LLDB  mainline
DWARFCallFrameInfo.cpp
Go to the documentation of this file.
1 //===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
10 #include "lldb/Core/Module.h"
11 #include "lldb/Core/Section.h"
12 #include "lldb/Core/dwarf.h"
13 #include "lldb/Host/Host.h"
14 #include "lldb/Symbol/ObjectFile.h"
15 #include "lldb/Symbol/UnwindPlan.h"
17 #include "lldb/Target/Thread.h"
18 #include "lldb/Utility/ArchSpec.h"
19 #include "lldb/Utility/Log.h"
20 #include "lldb/Utility/Timer.h"
21 #include <list>
22 
23 using namespace lldb;
24 using namespace lldb_private;
25 
26 // GetDwarfEHPtr
27 //
28 // Used for calls when the value type is specified by a DWARF EH Frame pointer
29 // encoding.
30 static uint64_t
31 GetGNUEHPointer(const DataExtractor &DE, offset_t *offset_ptr,
32  uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr,
33  addr_t data_addr) //, BSDRelocs *data_relocs) const
34 {
35  if (eh_ptr_enc == DW_EH_PE_omit)
36  return ULLONG_MAX; // Value isn't in the buffer...
37 
38  uint64_t baseAddress = 0;
39  uint64_t addressValue = 0;
40  const uint32_t addr_size = DE.GetAddressByteSize();
41  assert(addr_size == 4 || addr_size == 8);
42 
43  bool signExtendValue = false;
44  // Decode the base part or adjust our offset
45  switch (eh_ptr_enc & 0x70) {
46  case DW_EH_PE_pcrel:
47  signExtendValue = true;
48  baseAddress = *offset_ptr;
49  if (pc_rel_addr != LLDB_INVALID_ADDRESS)
50  baseAddress += pc_rel_addr;
51  // else
52  // Log::GlobalWarning ("PC relative pointer encoding found with
53  // invalid pc relative address.");
54  break;
55 
56  case DW_EH_PE_textrel:
57  signExtendValue = true;
58  if (text_addr != LLDB_INVALID_ADDRESS)
59  baseAddress = text_addr;
60  // else
61  // Log::GlobalWarning ("text relative pointer encoding being
62  // decoded with invalid text section address, setting base address
63  // to zero.");
64  break;
65 
66  case DW_EH_PE_datarel:
67  signExtendValue = true;
68  if (data_addr != LLDB_INVALID_ADDRESS)
69  baseAddress = data_addr;
70  // else
71  // Log::GlobalWarning ("data relative pointer encoding being
72  // decoded with invalid data section address, setting base address
73  // to zero.");
74  break;
75 
76  case DW_EH_PE_funcrel:
77  signExtendValue = true;
78  break;
79 
80  case DW_EH_PE_aligned: {
81  // SetPointerSize should be called prior to extracting these so the pointer
82  // size is cached
83  assert(addr_size != 0);
84  if (addr_size) {
85  // Align to a address size boundary first
86  uint32_t alignOffset = *offset_ptr % addr_size;
87  if (alignOffset)
88  offset_ptr += addr_size - alignOffset;
89  }
90  } break;
91 
92  default:
93  break;
94  }
95 
96  // Decode the value part
97  switch (eh_ptr_enc & DW_EH_PE_MASK_ENCODING) {
98  case DW_EH_PE_absptr: {
99  addressValue = DE.GetAddress(offset_ptr);
100  // if (data_relocs)
101  // addressValue = data_relocs->Relocate(*offset_ptr -
102  // addr_size, *this, addressValue);
103  } break;
104  case DW_EH_PE_uleb128:
105  addressValue = DE.GetULEB128(offset_ptr);
106  break;
107  case DW_EH_PE_udata2:
108  addressValue = DE.GetU16(offset_ptr);
109  break;
110  case DW_EH_PE_udata4:
111  addressValue = DE.GetU32(offset_ptr);
112  break;
113  case DW_EH_PE_udata8:
114  addressValue = DE.GetU64(offset_ptr);
115  break;
116  case DW_EH_PE_sleb128:
117  addressValue = DE.GetSLEB128(offset_ptr);
118  break;
119  case DW_EH_PE_sdata2:
120  addressValue = (int16_t)DE.GetU16(offset_ptr);
121  break;
122  case DW_EH_PE_sdata4:
123  addressValue = (int32_t)DE.GetU32(offset_ptr);
124  break;
125  case DW_EH_PE_sdata8:
126  addressValue = (int64_t)DE.GetU64(offset_ptr);
127  break;
128  default:
129  // Unhandled encoding type
130  assert(eh_ptr_enc);
131  break;
132  }
133 
134  // Since we promote everything to 64 bit, we may need to sign extend
135  if (signExtendValue && addr_size < sizeof(baseAddress)) {
136  uint64_t sign_bit = 1ull << ((addr_size * 8ull) - 1ull);
137  if (sign_bit & addressValue) {
138  uint64_t mask = ~sign_bit + 1;
139  addressValue |= mask;
140  }
141  }
142  return baseAddress + addressValue;
143 }
144 
145 DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile &objfile,
146  SectionSP &section_sp, Type type)
147  : m_objfile(objfile), m_section_sp(section_sp), m_type(type) {}
148 
150  UnwindPlan &unwind_plan) {
151  return GetUnwindPlan(AddressRange(addr, 1), unwind_plan);
152 }
153 
155  UnwindPlan &unwind_plan) {
156  FDEEntryMap::Entry fde_entry;
157  Address addr = range.GetBaseAddress();
158 
159  // Make sure that the Address we're searching for is the same object file as
160  // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
161  ModuleSP module_sp = addr.GetModule();
162  if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
163  module_sp->GetObjectFile() != &m_objfile)
164  return false;
165 
166  if (llvm::Optional<FDEEntryMap::Entry> entry = GetFirstFDEEntryInRange(range))
167  return FDEToUnwindPlan(entry->data, addr, unwind_plan);
168  return false;
169 }
170 
172 
173  // Make sure that the Address we're searching for is the same object file as
174  // this DWARFCallFrameInfo, we only store File offsets in m_fde_index.
175  ModuleSP module_sp = addr.GetModule();
176  if (module_sp.get() == nullptr || module_sp->GetObjectFile() == nullptr ||
177  module_sp->GetObjectFile() != &m_objfile)
178  return false;
179 
180  if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
181  return false;
182  GetFDEIndex();
183  FDEEntryMap::Entry *fde_entry =
184  m_fde_index.FindEntryThatContains(addr.GetFileAddress());
185  if (!fde_entry)
186  return false;
187 
188  range = AddressRange(fde_entry->base, fde_entry->size,
189  m_objfile.GetSectionList());
190  return true;
191 }
192 
193 llvm::Optional<DWARFCallFrameInfo::FDEEntryMap::Entry>
194 DWARFCallFrameInfo::GetFirstFDEEntryInRange(const AddressRange &range) {
195  if (!m_section_sp || m_section_sp->IsEncrypted())
196  return llvm::None;
197 
198  GetFDEIndex();
199 
200  addr_t start_file_addr = range.GetBaseAddress().GetFileAddress();
201  const FDEEntryMap::Entry *fde =
202  m_fde_index.FindEntryThatContainsOrFollows(start_file_addr);
203  if (fde && fde->DoesIntersect(
204  FDEEntryMap::Range(start_file_addr, range.GetByteSize())))
205  return *fde;
206 
207  return llvm::None;
208 }
209 
211  FunctionAddressAndSizeVector &function_info) {
212  GetFDEIndex();
213  const size_t count = m_fde_index.GetSize();
214  function_info.Clear();
215  if (count > 0)
216  function_info.Reserve(count);
217  for (size_t i = 0; i < count; ++i) {
218  const FDEEntryMap::Entry *func_offset_data_entry =
219  m_fde_index.GetEntryAtIndex(i);
220  if (func_offset_data_entry) {
221  FunctionAddressAndSizeVector::Entry function_offset_entry(
222  func_offset_data_entry->base, func_offset_data_entry->size);
223  function_info.Append(function_offset_entry);
224  }
225  }
226 }
227 
228 const DWARFCallFrameInfo::CIE *
229 DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset) {
230  cie_map_t::iterator pos = m_cie_map.find(cie_offset);
231 
232  if (pos != m_cie_map.end()) {
233  // Parse and cache the CIE
234  if (pos->second == nullptr)
235  pos->second = ParseCIE(cie_offset);
236 
237  return pos->second.get();
238  }
239  return nullptr;
240 }
241 
242 DWARFCallFrameInfo::CIESP
243 DWARFCallFrameInfo::ParseCIE(const dw_offset_t cie_offset) {
244  CIESP cie_sp(new CIE(cie_offset));
245  lldb::offset_t offset = cie_offset;
246  if (!m_cfi_data_initialized)
247  GetCFIData();
248  uint32_t length = m_cfi_data.GetU32(&offset);
249  dw_offset_t cie_id, end_offset;
250  bool is_64bit = (length == UINT32_MAX);
251  if (is_64bit) {
252  length = m_cfi_data.GetU64(&offset);
253  cie_id = m_cfi_data.GetU64(&offset);
254  end_offset = cie_offset + length + 12;
255  } else {
256  cie_id = m_cfi_data.GetU32(&offset);
257  end_offset = cie_offset + length + 4;
258  }
259  if (length > 0 && ((m_type == DWARF && cie_id == UINT32_MAX) ||
260  (m_type == EH && cie_id == 0ul))) {
261  size_t i;
262  // cie.offset = cie_offset;
263  // cie.length = length;
264  // cie.cieID = cieID;
265  cie_sp->ptr_encoding = DW_EH_PE_absptr; // default
266  cie_sp->version = m_cfi_data.GetU8(&offset);
267  if (cie_sp->version > CFI_VERSION4) {
269  "CIE parse error: CFI version %d is not supported\n",
270  cie_sp->version);
271  return nullptr;
272  }
273 
274  for (i = 0; i < CFI_AUG_MAX_SIZE; ++i) {
275  cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
276  if (cie_sp->augmentation[i] == '\0') {
277  // Zero out remaining bytes in augmentation string
278  for (size_t j = i + 1; j < CFI_AUG_MAX_SIZE; ++j)
279  cie_sp->augmentation[j] = '\0';
280 
281  break;
282  }
283  }
284 
285  if (i == CFI_AUG_MAX_SIZE &&
286  cie_sp->augmentation[CFI_AUG_MAX_SIZE - 1] != '\0') {
288  "CIE parse error: CIE augmentation string was too large "
289  "for the fixed sized buffer of %d bytes.\n",
290  CFI_AUG_MAX_SIZE);
291  return nullptr;
292  }
293 
294  // m_cfi_data uses address size from target architecture of the process may
295  // ignore these fields?
296  if (m_type == DWARF && cie_sp->version >= CFI_VERSION4) {
297  cie_sp->address_size = m_cfi_data.GetU8(&offset);
298  cie_sp->segment_size = m_cfi_data.GetU8(&offset);
299  }
300 
301  cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
302  cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
303 
304  cie_sp->return_addr_reg_num =
305  m_type == DWARF && cie_sp->version >= CFI_VERSION3
306  ? static_cast<uint32_t>(m_cfi_data.GetULEB128(&offset))
307  : m_cfi_data.GetU8(&offset);
308 
309  if (cie_sp->augmentation[0]) {
310  // Get the length of the eh_frame augmentation data which starts with a
311  // ULEB128 length in bytes
312  const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
313  const size_t aug_data_end = offset + aug_data_len;
314  const size_t aug_str_len = strlen(cie_sp->augmentation);
315  // A 'z' may be present as the first character of the string.
316  // If present, the Augmentation Data field shall be present. The contents
317  // of the Augmentation Data shall be interpreted according to other
318  // characters in the Augmentation String.
319  if (cie_sp->augmentation[0] == 'z') {
320  // Extract the Augmentation Data
321  size_t aug_str_idx = 0;
322  for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++) {
323  char aug = cie_sp->augmentation[aug_str_idx];
324  switch (aug) {
325  case 'L':
326  // Indicates the presence of one argument in the Augmentation Data
327  // of the CIE, and a corresponding argument in the Augmentation
328  // Data of the FDE. The argument in the Augmentation Data of the
329  // CIE is 1-byte and represents the pointer encoding used for the
330  // argument in the Augmentation Data of the FDE, which is the
331  // address of a language-specific data area (LSDA). The size of the
332  // LSDA pointer is specified by the pointer encoding used.
333  cie_sp->lsda_addr_encoding = m_cfi_data.GetU8(&offset);
334  break;
335 
336  case 'P':
337  // Indicates the presence of two arguments in the Augmentation Data
338  // of the CIE. The first argument is 1-byte and represents the
339  // pointer encoding used for the second argument, which is the
340  // address of a personality routine handler. The size of the
341  // personality routine pointer is specified by the pointer encoding
342  // used.
343  //
344  // The address of the personality function will be stored at this
345  // location. Pre-execution, it will be all zero's so don't read it
346  // until we're trying to do an unwind & the reloc has been
347  // resolved.
348  {
349  uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
350  const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
351  cie_sp->personality_loc = GetGNUEHPointer(
352  m_cfi_data, &offset, arg_ptr_encoding, pc_rel_addr,
354  }
355  break;
356 
357  case 'R':
358  // A 'R' may be present at any position after the
359  // first character of the string. The Augmentation Data shall
360  // include a 1 byte argument that represents the pointer encoding
361  // for the address pointers used in the FDE. Example: 0x1B ==
362  // DW_EH_PE_pcrel | DW_EH_PE_sdata4
363  cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
364  break;
365  }
366  }
367  } else if (strcmp(cie_sp->augmentation, "eh") == 0) {
368  // If the Augmentation string has the value "eh", then the EH Data
369  // field shall be present
370  }
371 
372  // Set the offset to be the end of the augmentation data just in case we
373  // didn't understand any of the data.
374  offset = (uint32_t)aug_data_end;
375  }
376 
377  if (end_offset > offset) {
378  cie_sp->inst_offset = offset;
379  cie_sp->inst_length = end_offset - offset;
380  }
381  while (offset < end_offset) {
382  uint8_t inst = m_cfi_data.GetU8(&offset);
383  uint8_t primary_opcode = inst & 0xC0;
384  uint8_t extended_opcode = inst & 0x3F;
385 
386  if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode,
387  cie_sp->data_align, offset,
388  cie_sp->initial_row))
389  break; // Stop if we hit an unrecognized opcode
390  }
391  }
392 
393  return cie_sp;
394 }
395 
396 void DWARFCallFrameInfo::GetCFIData() {
397  if (!m_cfi_data_initialized) {
399  if (log)
400  m_objfile.GetModule()->LogMessage(log, "Reading EH frame info");
401  m_objfile.ReadSectionData(m_section_sp.get(), m_cfi_data);
402  m_cfi_data_initialized = true;
403  }
404 }
405 // Scan through the eh_frame or debug_frame section looking for FDEs and noting
406 // the start/end addresses of the functions and a pointer back to the
407 // function's FDE for later expansion. Internalize CIEs as we come across them.
408 
409 void DWARFCallFrameInfo::GetFDEIndex() {
410  if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
411  return;
412 
413  if (m_fde_index_initialized)
414  return;
415 
416  std::lock_guard<std::mutex> guard(m_fde_index_mutex);
417 
418  if (m_fde_index_initialized) // if two threads hit the locker
419  return;
420 
421  static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
422  Timer scoped_timer(func_cat, "%s - %s", LLVM_PRETTY_FUNCTION,
423  m_objfile.GetFileSpec().GetFilename().AsCString(""));
424 
425  bool clear_address_zeroth_bit = false;
426  if (ArchSpec arch = m_objfile.GetArchitecture()) {
427  if (arch.GetTriple().getArch() == llvm::Triple::arm ||
428  arch.GetTriple().getArch() == llvm::Triple::thumb)
429  clear_address_zeroth_bit = true;
430  }
431 
432  lldb::offset_t offset = 0;
433  if (!m_cfi_data_initialized)
434  GetCFIData();
435  while (m_cfi_data.ValidOffsetForDataOfSize(offset, 8)) {
436  const dw_offset_t current_entry = offset;
437  dw_offset_t cie_id, next_entry, cie_offset;
438  uint32_t len = m_cfi_data.GetU32(&offset);
439  bool is_64bit = (len == UINT32_MAX);
440  if (is_64bit) {
441  len = m_cfi_data.GetU64(&offset);
442  cie_id = m_cfi_data.GetU64(&offset);
443  next_entry = current_entry + len + 12;
444  cie_offset = current_entry + 12 - cie_id;
445  } else {
446  cie_id = m_cfi_data.GetU32(&offset);
447  next_entry = current_entry + len + 4;
448  cie_offset = current_entry + 4 - cie_id;
449  }
450 
451  if (next_entry > m_cfi_data.GetByteSize() + 1) {
452  Host::SystemLog(Host::eSystemLogError, "error: Invalid fde/cie next "
453  "entry offset of 0x%x found in "
454  "cie/fde at 0x%x\n",
455  next_entry, current_entry);
456  // Don't trust anything in this eh_frame section if we find blatantly
457  // invalid data.
458  m_fde_index.Clear();
459  m_fde_index_initialized = true;
460  return;
461  }
462 
463  // An FDE entry contains CIE_pointer in debug_frame in same place as cie_id
464  // in eh_frame. CIE_pointer is an offset into the .debug_frame section. So,
465  // variable cie_offset should be equal to cie_id for debug_frame.
466  // FDE entries with cie_id == 0 shouldn't be ignored for it.
467  if ((cie_id == 0 && m_type == EH) || cie_id == UINT32_MAX || len == 0) {
468  auto cie_sp = ParseCIE(current_entry);
469  if (!cie_sp) {
470  // Cannot parse, the reason is already logged
471  m_fde_index.Clear();
472  m_fde_index_initialized = true;
473  return;
474  }
475 
476  m_cie_map[current_entry] = std::move(cie_sp);
477  offset = next_entry;
478  continue;
479  }
480 
481  if (m_type == DWARF)
482  cie_offset = cie_id;
483 
484  if (cie_offset > m_cfi_data.GetByteSize()) {
486  "error: Invalid cie offset of 0x%x "
487  "found in cie/fde at 0x%x\n",
488  cie_offset, current_entry);
489  // Don't trust anything in this eh_frame section if we find blatantly
490  // invalid data.
491  m_fde_index.Clear();
492  m_fde_index_initialized = true;
493  return;
494  }
495 
496  const CIE *cie = GetCIE(cie_offset);
497  if (cie) {
498  const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
499  const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
500  const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
501 
502  lldb::addr_t addr =
503  GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
504  text_addr, data_addr);
505  if (clear_address_zeroth_bit)
506  addr &= ~1ull;
507 
508  lldb::addr_t length = GetGNUEHPointer(
509  m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
510  pc_rel_addr, text_addr, data_addr);
511  FDEEntryMap::Entry fde(addr, length, current_entry);
512  m_fde_index.Append(fde);
513  } else {
514  Host::SystemLog(Host::eSystemLogError, "error: unable to find CIE at "
515  "0x%8.8x for cie_id = 0x%8.8x for "
516  "entry at 0x%8.8x.\n",
517  cie_offset, cie_id, current_entry);
518  }
519  offset = next_entry;
520  }
521  m_fde_index.Sort();
522  m_fde_index_initialized = true;
523 }
524 
525 bool DWARFCallFrameInfo::FDEToUnwindPlan(dw_offset_t dwarf_offset,
526  Address startaddr,
527  UnwindPlan &unwind_plan) {
529  lldb::offset_t offset = dwarf_offset;
530  lldb::offset_t current_entry = offset;
531 
532  if (m_section_sp.get() == nullptr || m_section_sp->IsEncrypted())
533  return false;
534 
535  if (!m_cfi_data_initialized)
536  GetCFIData();
537 
538  uint32_t length = m_cfi_data.GetU32(&offset);
539  dw_offset_t cie_offset;
540  bool is_64bit = (length == UINT32_MAX);
541  if (is_64bit) {
542  length = m_cfi_data.GetU64(&offset);
543  cie_offset = m_cfi_data.GetU64(&offset);
544  } else {
545  cie_offset = m_cfi_data.GetU32(&offset);
546  }
547 
548  // FDE entries with zeroth cie_offset may occur for debug_frame.
549  assert(!(m_type == EH && 0 == cie_offset) && cie_offset != UINT32_MAX);
550 
551  // Translate the CIE_id from the eh_frame format, which is relative to the
552  // FDE offset, into a __eh_frame section offset
553  if (m_type == EH) {
554  unwind_plan.SetSourceName("eh_frame CFI");
555  cie_offset = current_entry + (is_64bit ? 12 : 4) - cie_offset;
557  } else {
558  unwind_plan.SetSourceName("DWARF CFI");
559  // In theory the debug_frame info should be valid at all call sites
560  // ("asynchronous unwind info" as it is sometimes called) but in practice
561  // gcc et al all emit call frame info for the prologue and call sites, but
562  // not for the epilogue or all the other locations during the function
563  // reliably.
565  }
567 
568  const CIE *cie = GetCIE(cie_offset);
569  assert(cie != nullptr);
570 
571  const dw_offset_t end_offset = current_entry + length + (is_64bit ? 12 : 4);
572 
573  const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
574  const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
575  const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
576  lldb::addr_t range_base =
577  GetGNUEHPointer(m_cfi_data, &offset, cie->ptr_encoding, pc_rel_addr,
578  text_addr, data_addr);
579  lldb::addr_t range_len = GetGNUEHPointer(
580  m_cfi_data, &offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING,
581  pc_rel_addr, text_addr, data_addr);
582  AddressRange range(range_base, m_objfile.GetAddressByteSize(),
583  m_objfile.GetSectionList());
584  range.SetByteSize(range_len);
585 
586  addr_t lsda_data_file_address = LLDB_INVALID_ADDRESS;
587 
588  if (cie->augmentation[0] == 'z') {
589  uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
590  if (aug_data_len != 0 && cie->lsda_addr_encoding != DW_EH_PE_omit) {
591  offset_t saved_offset = offset;
592  lsda_data_file_address =
593  GetGNUEHPointer(m_cfi_data, &offset, cie->lsda_addr_encoding,
594  pc_rel_addr, text_addr, data_addr);
595  if (offset - saved_offset != aug_data_len) {
596  // There is more in the augmentation region than we know how to process;
597  // don't read anything.
598  lsda_data_file_address = LLDB_INVALID_ADDRESS;
599  }
600  offset = saved_offset;
601  }
602  offset += aug_data_len;
603  }
604  Address lsda_data;
605  Address personality_function_ptr;
606 
607  if (lsda_data_file_address != LLDB_INVALID_ADDRESS &&
608  cie->personality_loc != LLDB_INVALID_ADDRESS) {
609  m_objfile.GetModule()->ResolveFileAddress(lsda_data_file_address,
610  lsda_data);
611  m_objfile.GetModule()->ResolveFileAddress(cie->personality_loc,
612  personality_function_ptr);
613  }
614 
615  if (lsda_data.IsValid() && personality_function_ptr.IsValid()) {
616  unwind_plan.SetLSDAAddress(lsda_data);
617  unwind_plan.SetPersonalityFunctionPtr(personality_function_ptr);
618  }
619 
620  uint32_t code_align = cie->code_align;
621  int32_t data_align = cie->data_align;
622 
623  unwind_plan.SetPlanValidAddressRange(range);
624  UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
625  *cie_initial_row = cie->initial_row;
626  UnwindPlan::RowSP row(cie_initial_row);
627 
628  unwind_plan.SetRegisterKind(GetRegisterKind());
629  unwind_plan.SetReturnAddressRegister(cie->return_addr_reg_num);
630 
631  std::vector<UnwindPlan::RowSP> stack;
632 
634  while (m_cfi_data.ValidOffset(offset) && offset < end_offset) {
635  uint8_t inst = m_cfi_data.GetU8(&offset);
636  uint8_t primary_opcode = inst & 0xC0;
637  uint8_t extended_opcode = inst & 0x3F;
638 
639  if (!HandleCommonDwarfOpcode(primary_opcode, extended_opcode, data_align,
640  offset, *row)) {
641  if (primary_opcode) {
642  switch (primary_opcode) {
643  case DW_CFA_advance_loc: // (Row Creation Instruction)
644  { // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
645  // takes a single argument that represents a constant delta. The
646  // required action is to create a new table row with a location value
647  // that is computed by taking the current entry's location value and
648  // adding (delta * code_align). All other values in the new row are
649  // initially identical to the current row.
650  unwind_plan.AppendRow(row);
651  UnwindPlan::Row *newrow = new UnwindPlan::Row;
652  *newrow = *row.get();
653  row.reset(newrow);
654  row->SlideOffset(extended_opcode * code_align);
655  break;
656  }
657 
658  case DW_CFA_restore: { // 0xC0 - high 2 bits are 0x3, lower 6 bits are
659  // register
660  // takes a single argument that represents a register number. The
661  // required action is to change the rule for the indicated register
662  // to the rule assigned it by the initial_instructions in the CIE.
663  uint32_t reg_num = extended_opcode;
664  // We only keep enough register locations around to unwind what is in
665  // our thread, and these are organized by the register index in that
666  // state, so we need to convert our eh_frame register number from the
667  // EH frame info, to a register index
668 
669  if (unwind_plan.IsValidRowIndex(0) &&
670  unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
671  reg_location))
672  row->SetRegisterInfo(reg_num, reg_location);
673  break;
674  }
675  }
676  } else {
677  switch (extended_opcode) {
678  case DW_CFA_set_loc: // 0x1 (Row Creation Instruction)
679  {
680  // DW_CFA_set_loc takes a single argument that represents an address.
681  // The required action is to create a new table row using the
682  // specified address as the location. All other values in the new row
683  // are initially identical to the current row. The new location value
684  // should always be greater than the current one.
685  unwind_plan.AppendRow(row);
686  UnwindPlan::Row *newrow = new UnwindPlan::Row;
687  *newrow = *row.get();
688  row.reset(newrow);
689  row->SetOffset(m_cfi_data.GetPointer(&offset) -
690  startaddr.GetFileAddress());
691  break;
692  }
693 
694  case DW_CFA_advance_loc1: // 0x2 (Row Creation Instruction)
695  {
696  // takes a single uword argument that represents a constant delta.
697  // This instruction is identical to DW_CFA_advance_loc except for the
698  // encoding and size of the delta argument.
699  unwind_plan.AppendRow(row);
700  UnwindPlan::Row *newrow = new UnwindPlan::Row;
701  *newrow = *row.get();
702  row.reset(newrow);
703  row->SlideOffset(m_cfi_data.GetU8(&offset) * code_align);
704  break;
705  }
706 
707  case DW_CFA_advance_loc2: // 0x3 (Row Creation Instruction)
708  {
709  // takes a single uword argument that represents a constant delta.
710  // This instruction is identical to DW_CFA_advance_loc except for the
711  // encoding and size of the delta argument.
712  unwind_plan.AppendRow(row);
713  UnwindPlan::Row *newrow = new UnwindPlan::Row;
714  *newrow = *row.get();
715  row.reset(newrow);
716  row->SlideOffset(m_cfi_data.GetU16(&offset) * code_align);
717  break;
718  }
719 
720  case DW_CFA_advance_loc4: // 0x4 (Row Creation Instruction)
721  {
722  // takes a single uword argument that represents a constant delta.
723  // This instruction is identical to DW_CFA_advance_loc except for the
724  // encoding and size of the delta argument.
725  unwind_plan.AppendRow(row);
726  UnwindPlan::Row *newrow = new UnwindPlan::Row;
727  *newrow = *row.get();
728  row.reset(newrow);
729  row->SlideOffset(m_cfi_data.GetU32(&offset) * code_align);
730  break;
731  }
732 
733  case DW_CFA_restore_extended: // 0x6
734  {
735  // takes a single unsigned LEB128 argument that represents a register
736  // number. This instruction is identical to DW_CFA_restore except for
737  // the encoding and size of the register argument.
738  uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
739  if (unwind_plan.IsValidRowIndex(0) &&
740  unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num,
741  reg_location))
742  row->SetRegisterInfo(reg_num, reg_location);
743  break;
744  }
745 
746  case DW_CFA_remember_state: // 0xA
747  {
748  // These instructions define a stack of information. Encountering the
749  // DW_CFA_remember_state instruction means to save the rules for
750  // every register on the current row on the stack. Encountering the
751  // DW_CFA_restore_state instruction means to pop the set of rules off
752  // the stack and place them in the current row. (This operation is
753  // useful for compilers that move epilogue code into the body of a
754  // function.)
755  stack.push_back(row);
756  UnwindPlan::Row *newrow = new UnwindPlan::Row;
757  *newrow = *row.get();
758  row.reset(newrow);
759  break;
760  }
761 
762  case DW_CFA_restore_state: // 0xB
763  {
764  // These instructions define a stack of information. Encountering the
765  // DW_CFA_remember_state instruction means to save the rules for
766  // every register on the current row on the stack. Encountering the
767  // DW_CFA_restore_state instruction means to pop the set of rules off
768  // the stack and place them in the current row. (This operation is
769  // useful for compilers that move epilogue code into the body of a
770  // function.)
771  if (stack.empty()) {
772  if (log)
773  log->Printf("DWARFCallFrameInfo::%s(dwarf_offset: %" PRIx32
774  ", startaddr: %" PRIx64
775  " encountered DW_CFA_restore_state but state stack "
776  "is empty. Corrupt unwind info?",
777  __FUNCTION__, dwarf_offset,
778  startaddr.GetFileAddress());
779  break;
780  }
781  lldb::addr_t offset = row->GetOffset();
782  row = stack.back();
783  stack.pop_back();
784  row->SetOffset(offset);
785  break;
786  }
787 
788  case DW_CFA_GNU_args_size: // 0x2e
789  {
790  // The DW_CFA_GNU_args_size instruction takes an unsigned LEB128
791  // operand representing an argument size. This instruction specifies
792  // the total of the size of the arguments which have been pushed onto
793  // the stack.
794 
795  // TODO: Figure out how we should handle this.
796  m_cfi_data.GetULEB128(&offset);
797  break;
798  }
799 
800  case DW_CFA_val_offset: // 0x14
801  case DW_CFA_val_offset_sf: // 0x15
802  default:
803  break;
804  }
805  }
806  }
807  }
808  unwind_plan.AppendRow(row);
809 
810  return true;
811 }
812 
813 bool DWARFCallFrameInfo::HandleCommonDwarfOpcode(uint8_t primary_opcode,
814  uint8_t extended_opcode,
815  int32_t data_align,
816  lldb::offset_t &offset,
817  UnwindPlan::Row &row) {
819 
820  if (primary_opcode) {
821  switch (primary_opcode) {
822  case DW_CFA_offset: { // 0x80 - high 2 bits are 0x2, lower 6 bits are
823  // register
824  // takes two arguments: an unsigned LEB128 constant representing a
825  // factored offset and a register number. The required action is to
826  // change the rule for the register indicated by the register number to
827  // be an offset(N) rule with a value of (N = factored offset *
828  // data_align).
829  uint8_t reg_num = extended_opcode;
830  int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
831  reg_location.SetAtCFAPlusOffset(op_offset);
832  row.SetRegisterInfo(reg_num, reg_location);
833  return true;
834  }
835  }
836  } else {
837  switch (extended_opcode) {
838  case DW_CFA_nop: // 0x0
839  return true;
840 
841  case DW_CFA_offset_extended: // 0x5
842  {
843  // takes two unsigned LEB128 arguments representing a register number and
844  // a factored offset. This instruction is identical to DW_CFA_offset
845  // except for the encoding and size of the register argument.
846  uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
847  int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
849  reg_location.SetAtCFAPlusOffset(op_offset);
850  row.SetRegisterInfo(reg_num, reg_location);
851  return true;
852  }
853 
854  case DW_CFA_undefined: // 0x7
855  {
856  // takes a single unsigned LEB128 argument that represents a register
857  // number. The required action is to set the rule for the specified
858  // register to undefined.
859  uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
861  reg_location.SetUndefined();
862  row.SetRegisterInfo(reg_num, reg_location);
863  return true;
864  }
865 
866  case DW_CFA_same_value: // 0x8
867  {
868  // takes a single unsigned LEB128 argument that represents a register
869  // number. The required action is to set the rule for the specified
870  // register to same value.
871  uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
873  reg_location.SetSame();
874  row.SetRegisterInfo(reg_num, reg_location);
875  return true;
876  }
877 
878  case DW_CFA_register: // 0x9
879  {
880  // takes two unsigned LEB128 arguments representing register numbers. The
881  // required action is to set the rule for the first register to be the
882  // second register.
883  uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
884  uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
886  reg_location.SetInRegister(other_reg_num);
887  row.SetRegisterInfo(reg_num, reg_location);
888  return true;
889  }
890 
891  case DW_CFA_def_cfa: // 0xC (CFA Definition Instruction)
892  {
893  // Takes two unsigned LEB128 operands representing a register number and
894  // a (non-factored) offset. The required action is to define the current
895  // CFA rule to use the provided register and offset.
896  uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
897  int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
898  row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
899  return true;
900  }
901 
902  case DW_CFA_def_cfa_register: // 0xD (CFA Definition Instruction)
903  {
904  // takes a single unsigned LEB128 argument representing a register
905  // number. The required action is to define the current CFA rule to use
906  // the provided register (but to keep the old offset).
907  uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
908  row.GetCFAValue().SetIsRegisterPlusOffset(reg_num,
909  row.GetCFAValue().GetOffset());
910  return true;
911  }
912 
913  case DW_CFA_def_cfa_offset: // 0xE (CFA Definition Instruction)
914  {
915  // Takes a single unsigned LEB128 operand representing a (non-factored)
916  // offset. The required action is to define the current CFA rule to use
917  // the provided offset (but to keep the old register).
918  int32_t op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
920  row.GetCFAValue().GetRegisterNumber(), op_offset);
921  return true;
922  }
923 
924  case DW_CFA_def_cfa_expression: // 0xF (CFA Definition Instruction)
925  {
926  size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
927  const uint8_t *block_data =
928  static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
929  row.GetCFAValue().SetIsDWARFExpression(block_data, block_len);
930  return true;
931  }
932 
933  case DW_CFA_expression: // 0x10
934  {
935  // Takes two operands: an unsigned LEB128 value representing a register
936  // number, and a DW_FORM_block value representing a DWARF expression. The
937  // required action is to change the rule for the register indicated by
938  // the register number to be an expression(E) rule where E is the DWARF
939  // expression. That is, the DWARF expression computes the address. The
940  // value of the CFA is pushed on the DWARF evaluation stack prior to
941  // execution of the DWARF expression.
942  uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
943  uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
944  const uint8_t *block_data =
945  static_cast<const uint8_t *>(m_cfi_data.GetData(&offset, block_len));
947  reg_location.SetAtDWARFExpression(block_data, block_len);
948  row.SetRegisterInfo(reg_num, reg_location);
949  return true;
950  }
951 
952  case DW_CFA_offset_extended_sf: // 0x11
953  {
954  // takes two operands: an unsigned LEB128 value representing a register
955  // number and a signed LEB128 factored offset. This instruction is
956  // identical to DW_CFA_offset_extended except that the second operand is
957  // signed and factored.
958  uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
959  int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
961  reg_location.SetAtCFAPlusOffset(op_offset);
962  row.SetRegisterInfo(reg_num, reg_location);
963  return true;
964  }
965 
966  case DW_CFA_def_cfa_sf: // 0x12 (CFA Definition Instruction)
967  {
968  // Takes two operands: an unsigned LEB128 value representing a register
969  // number and a signed LEB128 factored offset. This instruction is
970  // identical to DW_CFA_def_cfa except that the second operand is signed
971  // and factored.
972  uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
973  int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
974  row.GetCFAValue().SetIsRegisterPlusOffset(reg_num, op_offset);
975  return true;
976  }
977 
978  case DW_CFA_def_cfa_offset_sf: // 0x13 (CFA Definition Instruction)
979  {
980  // takes a signed LEB128 operand representing a factored offset. This
981  // instruction is identical to DW_CFA_def_cfa_offset except that the
982  // operand is signed and factored.
983  int32_t op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
984  uint32_t cfa_regnum = row.GetCFAValue().GetRegisterNumber();
985  row.GetCFAValue().SetIsRegisterPlusOffset(cfa_regnum, op_offset);
986  return true;
987  }
988 
989  case DW_CFA_val_expression: // 0x16
990  {
991  // takes two operands: an unsigned LEB128 value representing a register
992  // number, and a DW_FORM_block value representing a DWARF expression. The
993  // required action is to change the rule for the register indicated by
994  // the register number to be a val_expression(E) rule where E is the
995  // DWARF expression. That is, the DWARF expression computes the value of
996  // the given register. The value of the CFA is pushed on the DWARF
997  // evaluation stack prior to execution of the DWARF expression.
998  uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
999  uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
1000  const uint8_t *block_data =
1001  (const uint8_t *)m_cfi_data.GetData(&offset, block_len);
1002  //#if defined(__i386__) || defined(__x86_64__)
1003  // // The EH frame info for EIP and RIP contains code that
1004  // looks for traps to
1005  // // be a specific type and increments the PC.
1006  // // For i386:
1007  // // DW_CFA_val_expression where:
1008  // // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup,
1009  // DW_OP_plus_uconst(0x34),
1010  // // DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0),
1011  // DW_OP_deref,
1012  // // DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap,
1013  // DW_OP_lit4, DW_OP_ne,
1014  // // DW_OP_and, DW_OP_plus
1015  // // This basically does a:
1016  // // eip = ucontenxt.mcontext32->gpr.eip;
1017  // // if (ucontenxt.mcontext32->exc.trapno != 3 &&
1018  // ucontenxt.mcontext32->exc.trapno != 4)
1019  // // eip++;
1020  // //
1021  // // For x86_64:
1022  // // DW_CFA_val_expression where:
1023  // // rip = DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup,
1024  // DW_OP_plus_uconst(0x90), DW_OP_deref,
1025  // // DW_OP_swap, DW_OP_plus_uconst(0),
1026  // DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
1027  // // DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
1028  // DW_OP_and, DW_OP_plus
1029  // // This basically does a:
1030  // // rip = ucontenxt.mcontext64->gpr.rip;
1031  // // if (ucontenxt.mcontext64->exc.trapno != 3 &&
1032  // ucontenxt.mcontext64->exc.trapno != 4)
1033  // // rip++;
1034  // // The trap comparisons and increments are not needed as
1035  // it hoses up the unwound PC which
1036  // // is expected to point at least past the instruction that
1037  // causes the fault/trap. So we
1038  // // take it out by trimming the expression right at the
1039  // first "DW_OP_swap" opcodes
1040  // if (block_data != NULL && thread->GetPCRegNum(Thread::GCC)
1041  // == reg_num)
1042  // {
1043  // if (thread->Is64Bit())
1044  // {
1045  // if (block_len > 9 && block_data[8] == DW_OP_swap
1046  // && block_data[9] == DW_OP_plus_uconst)
1047  // block_len = 8;
1048  // }
1049  // else
1050  // {
1051  // if (block_len > 8 && block_data[7] == DW_OP_swap
1052  // && block_data[8] == DW_OP_plus_uconst)
1053  // block_len = 7;
1054  // }
1055  // }
1056  //#endif
1057  reg_location.SetIsDWARFExpression(block_data, block_len);
1058  row.SetRegisterInfo(reg_num, reg_location);
1059  return true;
1060  }
1061  }
1062  }
1063  return false;
1064 }
1065 
1067  const std::function<bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback) {
1068  GetFDEIndex();
1069 
1070  for (size_t i = 0, c = m_fde_index.GetSize(); i < c; ++i) {
1071  const FDEEntryMap::Entry &entry = m_fde_index.GetEntryRef(i);
1072  if (!callback(entry.base, entry.size, entry.data))
1073  break;
1074  }
1075 }
Entry & GetEntryRef(size_t i)
Definition: RangeMap.h:708
virtual ArchSpec GetArchitecture()=0
Get the ArchSpec for this object file.
ConstString & GetFilename()
Filename string get accessor.
Definition: FileSpec.cpp:369
void SetOffset(lldb::addr_t offset)
Definition: UnwindPlan.h:327
An data extractor class.
Definition: DataExtractor.h:47
const Entry * GetEntryAtIndex(size_t i) const
Definition: RangeMap.h:698
void SlideOffset(lldb::addr_t offset)
Definition: UnwindPlan.h:329
void SetSourceName(const char *)
Definition: UnwindPlan.cpp:542
Enumerations for broadcasting.
Definition: SBLaunchInfo.h:14
lldb::addr_t GetByteSize() const
Get accessor for the byte size of this range.
Definition: AddressRange.h:232
const char * AsCString(const char *value_if_empty=nullptr) const
Get the string value as a C string.
Definition: ConstString.h:224
const void * GetData(lldb::offset_t *offset_ptr, lldb::offset_t length) const
Extract length bytes from *offset_ptr.
uint32_t GetU32(lldb::offset_t *offset_ptr) const
Extract a uint32_t value from *offset_ptr.
virtual FileSpec & GetFileSpec()
Get accessor to the object file specification.
Definition: ObjectFile.h:269
void SetAtDWARFExpression(const uint8_t *opcodes, uint32_t len)
Definition: UnwindPlan.cpp:53
An architecture specification class.
Definition: ArchSpec.h:32
static uint64_t GetGNUEHPointer(const DataExtractor &DE, offset_t *offset_ptr, uint32_t eh_ptr_enc, addr_t pc_rel_addr, addr_t text_addr, addr_t data_addr)
const UnwindPlan::RowSP GetRowAtIndex(uint32_t idx) const
Definition: UnwindPlan.cpp:400
A timer class that simplifies common timing metrics.
Definition: Timer.h:23
static void SystemLog(SystemLogType type, const char *format,...) __attribute__((format(printf
lldb::addr_t GetFileAddress() const
Get the file address.
Definition: Address.cpp:272
void SetRegisterInfo(uint32_t reg_num, const RegisterLocation register_location)
Definition: UnwindPlan.cpp:267
int64_t GetSLEB128(lldb::offset_t *offset_ptr) const
Extract a signed LEB128 value from *offset_ptr.
A plug-in interface definition class for object file parsers.
Definition: ObjectFile.h:58
bool DoesIntersect(const Range &rhs) const
Definition: RangeMap.h:101
bool IsValidRowIndex(uint32_t idx) const
Definition: UnwindPlan.cpp:396
void Reserve(typename Collection::size_type size)
Definition: RangeMap.h:471
void SetIsRegisterPlusOffset(uint32_t reg_num, int32_t offset)
Definition: UnwindPlan.h:221
#define LIBLLDB_LOG_UNWIND
Definition: Logging.h:29
lldb::ModuleSP GetModule() const
Get const accessor for the module pointer.
Definition: ModuleChild.cpp:27
void SetPlanValidAddressRange(const AddressRange &range)
Definition: UnwindPlan.cpp:425
void SetIsDWARFExpression(const uint8_t *opcodes, uint32_t len)
Definition: UnwindPlan.h:238
const Entry * FindEntryThatContainsOrFollows(B addr) const
Definition: RangeMap.h:788
virtual size_t ReadSectionData(Section *section, lldb::offset_t section_offset, void *dst, size_t dst_len)
Definition: ObjectFile.cpp:488
#define UINT32_MAX
Definition: lldb-defines.h:31
uint64_t GetAddress(lldb::offset_t *offset_ptr) const
Extract an address from *offset_ptr.
#define LLDB_INVALID_ADDRESS
Invalid value definitions.
Definition: lldb-defines.h:85
uint64_t offset_t
Definition: lldb-types.h:87
Entry * FindEntryThatContains(B addr)
Definition: RangeMap.h:737
Log * GetLogIfAllCategoriesSet(uint32_t mask)
Definition: Logging.cpp:57
void ForEachFDEEntries(const std::function< bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback)
std::shared_ptr< Row > RowSP
Definition: UnwindPlan.h:366
void AppendRow(const RowSP &row_sp)
Definition: UnwindPlan.cpp:355
virtual SectionList * GetSectionList(bool update_module_section_list=true)
Gets the section list for the currently selected architecture (and object for archives).
Definition: ObjectFile.cpp:605
bool ValidOffsetForDataOfSize(lldb::offset_t offset, lldb::offset_t length) const
Test the availability of length bytes of data from offset.
void SetRegisterKind(lldb::RegisterKind kind)
Definition: UnwindPlan.h:408
bool IsValid() const
Check if the object state is valid.
Definition: Address.h:343
A section + offset based address class.
Definition: Address.h:80
bool ValidOffset(lldb::offset_t offset) const
Test the validity of offset.
bool GetUnwindPlan(const Address &addr, UnwindPlan &unwind_plan)
Return an UnwindPlan based on the call frame information encoded in the FDE of this DWARFCallFrameInf...
uint64_t GetByteSize() const
Get the number of bytes contained in this object.
void GetFunctionAddressAndSizeVector(FunctionAddressAndSizeVector &function_info)
void SetUnwindPlanValidAtAllInstructions(lldb_private::LazyBool valid_at_all_insn)
Definition: UnwindPlan.h:461
void SetLSDAAddress(Address lsda_addr)
Definition: UnwindPlan.h:483
uint64_t addr_t
Definition: lldb-types.h:83
lldb::ModuleSP GetModule() const
Get accessor for the module for this address.
Definition: Address.cpp:264
Definition: SBAddress.h:15
uint64_t GetULEB128(lldb::offset_t *offset_ptr) const
Extract a unsigned LEB128 value from *offset_ptr.
#define DW_EH_PE_MASK_ENCODING
Definition: dwarf.h:39
void SetPersonalityFunctionPtr(Address presonality_func_ptr)
Definition: UnwindPlan.h:487
Address & GetBaseAddress()
Get accessor for the base address of the range.
Definition: AddressRange.h:220
uint8_t GetU8(lldb::offset_t *offset_ptr) const
Extract a uint8_t value from *offset_ptr.
void Append(const Entry &entry)
Definition: RangeMap.h:343
virtual uint32_t GetAddressByteSize() const =0
Gets the address size in bytes for the current object file.
void Printf(const char *format,...) __attribute__((format(printf
Definition: Log.cpp:113
A section + offset based address range class.
Definition: AddressRange.h:32
uint64_t GetPointer(lldb::offset_t *offset_ptr) const
Extract an pointer from *offset_ptr.
void SetSourcedFromCompiler(lldb_private::LazyBool from_compiler)
Definition: UnwindPlan.h:449
void SetIsDWARFExpression(const uint8_t *opcodes, uint32_t len)
Definition: UnwindPlan.cpp:62
uint16_t GetU16(lldb::offset_t *offset_ptr) const
Extract a uint16_t value from *offset_ptr.
bool GetAddressRange(Address addr, AddressRange &range)
uint32_t GetAddressByteSize() const
Get the current address size.
void SetReturnAddressRegister(uint32_t regnum)
Definition: UnwindPlan.h:410
uint64_t GetU64(lldb::offset_t *offset_ptr) const
Extract a uint64_t value from *offset_ptr.
void SetByteSize(lldb::addr_t byte_size)
Set accessor for the byte size of this range.
Definition: AddressRange.h:248
void Append(const Entry &entry)
Definition: RangeMap.h:635