
177 return false;
178
179 if (data.CopyByteOrderedData(0, // src offset
180 reg_info->byte_size, // src length
181 dst, // dst
182 reg_info->byte_size, // dst length
183 m_reg_data.GetByteOrder())) // dst byte order
184 {
185 SetRegisterIsValid(reg, true);
186 return true;
187 }
188 return false;
189}
190
191// Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
193 const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
194 const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
195 const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
196
197 if (DataBufferSP buffer_sp =
198 gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
200 lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
201 buffer_sp->GetByteSize()));
202 return false;
203}
204
207
208 Process *process = exe_ctx.GetProcessPtr();
209 Thread *thread = exe_ctx.GetThreadPtr();
210 if (process == nullptr || thread == nullptr)
211 return false;
212
214 ((ProcessGDBRemote *)process)->GetGDBRemote());
215
216 InvalidateIfNeeded(false);
217
218 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
219
220 if (!GetRegisterIsValid(reg)) {
222 if (DataBufferSP buffer_sp =
224 memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
225 buffer_sp->GetBytes(),
226 std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
227 if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
229 return true;
230 } else if (buffer_sp->GetByteSize() > 0) {
231 for (auto x : llvm::enumerate(
232 m_reg_info_sp->registers<
234 const struct RegisterInfo &reginfo = x.value();
235 m_reg_valid[x.index()] =
236 (reginfo.byte_offset + reginfo.byte_size <=
237 buffer_sp->GetByteSize());
238 }
239
240 m_gpacket_cached = true;
241 if (GetRegisterIsValid(reg))
242 return true;
243 } else {
245 LLDB_LOGF(
246 log,
247 "error: GDBRemoteRegisterContext::ReadRegisterBytes tried "
248 "to read the "
249 "entire register context at once, expected at least %" PRId64
250 " bytes "
251 "but only got %" PRId64 " bytes.",
252 m_reg_data.GetByteSize(), buffer_sp->GetByteSize());
253 return false;
254 }
255 }
256 }
257 if (reg_info->value_regs) {
258 // Process this composite register request by delegating to the
259 // constituent primordial registers.
260
261 // Index of the primordial register.
262 bool success = true;
263 for (uint32_t idx = 0; success; ++idx) {
264 const uint32_t prim_reg = reg_info->value_regs[idx];
265 if (prim_reg == LLDB_INVALID_REGNUM)
266 break;
267 // We have a valid primordial register as our constituent. Grab the
268 // corresponding register info.
269 const RegisterInfo *prim_reg_info =
271 if (prim_reg_info == nullptr)
272 success = false;
273 else {
274 // Read the containing register if it hasn't already been read
275 if (!GetRegisterIsValid(prim_reg))
276 success = GetPrimordialRegister(prim_reg_info, gdb_comm);
277 }
278 }
279
280 if (success) {
281 // If we reach this point, all primordial register requests have
282 // succeeded. Validate this composite register.
283 SetRegisterIsValid(reg_info, true);
284 }
285 } else {
286 // Get each register individually
287 GetPrimordialRegister(reg_info, gdb_comm);
288 }
289
290 // Make sure we got a valid register value after reading it
291 if (!GetRegisterIsValid(reg))
292 return false;
293 }
294
295 return true;
296}
297
299 const RegisterValue &value) {
300 DataExtractor data;
301 if (value.GetData(data)) {
302 if (reg_info->value_regs &&
303 reg_info->value_regs[0] != LLDB_INVALID_REGNUM &&
304 reg_info->value_regs[1] != LLDB_INVALID_REGNUM) {
305 uint32_t combined_size = 0;
306 for (int i = 0; reg_info->value_regs[i] != LLDB_INVALID_REGNUM; i++) {
307 const RegisterInfo *parent_reg = GetRegisterInfo(
308 eRegisterKindLLDB, reg_info->value_regs[i]);
309 if (!parent_reg)
310 return false;
311 combined_size += parent_reg->byte_size;
312 }
313
314 if (data.GetByteSize() < combined_size)
315 return false;
316
317 uint32_t offset = 0;
318 for (int i = 0; reg_info->value_regs[i] != LLDB_INVALID_REGNUM; i++) {
319 const RegisterInfo *parent_reg = GetRegisterInfo(
320 eRegisterKindLLDB, reg_info->value_regs[i]);
321 assert(parent_reg);
322
323 DataExtractor parent_data{data, offset, parent_reg->byte_size};
324 if (!WriteRegisterBytes(parent_reg, parent_data, 0))
325 return false;
326 offset += parent_reg->byte_size;
327 }
328 assert(offset == combined_size);
329 return true;
330 } else
331 return WriteRegisterBytes(reg_info, data, 0);
332 }
333 return false;
334}
335
336// Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
338 const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
339 StreamString packet;
341 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
342 // Invalidate just this register
343 SetRegisterIsValid(reg, false);
344
345 return gdb_comm.WriteRegister(
347 {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
348 reg_info->byte_size});
349}
350
352 DataExtractor &data,
353 uint32_t data_offset) {
355
356 Process *process = exe_ctx.GetProcessPtr();
357 Thread *thread = exe_ctx.GetThreadPtr();
358 if (process == nullptr || thread == nullptr)
359 return false;
360
362 ((ProcessGDBRemote *)process)->GetGDBRemote());
363
364 assert(m_reg_data.GetByteSize() >=
365 reg_info->byte_offset + reg_info->byte_size);
366
367 // If our register context and our register info disagree, which should never
368 // happen, don't overwrite past the end of the buffer.
369 if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
370 return false;
371
372 // Grab a pointer to where we are going to put this register
373 uint8_t *dst = const_cast<uint8_t *>(
374 m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
375
376 if (dst == nullptr)
377 return false;
378
379 const bool should_reconfigure_registers =
381
382 if (data.CopyByteOrderedData(data_offset, // src offset
383 reg_info->byte_size, // src length
384 dst, // dst
385 reg_info->byte_size, // dst length
386 m_reg_data.GetByteOrder())) // dst byte order
387 {
388 GDBRemoteClientBase::Lock lock(gdb_comm);
389 if (lock) {
391 // Invalidate all register values
392 InvalidateIfNeeded(true);
393
394 // Set all registers in one packet
395 if (gdb_comm.WriteAllRegisters(
397 {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))
398
399 {
400 if (should_reconfigure_registers)
402
404
405 return true;
406 }
407 } else {
408 bool success = true;
409
410 if (reg_info->value_regs) {
411 // This register is part of another register. In this case we read
412 // the actual register data for any "value_regs", and once all that
413 // data is read, we will have enough data in our register context
414 // bytes for the value of this register
415
416 // Invalidate this composite register first.
417
418 for (uint32_t idx = 0; success; ++idx) {
419 const uint32_t reg = reg_info->value_regs[idx];
420 if (reg == LLDB_INVALID_REGNUM)
421 break;
422 // We have a valid primordial register as our constituent. Grab the
423 // corresponding register info.
424 const RegisterInfo *value_reg_info =
426 if (value_reg_info == nullptr)
427 success = false;
428 else
429 success = SetPrimordialRegister(value_reg_info, gdb_comm);
430 }
431 } else {
432 // This is an actual register, write it
433 success = SetPrimordialRegister(reg_info, gdb_comm);
434 }
435
436 // Check if writing this register will invalidate any other register
437 // values? If so, invalidate them
438 if (reg_info->invalidate_regs) {
439 for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
440 reg != LLDB_INVALID_REGNUM;
441 reg = reg_info->invalidate_regs[++idx])
443 eRegisterKindLLDB, reg),
444 false);
445 }
446
447 if (success && should_reconfigure_registers &&
450
451 return success;
452 }
453 } else {
455 if (log) {
456 if (log->GetVerbose()) {
457 StreamString strm;
458 process->DumpPluginHistory(strm);
459 LLDB_LOGF(log,
460 "error: failed to get packet sequence mutex, not sending "
461 "write register for \"%s\":\n%s",
462 reg_info->name, strm.GetData());
463 } else
464 LLDB_LOGF(log,
465 "error: failed to get packet sequence mutex, not sending "
466 "write register for \"%s\"",
467 reg_info->name);
468 }
469 }
470 }
471 return false;
472}
473
475 RegisterCheckpoint &reg_checkpoint) {
477
478 Process *process = exe_ctx.GetProcessPtr();
479 Thread *thread = exe_ctx.GetThreadPtr();
480 if (process == nullptr || thread == nullptr)
481 return false;
482
484 ((ProcessGDBRemote *)process)->GetGDBRemote());
485
486 uint32_t save_id = 0;
487 if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
488 reg_checkpoint.SetID(save_id);
489 reg_checkpoint.GetData().reset();
490 return true;
491 } else {
492 reg_checkpoint.SetID(0); // Invalid save ID is zero
493 return ReadAllRegisterValues(reg_checkpoint.GetData());
494 }
495}
496
498 const RegisterCheckpoint &reg_checkpoint) {
499 uint32_t save_id = reg_checkpoint.GetID();
500 if (save_id != 0) {
502
503 Process *process = exe_ctx.GetProcessPtr();
504 Thread *thread = exe_ctx.GetThreadPtr();
505 if (process == nullptr || thread == nullptr)
506 return false;
507
509 ((ProcessGDBRemote *)process)->GetGDBRemote());
510
511 return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
512 } else {
513 return WriteAllRegisterValues(reg_checkpoint.GetData());
514 }
515}
516
520
521 Process *process = exe_ctx.GetProcessPtr();
522 Thread *thread = exe_ctx.GetThreadPtr();
523 if (process == nullptr || thread == nullptr)
524 return false;
525
527 ((ProcessGDBRemote *)process)->GetGDBRemote());
528
529 const bool use_g_packet =
530 !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
531
532 GDBRemoteClientBase::Lock lock(gdb_comm);
533 if (lock) {
534 if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
536
537 if (use_g_packet) {
538 if (DataBufferSP data_buffer =
540 data_sp = std::make_shared<DataBufferHeap>(*data_buffer);
541 return true;
542 }
543 }
544
545 // We're going to read each register
546 // individually and store them as binary data in a buffer.
547 const RegisterInfo *reg_info;
548
549 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
550 i++) {
551 if (reg_info
552 ->value_regs) // skip registers that are slices of real registers
553 continue;
554 ReadRegisterBytes(reg_info);
555 // ReadRegisterBytes saves the contents of the register in to the
556 // m_reg_data buffer
557 }
558 data_sp = std::make_shared<DataBufferHeap>(
559 m_reg_data.GetDataStart(), m_reg_info_sp->GetRegisterDataByteSize());
560 return true;
561 } else {
562
564 if (log) {
565 if (log->GetVerbose()) {
566 StreamString strm;
567 process->DumpPluginHistory(strm);
568 LLDB_LOGF(log,
569 "error: failed to get packet sequence mutex, not sending "
570 "read all registers:\n%s",
571 strm.GetData());
572 } else
573 LLDB_LOGF(log,
574 "error: failed to get packet sequence mutex, not sending "
575 "read all registers");
576 }
577 }
578
579 data_sp.reset();
580 return false;
581}
582
584 const lldb::DataBufferSP &data_sp) {
585 if (!data_sp || data_sp->GetBytes() == nullptr || data_sp->GetByteSize() == 0)
586 return false;
587
589
590 Process *process = exe_ctx.GetProcessPtr();
591 Thread *thread = exe_ctx.GetThreadPtr();
592 if (process == nullptr || thread == nullptr)
593 return false;
594
596 ((ProcessGDBRemote *)process)->GetGDBRemote());
597
598 const bool use_g_packet =
599 !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
600
601 GDBRemoteClientBase::Lock lock(gdb_comm);
602 if (lock) {
603 // The data_sp contains the G response packet.
604 if (use_g_packet) {
605 if (gdb_comm.WriteAllRegisters(
607 {data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
608 return true;
609
610 uint32_t num_restored = 0;
611 // We need to manually go through all of the registers and restore them
612 // manually
613 DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
615
616 const RegisterInfo *reg_info;
617
618 // The g packet contents may either include the slice registers
619 // (registers defined in terms of other registers, e.g. eax is a subset
620 // of rax) or not. The slice registers should NOT be in the g packet,
621 // but some implementations may incorrectly include them.
622 //
623 // If the slice registers are included in the packet, we must step over
624 // the slice registers when parsing the packet -- relying on the
625 // RegisterInfo byte_offset field would be incorrect. If the slice
626 // registers are not included, then using the byte_offset values into the
627 // data buffer is the best way to find individual register values.
628
629 uint64_t size_including_slice_registers = 0;
630 uint64_t size_not_including_slice_registers = 0;
631 uint64_t size_by_highest_offset = 0;
632
633 for (uint32_t reg_idx = 0;
634 (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx) {
635 size_including_slice_registers += reg_info->byte_size;
636 if (reg_info->value_regs == nullptr)
637 size_not_including_slice_registers += reg_info->byte_size;
638 if (reg_info->byte_offset >= size_by_highest_offset)
639 size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
640 }
641
642 bool use_byte_offset_into_buffer;
643 if (size_by_highest_offset == restore_data.GetByteSize()) {
644 // The size of the packet agrees with the highest offset: + size in the
645 // register file
646 use_byte_offset_into_buffer = true;
647 } else if (size_not_including_slice_registers ==
648 restore_data.GetByteSize()) {
649 // The size of the packet is the same as concatenating all of the
650 // registers sequentially, skipping the slice registers
651 use_byte_offset_into_buffer = true;
652 } else if (size_including_slice_registers == restore_data.GetByteSize()) {
653 // The slice registers are present in the packet (when they shouldn't
654 // be). Don't try to use the RegisterInfo byte_offset into the
655 // restore_data, it will point to the wrong place.
656 use_byte_offset_into_buffer = false;
657 } else {
658 // None of our expected sizes match the actual g packet data we're
659 // looking at. The most conservative approach here is to use the
660 // running total byte offset.
661 use_byte_offset_into_buffer = false;
662 }
663
664 // In case our register definitions don't include the correct offsets,
665 // keep track of the size of each reg & compute offset based on that.
666 uint32_t running_byte_offset = 0;
667 for (uint32_t reg_idx = 0;
668 (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr;
669 ++reg_idx, running_byte_offset += reg_info->byte_size) {
670 // Skip composite aka slice registers (e.g. eax is a slice of rax).
671 if (reg_info->value_regs)
672 continue;
673
674 const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
675
676 uint32_t register_offset;
677 if (use_byte_offset_into_buffer) {
678 register_offset = reg_info->byte_offset;
679 } else {
680 register_offset = running_byte_offset;
681 }
682
683 const uint32_t reg_byte_size = reg_info->byte_size;
684
685 const uint8_t *restore_src =
686 restore_data.PeekData(register_offset, reg_byte_size);
687 if (restore_src) {
688 SetRegisterIsValid(reg, false);
689 if (gdb_comm.WriteRegister(
692 {restore_src, reg_byte_size}))
693 ++num_restored;
694 }
695 }
696 return num_restored > 0;
697 } else {
698 // For the use_g_packet == false case, we're going to write each register
699 // individually. The data buffer is binary data in this case, instead of
700 // ascii characters.
701
702 bool arm64_debugserver = false;
703 if (m_thread.GetProcess().get()) {
704 const ArchSpec &arch =
705 m_thread.GetProcess()->GetTarget().GetArchitecture();
706 if (arch.IsValid() && (arch.GetMachine() == llvm::Triple::aarch64 ||
707 arch.GetMachine() == llvm::Triple::aarch64_32) &&
708 arch.GetTriple().getVendor() == llvm::Triple::Apple &&
709 arch.GetTriple().getOS() == llvm::Triple::IOS) {
710 arm64_debugserver = true;
711 }
712 }
713 uint32_t num_restored = 0;
714 const RegisterInfo *reg_info;
715 for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
716 i++) {
717 if (reg_info->value_regs) // skip registers that are slices of real
718 // registers
719 continue;
720 // Skip the fpsr and fpcr floating point status/control register
721 // writing to work around a bug in an older version of debugserver that
722 // would lead to register context corruption when writing fpsr/fpcr.
723 if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
724 strcmp(reg_info->name, "fpcr") == 0)) {
725 continue;
726 }
727
728 SetRegisterIsValid(reg_info, false);
729 if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
731 {data_sp->GetBytes() + reg_info->byte_offset,
732 reg_info->byte_size}))
733 ++num_restored;
734 }
735 return num_restored > 0;
736 }
737 } else {
739 if (log) {
740 if (log->GetVerbose()) {
741 StreamString strm;
742 process->DumpPluginHistory(strm);
743 LLDB_LOGF(log,
744 "error: failed to get packet sequence mutex, not sending "
745 "write all registers:\n%s",
746 strm.GetData());
747 } else
748 LLDB_LOGF(log,
749 "error: failed to get packet sequence mutex, not sending "
750 "write all registers");
751 }
752 }
753 return false;
754}
755
757 lldb::RegisterKind kind, uint32_t num) {
758 return m_reg_info_sp->ConvertRegisterKindToRegisterNumber(kind, num);
759}
760
762 const llvm::StringRef name) {
764 const Architecture *architecture =
766 return architecture && architecture->RegisterWriteCausesReconfigure(name);
767}
768
771 const Architecture *architecture =
773 if (architecture)
774 return architecture->ReconfigureRegisterInfo(*(m_reg_info_sp.get()),
775 m_reg_data, *this);
776 return false;
777}
static llvm::raw_ostream & error(Stream &strm)
#define LLDB_LOGF(log,...)
Definition: Log.h:366
An architecture specification class.
Definition: ArchSpec.h:31
bool IsValid() const
Tests if this ArchSpec is valid.
Definition: ArchSpec.h:348
llvm::Triple & GetTriple()
Architecture triple accessor.
Definition: ArchSpec.h:450
llvm::Triple::ArchType GetMachine() const
Returns a machine family for the current architecture.
Definition: ArchSpec.cpp:683
virtual bool ReconfigureRegisterInfo(DynamicRegisterInfo &reg_info, DataExtractor &reg_data, RegisterContext &reg_context) const
Definition: Architecture.h:127
virtual bool RegisterWriteCausesReconfigure(const llvm::StringRef name) const
Definition: Architecture.h:118
A subclass of DataBuffer that stores a data buffer on the heap.
An data extractor class.
Definition: DataExtractor.h:48
const uint8_t * PeekData(lldb::offset_t offset, lldb::offset_t length) const
Peek at a bytes at offset.
lldb::offset_t CopyData(lldb::offset_t offset, lldb::offset_t length, void *dst) const
Copy length bytes from *offset, without swapping bytes.
void SetByteOrder(lldb::ByteOrder byte_order)
Set the byte_order value.
uint64_t GetByteSize() const
Get the number of bytes contained in this object.
const uint8_t * GetDataStart() const
Get the data start pointer.
lldb::offset_t SetData(const void *bytes, lldb::offset_t length, lldb::ByteOrder byte_order)
Set data with a buffer that is caller owned.
uint32_t GetAddressByteSize() const
Get the current address size.
lldb::ByteOrder GetByteOrder() const
Get the current byte order value.
lldb::offset_t CopyByteOrderedData(lldb::offset_t src_offset, lldb::offset_t src_len, void *dst, lldb::offset_t dst_len, lldb::ByteOrder dst_byte_order) const
Copy dst_len bytes from *offset_ptr and ensure the copied data is treated as a value that can be swap...
llvm::iterator_range< reg_collection::const_iterator > reg_collection_const_range
"lldb/Target/ExecutionContext.h" A class that contains an execution context.
Process & GetProcessRef() const
Returns a reference to the process object.
Process * GetProcessPtr() const
Returns a pointer to the process object.
Thread * GetThreadPtr() const
Returns a pointer to the thread object.
bool GetVerbose() const
Definition: Log.cpp:314
A plug-in interface definition class for debugging a process.
Definition: Process.h:341
virtual void DumpPluginHistory(Stream &s)
The underlying plugin might store the low-level communication history for this session.
Definition: Process.h:591
Target & GetTarget()
Get the target object pointer for this module.
Definition: Process.h:1277
lldb::WritableDataBufferSP & GetData()
const RegisterInfo * GetRegisterInfo(lldb::RegisterKind reg_kind, uint32_t reg_num)
lldb::ThreadSP CalculateThread() override
uint32_t SetFromMemoryData(const RegisterInfo &reg_info, const void *src, uint32_t src_len, lldb::ByteOrder src_byte_order, Status &error)
bool GetData(DataExtractor &data) const
Status SetValueFromData(const RegisterInfo &reg_info, DataExtractor &data, lldb::offset_t offset, bool partial_data_ok)
An error handling class.
Definition: Status.h:44
const char * GetData() const
Definition: StreamString.h:45
Architecture * GetArchitecturePlugin() const
Definition: Target.h:1062
virtual lldb::user_id_t GetProtocolID() const
Definition: Thread.h:1111
lldb::ProcessSP GetProcess() const
Definition: Thread.h:155
lldb::DataBufferSP ReadRegister(lldb::tid_t tid, uint32_t reg_num)
bool WriteAllRegisters(lldb::tid_t tid, llvm::ArrayRef< uint8_t > data)
bool WriteRegister(lldb::tid_t tid, uint32_t reg_num, llvm::ArrayRef< uint8_t > data)
const RegisterInfo * GetRegisterInfoAtIndex(size_t reg) override
const RegisterSet * GetRegisterSet(size_t reg_set) override
bool RegisterWriteCausesReconfigure(const llvm::StringRef name) override
GDBRemoteRegisterContext(ThreadGDBRemote &thread, uint32_t concrete_frame_idx, GDBRemoteDynamicRegisterInfoSP reg_info_sp, bool read_all_at_once, bool write_all_at_once)
bool WriteRegisterBytes(const RegisterInfo *reg_info, DataExtractor &data, uint32_t data_offset)
bool PrivateSetRegisterValue(uint32_t reg, llvm::ArrayRef< uint8_t > data)
bool ReadRegister(const RegisterInfo *reg_info, RegisterValue &value) override
bool WriteAllRegisterValues(const lldb::DataBufferSP &data_sp) override
bool WriteRegister(const RegisterInfo *reg_info, const RegisterValue &value) override
bool ReadAllRegisterValues(lldb::WritableDataBufferSP &data_sp) override
void SetRegisterIsValid(const RegisterInfo *reg_info, bool valid)
bool SetPrimordialRegister(const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm)
uint32_t ConvertRegisterKindToRegisterNumber(lldb::RegisterKind kind, uint32_t num) override
Convert from a given register numbering scheme to the lldb register numbering scheme.
bool GetPrimordialRegister(const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm)
#define LLDB_INVALID_REGNUM
Definition: lldb-defines.h:87
lldb::ByteOrder InlHostByteOrder()
Definition: Endian.h:25
std::shared_ptr< GDBRemoteDynamicRegisterInfo > GDBRemoteDynamicRegisterInfoSP
A class that represents a running process on the host machine.
Log * GetLog(Cat mask)
Retrieve the Log object for the channel associated with the given log enum.
Definition: Log.h:331
Definition: SBAddress.h:15
@ eByteOrderInvalid
std::shared_ptr< lldb_private::DataBuffer > DataBufferSP
Definition: lldb-forward.h:332
std::shared_ptr< lldb_private::WritableDataBuffer > WritableDataBufferSP
Definition: lldb-forward.h:333
RegisterKind
Register numbering types.
@ eRegisterKindLLDB
lldb's internal register numbers
@ eRegisterKindProcessPlugin
num used by the process plugin - e.g.
Every register is described in detail including its name, alternate name (optional),...
uint32_t * value_regs
List of registers (terminated with LLDB_INVALID_REGNUM).
uint32_t byte_offset
The byte offset in the register context data where this register's value is found.
uint32_t byte_size
Size in bytes of the register.
uint32_t kinds[lldb::kNumRegisterKinds]
Holds all of the various register numbers for all register kinds.
llvm::ArrayRef< uint8_t > data(const uint8_t *context_base) const
const char * name
Name of this register, can't be NULL.
uint32_t * invalidate_regs
List of registers (terminated with LLDB_INVALID_REGNUM).
Registers are grouped into register sets.
lldb::user_id_t GetID() const
Get accessor for the user ID.
Definition: UserID.h:47
void SetID(lldb::user_id_t uid)
Set accessor for the user ID.
Definition: UserID.h:53