LLDB mainline
ABISysV_i386.cpp
Go to the documentation of this file.
1//===-- ABISysV_i386.cpp --------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===//
7
8#include "ABISysV_i386.h"
9
10#include "llvm/ADT/STLExtras.h"
11#include "llvm/TargetParser/Triple.h"
12
13#include "lldb/Core/Module.h"
15#include "lldb/Core/Value.h"
17#include "lldb/Target/Process.h"
20#include "lldb/Target/Target.h"
21#include "lldb/Target/Thread.h"
24#include "lldb/Utility/Log.h"
26#include "lldb/Utility/Status.h"
30#include <optional>
31
32using namespace lldb;
33using namespace lldb_private;
34
36
37// This source file uses the following document as a reference:
38//====================================================================
39// System V Application Binary Interface
40// Intel386 Architecture Processor Supplement, Version 1.0
41// Edited by
42// H.J. Lu, David L Kreitzer, Milind Girkar, Zia Ansari
43//
44// (Based on
45// System V Application Binary Interface,
46// AMD64 Architecture Processor Supplement,
47// Edited by
48// H.J. Lu, Michael Matz, Milind Girkar, Jan Hubicka,
49// Andreas Jaeger, Mark Mitchell)
50//
51// February 3, 2015
52//====================================================================
53
54// DWARF Register Number Mapping
55// See Table 2.14 of the reference document (specified on top of this file)
56// Comment: Table 2.14 is followed till 'mm' entries. After that, all entries
57// are ignored here.
58
70
71// Static Functions
72
75 if (arch.GetTriple().getVendor() != llvm::Triple::Apple) {
76 if (arch.GetTriple().getArch() == llvm::Triple::x86) {
77 return ABISP(
78 new ABISysV_i386(std::move(process_sp), MakeMCRegisterInfo(arch)));
79 }
80 }
81 return ABISP();
82}
83
85 addr_t func_addr, addr_t return_addr,
86 llvm::ArrayRef<addr_t> args) const {
87 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
88
89 if (!reg_ctx)
90 return false;
91
92 uint32_t pc_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
94 uint32_t sp_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
96
97 // While using register info to write a register value to memory, the
98 // register info just needs to have the correct size of a 32 bit register,
99 // the actual register it pertains to is not important, just the size needs
100 // to be correct. "eax" is used here for this purpose.
101 const RegisterInfo *reg_info_32 = reg_ctx->GetRegisterInfoByName("eax");
102 if (!reg_info_32)
103 return false; // TODO this should actually never happen
104
106 RegisterValue reg_value;
107
108 // Make room for the argument(s) on the stack
109 sp -= 4 * args.size();
110
111 // SP Alignment
112 sp &= ~(16ull - 1ull); // 16-byte alignment
113
114 // Write arguments onto the stack
115 addr_t arg_pos = sp;
116 for (addr_t arg : args) {
117 reg_value.SetUInt32(arg);
119 reg_info_32, arg_pos, reg_info_32->byte_size, reg_value);
120 if (error.Fail())
121 return false;
122 arg_pos += 4;
123 }
124
125 // The return address is pushed onto the stack
126 sp -= 4;
127 reg_value.SetUInt32(return_addr);
129 reg_info_32, sp, reg_info_32->byte_size, reg_value);
130 if (error.Fail())
131 return false;
132
133 // Setting %esp to the actual stack value.
134 if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_num, sp))
135 return false;
136
137 // Setting %eip to the address of the called function.
138 if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_num, func_addr))
139 return false;
140
141 return true;
142}
143
144static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
145 bool is_signed, Process *process,
146 addr_t &current_stack_argument) {
147 uint32_t byte_size = (bit_width + (8 - 1)) / 8;
149
150 if (!process)
151 return false;
152
153 if (process->ReadScalarIntegerFromMemory(current_stack_argument, byte_size,
154 is_signed, scalar, error)) {
155 current_stack_argument += byte_size;
156 return true;
157 }
158 return false;
159}
160
162 unsigned int num_values = values.GetSize();
163 unsigned int value_index;
164
165 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
166
167 if (!reg_ctx)
168 return false;
169
170 // Get pointer to the first stack argument
171 addr_t sp = reg_ctx->GetSP(0);
172 if (!sp)
173 return false;
174
175 addr_t current_stack_argument = sp + 4; // jump over return address
176
177 for (value_index = 0; value_index < num_values; ++value_index) {
178 Value *value = values.GetValueAtIndex(value_index);
179
180 if (!value)
181 return false;
182
183 // Currently: Support for extracting values with Clang QualTypes only.
184 CompilerType compiler_type(value->GetCompilerType());
185 std::optional<uint64_t> bit_size =
186 llvm::expectedToOptional(compiler_type.GetBitSize(&thread));
187 if (bit_size) {
188 bool is_signed;
189 if (compiler_type.IsIntegerOrEnumerationType(is_signed)) {
190 ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed,
191 thread.GetProcess().get(), current_stack_argument);
192 } else if (compiler_type.IsPointerType()) {
193 ReadIntegerArgument(value->GetScalar(), *bit_size, false,
194 thread.GetProcess().get(), current_stack_argument);
195 }
196 }
197 }
198 return true;
199}
200
202 lldb::ValueObjectSP &new_value_sp) {
204 if (!new_value_sp) {
205 error = Status::FromErrorString("Empty value object for return value.");
206 return error;
207 }
208
209 CompilerType compiler_type = new_value_sp->GetCompilerType();
210 if (!compiler_type) {
211 error = Status::FromErrorString("Null clang type for return value.");
212 return error;
213 }
214
215 const uint32_t type_flags = compiler_type.GetTypeInfo();
216 Thread *thread = frame_sp->GetThread().get();
217 RegisterContext *reg_ctx = thread->GetRegisterContext().get();
218 DataExtractor data;
219 Status data_error;
220 size_t num_bytes = new_value_sp->GetData(data, data_error);
221 bool register_write_successful = true;
222
223 if (data_error.Fail()) {
225 "Couldn't convert return value to raw data: %s",
226 data_error.AsCString());
227 return error;
228 }
229
230 // Following "IF ELSE" block categorizes various 'Fundamental Data Types'.
231 // The terminology 'Fundamental Data Types' used here is adopted from Table
232 // 2.1 of the reference document (specified on top of this file)
233
234 if (type_flags & eTypeIsPointer) // 'Pointer'
235 {
236 if (num_bytes != sizeof(uint32_t)) {
237 error =
238 Status::FromErrorString("Pointer to be returned is not 4 bytes wide");
239 return error;
240 }
241 lldb::offset_t offset = 0;
242 const RegisterInfo *eax_info = reg_ctx->GetRegisterInfoByName("eax", 0);
243 uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
244 register_write_successful =
245 reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value);
246 } else if ((type_flags & eTypeIsScalar) ||
247 (type_flags & eTypeIsEnumeration)) //'Integral' + 'Floating Point'
248 {
249 lldb::offset_t offset = 0;
250 const RegisterInfo *eax_info = reg_ctx->GetRegisterInfoByName("eax", 0);
251
252 if (type_flags & eTypeIsInteger) // 'Integral' except enum
253 {
254 switch (num_bytes) {
255 default:
256 break;
257 case 16:
258 // For clang::BuiltinType::UInt128 & Int128 ToDo: Need to decide how to
259 // handle it
260 break;
261 case 8: {
262 uint32_t raw_value_low = data.GetMaxU32(&offset, 4);
263 const RegisterInfo *edx_info = reg_ctx->GetRegisterInfoByName("edx", 0);
264 uint32_t raw_value_high = data.GetMaxU32(&offset, num_bytes - offset);
265 register_write_successful =
266 (reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value_low) &&
267 reg_ctx->WriteRegisterFromUnsigned(edx_info, raw_value_high));
268 break;
269 }
270 case 4:
271 case 2:
272 case 1: {
273 uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
274 register_write_successful =
275 reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value);
276 break;
277 }
278 }
279 } else if (type_flags & eTypeIsEnumeration) // handles enum
280 {
281 uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
282 register_write_successful =
283 reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value);
284 } else if (type_flags & eTypeIsFloat) // 'Floating Point'
285 {
286 RegisterValue st0_value, fstat_value, ftag_value;
287 const RegisterInfo *st0_info = reg_ctx->GetRegisterInfoByName("st0", 0);
288 const RegisterInfo *fstat_info =
289 reg_ctx->GetRegisterInfoByName("fstat", 0);
290 const RegisterInfo *ftag_info = reg_ctx->GetRegisterInfoByName("ftag", 0);
291
292 /* According to Page 3-12 of document
293 System V Application Binary Interface, Intel386 Architecture Processor
294 Supplement, Fourth Edition
295 To return Floating Point values, all st% registers except st0 should be
296 empty after exiting from
297 a function. This requires setting fstat and ftag registers to specific
298 values.
299 fstat: The TOP field of fstat should be set to a value [0,7]. ABI doesn't
300 specify the specific
301 value of TOP in case of function return. Hence, we set the TOP field to 7
302 by our choice. */
303 uint32_t value_fstat_u32 = 0x00003800;
304
305 /* ftag: Implication of setting TOP to 7 and indicating all st% registers
306 empty except st0 is to set
307 7th bit of 4th byte of FXSAVE area to 1 and all other bits of this byte to
308 0. This is in accordance
309 with the document Intel 64 and IA-32 Architectures Software Developer's
310 Manual, January 2015 */
311 uint32_t value_ftag_u32 = 0x00000080;
312
313 if (num_bytes <= 12) // handles float, double, long double, __float80
314 {
315 long double value_long_dbl = 0.0;
316 if (num_bytes == 4)
317 value_long_dbl = data.GetFloat(&offset);
318 else if (num_bytes == 8)
319 value_long_dbl = data.GetDouble(&offset);
320 else if (num_bytes == 12)
321 value_long_dbl = data.GetLongDouble(&offset);
322 else {
324 "Invalid number of bytes for this return type");
325 return error;
326 }
327 st0_value.SetLongDouble(value_long_dbl);
328 fstat_value.SetUInt32(value_fstat_u32);
329 ftag_value.SetUInt32(value_ftag_u32);
330 register_write_successful =
331 reg_ctx->WriteRegister(st0_info, st0_value) &&
332 reg_ctx->WriteRegister(fstat_info, fstat_value) &&
333 reg_ctx->WriteRegister(ftag_info, ftag_value);
334 } else if (num_bytes == 16) // handles __float128
335 {
337 "Implementation is missing for this clang type.");
338 }
339 } else {
340 // Neither 'Integral' nor 'Floating Point'. If flow reaches here then
341 // check type_flags. This type_flags is not a valid type.
342 error = Status::FromErrorString("Invalid clang type");
343 }
344 } else {
345 /* 'Complex Floating Point', 'Packed', 'Decimal Floating Point' and
346 'Aggregate' data types
347 are yet to be implemented */
349 "Currently only Integral and Floating Point clang "
350 "types are supported.");
351 }
352 if (!register_write_successful)
353 error = Status::FromErrorString("Register writing failed");
354 return error;
355}
356
358 Thread &thread, CompilerType &return_compiler_type) const {
359 ValueObjectSP return_valobj_sp;
360 Value value;
361
362 if (!return_compiler_type)
363 return return_valobj_sp;
364
365 value.SetCompilerType(return_compiler_type);
366
367 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
368 if (!reg_ctx)
369 return return_valobj_sp;
370
371 const uint32_t type_flags = return_compiler_type.GetTypeInfo();
372
373 unsigned eax_id =
374 reg_ctx->GetRegisterInfoByName("eax", 0)->kinds[eRegisterKindLLDB];
375 unsigned edx_id =
376 reg_ctx->GetRegisterInfoByName("edx", 0)->kinds[eRegisterKindLLDB];
377
378 // Following "IF ELSE" block categorizes various 'Fundamental Data Types'.
379 // The terminology 'Fundamental Data Types' used here is adopted from Table
380 // 2.1 of the reference document (specified on top of this file)
381
382 if (type_flags & eTypeIsPointer) // 'Pointer'
383 {
384 uint32_t ptr =
385 thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
386 0xffffffff;
388 value.GetScalar() = ptr;
389 return_valobj_sp = ValueObjectConstResult::Create(
390 thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
391 } else if ((type_flags & eTypeIsScalar) ||
392 (type_flags & eTypeIsEnumeration)) //'Integral' + 'Floating Point'
393 {
395 std::optional<uint64_t> byte_size =
396 llvm::expectedToOptional(return_compiler_type.GetByteSize(&thread));
397 if (!byte_size)
398 return return_valobj_sp;
399 bool success = false;
400
401 if (type_flags & eTypeIsInteger) // 'Integral' except enum
402 {
403 const bool is_signed = ((type_flags & eTypeIsSigned) != 0);
404 uint64_t raw_value =
405 thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
406 0xffffffff;
407 raw_value |=
408 (thread.GetRegisterContext()->ReadRegisterAsUnsigned(edx_id, 0) &
409 0xffffffff)
410 << 32;
411
412 switch (*byte_size) {
413 default:
414 break;
415
416 case 16:
417 // For clang::BuiltinType::UInt128 & Int128 ToDo: Need to decide how to
418 // handle it
419 break;
420
421 case 8:
422 if (is_signed)
423 value.GetScalar() = (int64_t)(raw_value);
424 else
425 value.GetScalar() = (uint64_t)(raw_value);
426 success = true;
427 break;
428
429 case 4:
430 if (is_signed)
431 value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
432 else
433 value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
434 success = true;
435 break;
436
437 case 2:
438 if (is_signed)
439 value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
440 else
441 value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
442 success = true;
443 break;
444
445 case 1:
446 if (is_signed)
447 value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
448 else
449 value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
450 success = true;
451 break;
452 }
453
454 if (success)
455 return_valobj_sp = ValueObjectConstResult::Create(
456 thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
457 } else if (type_flags & eTypeIsEnumeration) // handles enum
458 {
459 uint32_t enm =
460 thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
461 0xffffffff;
463 value.GetScalar() = enm;
464 return_valobj_sp = ValueObjectConstResult::Create(
465 thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
466 } else if (type_flags & eTypeIsFloat) // 'Floating Point'
467 {
468 if (*byte_size <= 12) // handles float, double, long double, __float80
469 {
470 const RegisterInfo *st0_info = reg_ctx->GetRegisterInfoByName("st0", 0);
471 RegisterValue st0_value;
472
473 if (reg_ctx->ReadRegister(st0_info, st0_value)) {
474 DataExtractor data;
475 if (st0_value.GetData(data)) {
476 lldb::offset_t offset = 0;
477 long double value_long_double = data.GetLongDouble(&offset);
478
479 // float is 4 bytes.
480 if (*byte_size == 4) {
481 float value_float = (float)value_long_double;
482 value.GetScalar() = value_float;
483 success = true;
484 } else if (*byte_size == 8) {
485 // double is 8 bytes
486 // On Android Platform: long double is also 8 bytes It will be
487 // handled here only.
488 double value_double = (double)value_long_double;
489 value.GetScalar() = value_double;
490 success = true;
491 } else if (*byte_size == 12) {
492 // long double and __float80 are 12 bytes on i386.
493 value.GetScalar() = value_long_double;
494 success = true;
495 }
496 }
497 }
498
499 if (success)
500 return_valobj_sp = ValueObjectConstResult::Create(
501 thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
502 } else if (*byte_size == 16) // handles __float128
503 {
504 lldb::addr_t storage_addr = (uint32_t)(
505 thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
506 0xffffffff);
507 return_valobj_sp = ValueObjectMemory::Create(
508 &thread, "", Address(storage_addr, nullptr), return_compiler_type);
509 }
510 } else // Neither 'Integral' nor 'Floating Point'
511 {
512 // If flow reaches here then check type_flags This type_flags is
513 // unhandled
514 }
515 } else if (type_flags & eTypeIsComplex) // 'Complex Floating Point'
516 {
517 // ToDo: Yet to be implemented
518 } else if (type_flags & eTypeIsVector) // 'Packed'
519 {
520 std::optional<uint64_t> byte_size =
521 llvm::expectedToOptional(return_compiler_type.GetByteSize(&thread));
522 if (byte_size && *byte_size > 0) {
523 const RegisterInfo *vec_reg = reg_ctx->GetRegisterInfoByName("xmm0", 0);
524 if (vec_reg == nullptr)
525 vec_reg = reg_ctx->GetRegisterInfoByName("mm0", 0);
526
527 if (vec_reg) {
528 if (*byte_size <= vec_reg->byte_size) {
529 ProcessSP process_sp(thread.GetProcess());
530 if (process_sp) {
531 std::unique_ptr<DataBufferHeap> heap_data_up(
532 new DataBufferHeap(*byte_size, 0));
533 const ByteOrder byte_order = process_sp->GetByteOrder();
534 RegisterValue reg_value;
535 if (reg_ctx->ReadRegister(vec_reg, reg_value)) {
537 if (reg_value.GetAsMemoryData(*vec_reg, heap_data_up->GetBytes(),
538 heap_data_up->GetByteSize(),
539 byte_order, error)) {
540 DataExtractor data(DataBufferSP(heap_data_up.release()),
541 byte_order,
542 process_sp->GetTarget()
543 .GetArchitecture()
544 .GetAddressByteSize());
545 return_valobj_sp = ValueObjectConstResult::Create(
546 &thread, return_compiler_type, ConstString(""), data);
547 }
548 }
549 }
550 } else if (*byte_size <= vec_reg->byte_size * 2) {
551 const RegisterInfo *vec_reg2 =
552 reg_ctx->GetRegisterInfoByName("xmm1", 0);
553 if (vec_reg2) {
554 ProcessSP process_sp(thread.GetProcess());
555 if (process_sp) {
556 std::unique_ptr<DataBufferHeap> heap_data_up(
557 new DataBufferHeap(*byte_size, 0));
558 const ByteOrder byte_order = process_sp->GetByteOrder();
559 RegisterValue reg_value;
560 RegisterValue reg_value2;
561 if (reg_ctx->ReadRegister(vec_reg, reg_value) &&
562 reg_ctx->ReadRegister(vec_reg2, reg_value2)) {
563
565 if (reg_value.GetAsMemoryData(
566 *vec_reg, heap_data_up->GetBytes(), vec_reg->byte_size,
567 byte_order, error) &&
568 reg_value2.GetAsMemoryData(
569 *vec_reg2,
570 heap_data_up->GetBytes() + vec_reg->byte_size,
571 heap_data_up->GetByteSize() - vec_reg->byte_size,
572 byte_order, error)) {
573 DataExtractor data(DataBufferSP(heap_data_up.release()),
574 byte_order,
575 process_sp->GetTarget()
576 .GetArchitecture()
577 .GetAddressByteSize());
578 return_valobj_sp = ValueObjectConstResult::Create(
579 &thread, return_compiler_type, ConstString(""), data);
580 }
581 }
582 }
583 }
584 }
585 }
586 }
587 } else // 'Decimal Floating Point'
588 {
589 // ToDo: Yet to be implemented
590 }
591 return return_valobj_sp;
592}
593
595 Thread &thread, CompilerType &return_compiler_type) const {
596 ValueObjectSP return_valobj_sp;
597
598 if (!return_compiler_type)
599 return return_valobj_sp;
600
601 ExecutionContext exe_ctx(thread.shared_from_this());
602 return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
603 if (return_valobj_sp)
604 return return_valobj_sp;
605
606 RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
607 if (!reg_ctx_sp)
608 return return_valobj_sp;
609
610 if (return_compiler_type.IsAggregateType()) {
611 unsigned eax_id =
612 reg_ctx_sp->GetRegisterInfoByName("eax", 0)->kinds[eRegisterKindLLDB];
613 lldb::addr_t storage_addr = (uint32_t)(
614 thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
615 0xffffffff);
616 return_valobj_sp = ValueObjectMemory::Create(
617 &thread, "", Address(storage_addr, nullptr), return_compiler_type);
618 }
619
620 return return_valobj_sp;
621}
622
623// This defines CFA as esp+4
624// The saved pc is at CFA-4 (i.e. esp+0)
625// The saved esp is CFA+0
626
628 uint32_t sp_reg_num = dwarf_esp;
629 uint32_t pc_reg_num = dwarf_eip;
630
631 UnwindPlan::Row row;
632 row.GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 4);
633 row.SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -4, false);
634 row.SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
635
636 auto plan_sp = std::make_shared<UnwindPlan>(eRegisterKindDWARF);
637 plan_sp->AppendRow(std::move(row));
638 plan_sp->SetSourceName("i386 at-func-entry default");
639 plan_sp->SetSourcedFromCompiler(eLazyBoolNo);
640 return plan_sp;
641}
642
643// This defines CFA as ebp+8
644// The saved pc is at CFA-4 (i.e. ebp+4)
645// The saved ebp is at CFA-8 (i.e. ebp+0)
646// The saved esp is CFA+0
647
649 uint32_t fp_reg_num = dwarf_ebp;
650 uint32_t sp_reg_num = dwarf_esp;
651 uint32_t pc_reg_num = dwarf_eip;
652
653 UnwindPlan::Row row;
654 const int32_t ptr_size = 4;
655
656 row.GetCFAValue().SetIsRegisterPlusOffset(fp_reg_num, 2 * ptr_size);
658
659 row.SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
660 row.SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
661 row.SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
662
663 auto plan_sp = std::make_shared<UnwindPlan>(eRegisterKindDWARF);
664 plan_sp->AppendRow(std::move(row));
665 plan_sp->SetSourceName("i386 default unwind plan");
666 plan_sp->SetSourcedFromCompiler(eLazyBoolNo);
667 plan_sp->SetUnwindPlanValidAtAllInstructions(eLazyBoolNo);
668 plan_sp->SetUnwindPlanForSignalTrap(eLazyBoolNo);
669 return plan_sp;
670}
671
672// According to "Register Usage" in reference document (specified on top of
673// this source file) ebx, ebp, esi, edi and esp registers are preserved i.e.
674// non-volatile i.e. callee-saved on i386
676 if (!reg_info)
677 return false;
678
679 // Saved registers are ebx, ebp, esi, edi, esp, eip
680 const char *name = reg_info->name;
681 if (name[0] == 'e') {
682 switch (name[1]) {
683 case 'b':
684 if (name[2] == 'x' || name[2] == 'p')
685 return name[3] == '\0';
686 break;
687 case 'd':
688 if (name[2] == 'i')
689 return name[3] == '\0';
690 break;
691 case 'i':
692 if (name[2] == 'p')
693 return name[3] == '\0';
694 break;
695 case 's':
696 if (name[2] == 'i' || name[2] == 'p')
697 return name[3] == '\0';
698 break;
699 }
700 }
701
702 if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp
703 return true;
704 if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp
705 return true;
706 if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc
707 return true;
708
709 return false;
710}
711
714 GetPluginNameStatic(), "System V ABI for i386 targets", CreateInstance);
715}
716
@ dwarf_edx
@ dwarf_ecx
@ dwarf_eip
@ dwarf_eax
@ dwarf_esi
@ dwarf_edi
@ dwarf_esp
@ dwarf_ebx
@ dwarf_ebp
static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width, bool is_signed, Process *process, addr_t &current_stack_argument)
dwarf_regnums
static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width, bool is_signed, Thread &thread, uint32_t *argument_register_ids, unsigned int &current_argument_register, addr_t &current_stack_argument)
static llvm::raw_ostream & error(Stream &strm)
#define LLDB_PLUGIN_DEFINE(PluginName)
bool GetArgumentValues(lldb_private::Thread &thread, lldb_private::ValueList &values) const override
bool RegisterIsCalleeSaved(const lldb_private::RegisterInfo *reg_info)
lldb::ValueObjectSP GetReturnValueObjectImpl(lldb_private::Thread &thread, lldb_private::CompilerType &type) const override
static lldb::ABISP CreateInstance(lldb::ProcessSP process_sp, const lldb_private::ArchSpec &arch)
bool PrepareTrivialCall(lldb_private::Thread &thread, lldb::addr_t sp, lldb::addr_t functionAddress, lldb::addr_t returnAddress, llvm::ArrayRef< lldb::addr_t > args) const override
lldb::UnwindPlanSP CreateDefaultUnwindPlan() override
lldb::UnwindPlanSP CreateFunctionEntryUnwindPlan() override
lldb::ValueObjectSP GetReturnValueObjectSimple(lldb_private::Thread &thread, lldb_private::CompilerType &ast_type) const
static void Initialize()
static void Terminate()
static llvm::StringRef GetPluginNameStatic()
lldb_private::Status SetReturnValueObject(lldb::StackFrameSP &frame_sp, lldb::ValueObjectSP &new_value) override
static std::unique_ptr< llvm::MCRegisterInfo > MakeMCRegisterInfo(const ArchSpec &arch)
Utility function to construct a MCRegisterInfo using the ArchSpec triple.
Definition ABI.cpp:234
A section + offset based address class.
Definition Address.h:62
An architecture specification class.
Definition ArchSpec.h:31
llvm::Triple & GetTriple()
Architecture triple accessor.
Definition ArchSpec.h:468
Generic representation of a type in a programming language.
llvm::Expected< uint64_t > GetByteSize(ExecutionContextScope *exe_scope) const
Return the size of the type in bytes.
bool IsIntegerOrEnumerationType(bool &is_signed) const
uint32_t GetTypeInfo(CompilerType *pointee_or_element_compiler_type=nullptr) const
llvm::Expected< uint64_t > GetBitSize(ExecutionContextScope *exe_scope) const
Return the size of the type in bits.
bool IsPointerType(CompilerType *pointee_type=nullptr) const
A uniqued constant string class.
Definition ConstString.h:40
A subclass of DataBuffer that stores a data buffer on the heap.
An data extractor class.
float GetFloat(lldb::offset_t *offset_ptr) const
Extract a float from *offset_ptr.
long double GetLongDouble(lldb::offset_t *offset_ptr) const
uint32_t GetMaxU32(lldb::offset_t *offset_ptr, size_t byte_size) const
Extract an integer of size byte_size from *offset_ptr.
double GetDouble(lldb::offset_t *offset_ptr) const
"lldb/Target/ExecutionContext.h" A class that contains an execution context.
static bool RegisterPlugin(llvm::StringRef name, llvm::StringRef description, ABICreateInstance create_callback)
static bool UnregisterPlugin(ABICreateInstance create_callback)
A plug-in interface definition class for debugging a process.
Definition Process.h:357
size_t ReadScalarIntegerFromMemory(lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Status &error)
Definition Process.cpp:2395
virtual uint32_t ConvertRegisterKindToRegisterNumber(lldb::RegisterKind kind, uint32_t num)
Convert from a given register numbering scheme to the lldb register numbering scheme.
uint64_t GetSP(uint64_t fail_value=LLDB_INVALID_ADDRESS)
virtual bool WriteRegister(const RegisterInfo *reg_info, const RegisterValue &reg_value)=0
virtual Status WriteRegisterValueToMemory(const lldb_private::RegisterInfo *reg_info, lldb::addr_t dst_addr, uint32_t dst_len, const RegisterValue &reg_value)
bool WriteRegisterFromUnsigned(uint32_t reg, uint64_t uval)
const RegisterInfo * GetRegisterInfoByName(llvm::StringRef reg_name, uint32_t start_idx=0)
virtual bool ReadRegister(const RegisterInfo *reg_info, RegisterValue &reg_value)=0
bool GetData(DataExtractor &data) const
uint32_t GetAsMemoryData(const RegisterInfo &reg_info, void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Status &error) const
void SetLongDouble(long double f)
void SetUInt32(uint32_t uint, Type t=eTypeUInt32)
An error handling class.
Definition Status.h:118
static Status FromErrorStringWithFormat(const char *format,...) __attribute__((format(printf
Definition Status.cpp:106
static Status FromErrorString(const char *str)
Definition Status.h:141
bool Fail() const
Test for error condition.
Definition Status.cpp:294
const char * AsCString(const char *default_error_str="unknown error") const
Get the error string associated with the current error.
Definition Status.cpp:195
void SetIsRegisterPlusOffset(uint32_t reg_num, int32_t offset)
Definition UnwindPlan.h:240
bool SetRegisterLocationToIsCFAPlusOffset(uint32_t reg_num, int32_t offset, bool can_replace)
bool SetRegisterLocationToAtCFAPlusOffset(uint32_t reg_num, int32_t offset, bool can_replace)
const FAValue & GetCFAValue() const
Definition UnwindPlan.h:365
void SetUnspecifiedRegistersAreUndefined(bool unspec_is_undef)
Definition UnwindPlan.h:408
Value * GetValueAtIndex(size_t idx)
Definition Value.cpp:698
static lldb::ValueObjectSP Create(ExecutionContextScope *exe_scope, lldb::ByteOrder byte_order, uint32_t addr_byte_size, lldb::addr_t address=LLDB_INVALID_ADDRESS)
static lldb::ValueObjectSP Create(ExecutionContextScope *exe_scope, llvm::StringRef name, const Address &address, lldb::TypeSP &type_sp)
const Scalar & GetScalar() const
See comment on m_scalar to understand what GetScalar returns.
Definition Value.h:113
@ Scalar
A raw scalar value.
Definition Value.h:45
void SetCompilerType(const CompilerType &compiler_type)
Definition Value.cpp:276
void SetValueType(ValueType value_type)
Definition Value.h:89
const CompilerType & GetCompilerType()
Definition Value.cpp:247
#define LLDB_REGNUM_GENERIC_SP
#define UINT32_MAX
#define LLDB_REGNUM_GENERIC_PC
A class that represents a running process on the host machine.
std::shared_ptr< lldb_private::ABI > ABISP
std::shared_ptr< lldb_private::StackFrame > StackFrameSP
std::shared_ptr< lldb_private::ValueObject > ValueObjectSP
uint64_t offset_t
Definition lldb-types.h:85
std::shared_ptr< lldb_private::Process > ProcessSP
ByteOrder
Byte ordering definitions.
std::shared_ptr< lldb_private::UnwindPlan > UnwindPlanSP
std::shared_ptr< lldb_private::DataBuffer > DataBufferSP
uint64_t addr_t
Definition lldb-types.h:80
std::shared_ptr< lldb_private::RegisterContext > RegisterContextSP
@ eRegisterKindGeneric
insn ptr reg, stack ptr reg, etc not specific to any particular target
@ eRegisterKindLLDB
lldb's internal register numbers
@ eRegisterKindDWARF
the register numbers seen DWARF
Every register is described in detail including its name, alternate name (optional),...
uint32_t byte_size
Size in bytes of the register.
uint32_t kinds[lldb::kNumRegisterKinds]
Holds all of the various register numbers for all register kinds.
const char * name
Name of this register, can't be NULL.