LLDB mainline
ABISysV_i386.cpp
Go to the documentation of this file.
1//===-- ABISysV_i386.cpp --------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//===----------------------------------------------------------------------===//
7
8#include "ABISysV_i386.h"
9
10#include "llvm/ADT/STLExtras.h"
11#include "llvm/TargetParser/Triple.h"
12
13#include "lldb/Core/Module.h"
15#include "lldb/Core/Value.h"
20#include "lldb/Target/Process.h"
23#include "lldb/Target/Target.h"
24#include "lldb/Target/Thread.h"
27#include "lldb/Utility/Log.h"
29#include "lldb/Utility/Status.h"
30#include <optional>
31
32using namespace lldb;
33using namespace lldb_private;
34
36
37// This source file uses the following document as a reference:
38//====================================================================
39// System V Application Binary Interface
40// Intel386 Architecture Processor Supplement, Version 1.0
41// Edited by
42// H.J. Lu, David L Kreitzer, Milind Girkar, Zia Ansari
43//
44// (Based on
45// System V Application Binary Interface,
46// AMD64 Architecture Processor Supplement,
47// Edited by
48// H.J. Lu, Michael Matz, Milind Girkar, Jan Hubicka,
49// Andreas Jaeger, Mark Mitchell)
50//
51// February 3, 2015
52//====================================================================
53
54// DWARF Register Number Mapping
55// See Table 2.14 of the reference document (specified on top of this file)
56// Comment: Table 2.14 is followed till 'mm' entries. After that, all entries
57// are ignored here.
58
69};
70
71// Static Functions
72
75 if (arch.GetTriple().getVendor() != llvm::Triple::Apple) {
76 if (arch.GetTriple().getArch() == llvm::Triple::x86) {
77 return ABISP(
78 new ABISysV_i386(std::move(process_sp), MakeMCRegisterInfo(arch)));
79 }
80 }
81 return ABISP();
82}
83
85 addr_t func_addr, addr_t return_addr,
86 llvm::ArrayRef<addr_t> args) const {
87 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
88
89 if (!reg_ctx)
90 return false;
91
92 uint32_t pc_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
94 uint32_t sp_reg_num = reg_ctx->ConvertRegisterKindToRegisterNumber(
96
97 // While using register info to write a register value to memory, the
98 // register info just needs to have the correct size of a 32 bit register,
99 // the actual register it pertains to is not important, just the size needs
100 // to be correct. "eax" is used here for this purpose.
101 const RegisterInfo *reg_info_32 = reg_ctx->GetRegisterInfoByName("eax");
102 if (!reg_info_32)
103 return false; // TODO this should actually never happen
104
106 RegisterValue reg_value;
107
108 // Make room for the argument(s) on the stack
109 sp -= 4 * args.size();
110
111 // SP Alignment
112 sp &= ~(16ull - 1ull); // 16-byte alignment
113
114 // Write arguments onto the stack
115 addr_t arg_pos = sp;
116 for (addr_t arg : args) {
117 reg_value.SetUInt32(arg);
119 reg_info_32, arg_pos, reg_info_32->byte_size, reg_value);
120 if (error.Fail())
121 return false;
122 arg_pos += 4;
123 }
124
125 // The return address is pushed onto the stack
126 sp -= 4;
127 reg_value.SetUInt32(return_addr);
129 reg_info_32, sp, reg_info_32->byte_size, reg_value);
130 if (error.Fail())
131 return false;
132
133 // Setting %esp to the actual stack value.
134 if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_num, sp))
135 return false;
136
137 // Setting %eip to the address of the called function.
138 if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_num, func_addr))
139 return false;
140
141 return true;
142}
143
144static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
145 bool is_signed, Process *process,
146 addr_t &current_stack_argument) {
147 uint32_t byte_size = (bit_width + (8 - 1)) / 8;
149
150 if (!process)
151 return false;
152
153 if (process->ReadScalarIntegerFromMemory(current_stack_argument, byte_size,
154 is_signed, scalar, error)) {
155 current_stack_argument += byte_size;
156 return true;
157 }
158 return false;
159}
160
162 unsigned int num_values = values.GetSize();
163 unsigned int value_index;
164
165 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
166
167 if (!reg_ctx)
168 return false;
169
170 // Get pointer to the first stack argument
171 addr_t sp = reg_ctx->GetSP(0);
172 if (!sp)
173 return false;
174
175 addr_t current_stack_argument = sp + 4; // jump over return address
176
177 for (value_index = 0; value_index < num_values; ++value_index) {
178 Value *value = values.GetValueAtIndex(value_index);
179
180 if (!value)
181 return false;
182
183 // Currently: Support for extracting values with Clang QualTypes only.
184 CompilerType compiler_type(value->GetCompilerType());
185 std::optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
186 if (bit_size) {
187 bool is_signed;
188 if (compiler_type.IsIntegerOrEnumerationType(is_signed)) {
189 ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed,
190 thread.GetProcess().get(), current_stack_argument);
191 } else if (compiler_type.IsPointerType()) {
192 ReadIntegerArgument(value->GetScalar(), *bit_size, false,
193 thread.GetProcess().get(), current_stack_argument);
194 }
195 }
196 }
197 return true;
198}
199
201 lldb::ValueObjectSP &new_value_sp) {
203 if (!new_value_sp) {
204 error.SetErrorString("Empty value object for return value.");
205 return error;
206 }
207
208 CompilerType compiler_type = new_value_sp->GetCompilerType();
209 if (!compiler_type) {
210 error.SetErrorString("Null clang type for return value.");
211 return error;
212 }
213
214 const uint32_t type_flags = compiler_type.GetTypeInfo();
215 Thread *thread = frame_sp->GetThread().get();
216 RegisterContext *reg_ctx = thread->GetRegisterContext().get();
217 DataExtractor data;
218 Status data_error;
219 size_t num_bytes = new_value_sp->GetData(data, data_error);
220 bool register_write_successful = true;
221
222 if (data_error.Fail()) {
223 error.SetErrorStringWithFormat(
224 "Couldn't convert return value to raw data: %s",
225 data_error.AsCString());
226 return error;
227 }
228
229 // Following "IF ELSE" block categorizes various 'Fundamental Data Types'.
230 // The terminology 'Fundamental Data Types' used here is adopted from Table
231 // 2.1 of the reference document (specified on top of this file)
232
233 if (type_flags & eTypeIsPointer) // 'Pointer'
234 {
235 if (num_bytes != sizeof(uint32_t)) {
236 error.SetErrorString("Pointer to be returned is not 4 bytes wide");
237 return error;
238 }
239 lldb::offset_t offset = 0;
240 const RegisterInfo *eax_info = reg_ctx->GetRegisterInfoByName("eax", 0);
241 uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
242 register_write_successful =
243 reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value);
244 } else if ((type_flags & eTypeIsScalar) ||
245 (type_flags & eTypeIsEnumeration)) //'Integral' + 'Floating Point'
246 {
247 lldb::offset_t offset = 0;
248 const RegisterInfo *eax_info = reg_ctx->GetRegisterInfoByName("eax", 0);
249
250 if (type_flags & eTypeIsInteger) // 'Integral' except enum
251 {
252 switch (num_bytes) {
253 default:
254 break;
255 case 16:
256 // For clang::BuiltinType::UInt128 & Int128 ToDo: Need to decide how to
257 // handle it
258 break;
259 case 8: {
260 uint32_t raw_value_low = data.GetMaxU32(&offset, 4);
261 const RegisterInfo *edx_info = reg_ctx->GetRegisterInfoByName("edx", 0);
262 uint32_t raw_value_high = data.GetMaxU32(&offset, num_bytes - offset);
263 register_write_successful =
264 (reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value_low) &&
265 reg_ctx->WriteRegisterFromUnsigned(edx_info, raw_value_high));
266 break;
267 }
268 case 4:
269 case 2:
270 case 1: {
271 uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
272 register_write_successful =
273 reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value);
274 break;
275 }
276 }
277 } else if (type_flags & eTypeIsEnumeration) // handles enum
278 {
279 uint32_t raw_value = data.GetMaxU32(&offset, num_bytes);
280 register_write_successful =
281 reg_ctx->WriteRegisterFromUnsigned(eax_info, raw_value);
282 } else if (type_flags & eTypeIsFloat) // 'Floating Point'
283 {
284 RegisterValue st0_value, fstat_value, ftag_value;
285 const RegisterInfo *st0_info = reg_ctx->GetRegisterInfoByName("st0", 0);
286 const RegisterInfo *fstat_info =
287 reg_ctx->GetRegisterInfoByName("fstat", 0);
288 const RegisterInfo *ftag_info = reg_ctx->GetRegisterInfoByName("ftag", 0);
289
290 /* According to Page 3-12 of document
291 System V Application Binary Interface, Intel386 Architecture Processor
292 Supplement, Fourth Edition
293 To return Floating Point values, all st% registers except st0 should be
294 empty after exiting from
295 a function. This requires setting fstat and ftag registers to specific
296 values.
297 fstat: The TOP field of fstat should be set to a value [0,7]. ABI doesn't
298 specify the specific
299 value of TOP in case of function return. Hence, we set the TOP field to 7
300 by our choice. */
301 uint32_t value_fstat_u32 = 0x00003800;
302
303 /* ftag: Implication of setting TOP to 7 and indicating all st% registers
304 empty except st0 is to set
305 7th bit of 4th byte of FXSAVE area to 1 and all other bits of this byte to
306 0. This is in accordance
307 with the document Intel 64 and IA-32 Architectures Software Developer's
308 Manual, January 2015 */
309 uint32_t value_ftag_u32 = 0x00000080;
310
311 if (num_bytes <= 12) // handles float, double, long double, __float80
312 {
313 long double value_long_dbl = 0.0;
314 if (num_bytes == 4)
315 value_long_dbl = data.GetFloat(&offset);
316 else if (num_bytes == 8)
317 value_long_dbl = data.GetDouble(&offset);
318 else if (num_bytes == 12)
319 value_long_dbl = data.GetLongDouble(&offset);
320 else {
321 error.SetErrorString("Invalid number of bytes for this return type");
322 return error;
323 }
324 st0_value.SetLongDouble(value_long_dbl);
325 fstat_value.SetUInt32(value_fstat_u32);
326 ftag_value.SetUInt32(value_ftag_u32);
327 register_write_successful =
328 reg_ctx->WriteRegister(st0_info, st0_value) &&
329 reg_ctx->WriteRegister(fstat_info, fstat_value) &&
330 reg_ctx->WriteRegister(ftag_info, ftag_value);
331 } else if (num_bytes == 16) // handles __float128
332 {
333 error.SetErrorString("Implementation is missing for this clang type.");
334 }
335 } else {
336 // Neither 'Integral' nor 'Floating Point'. If flow reaches here then
337 // check type_flags. This type_flags is not a valid type.
338 error.SetErrorString("Invalid clang type");
339 }
340 } else {
341 /* 'Complex Floating Point', 'Packed', 'Decimal Floating Point' and
342 'Aggregate' data types
343 are yet to be implemented */
344 error.SetErrorString("Currently only Integral and Floating Point clang "
345 "types are supported.");
346 }
347 if (!register_write_successful)
348 error.SetErrorString("Register writing failed");
349 return error;
350}
351
353 Thread &thread, CompilerType &return_compiler_type) const {
354 ValueObjectSP return_valobj_sp;
355 Value value;
356
357 if (!return_compiler_type)
358 return return_valobj_sp;
359
360 value.SetCompilerType(return_compiler_type);
361
362 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
363 if (!reg_ctx)
364 return return_valobj_sp;
365
366 const uint32_t type_flags = return_compiler_type.GetTypeInfo();
367
368 unsigned eax_id =
369 reg_ctx->GetRegisterInfoByName("eax", 0)->kinds[eRegisterKindLLDB];
370 unsigned edx_id =
371 reg_ctx->GetRegisterInfoByName("edx", 0)->kinds[eRegisterKindLLDB];
372
373 // Following "IF ELSE" block categorizes various 'Fundamental Data Types'.
374 // The terminology 'Fundamental Data Types' used here is adopted from Table
375 // 2.1 of the reference document (specified on top of this file)
376
377 if (type_flags & eTypeIsPointer) // 'Pointer'
378 {
379 uint32_t ptr =
380 thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
381 0xffffffff;
382 value.SetValueType(Value::ValueType::Scalar);
383 value.GetScalar() = ptr;
384 return_valobj_sp = ValueObjectConstResult::Create(
385 thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
386 } else if ((type_flags & eTypeIsScalar) ||
387 (type_flags & eTypeIsEnumeration)) //'Integral' + 'Floating Point'
388 {
389 value.SetValueType(Value::ValueType::Scalar);
390 std::optional<uint64_t> byte_size =
391 return_compiler_type.GetByteSize(&thread);
392 if (!byte_size)
393 return return_valobj_sp;
394 bool success = false;
395
396 if (type_flags & eTypeIsInteger) // 'Integral' except enum
397 {
398 const bool is_signed = ((type_flags & eTypeIsSigned) != 0);
399 uint64_t raw_value =
400 thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
401 0xffffffff;
402 raw_value |=
403 (thread.GetRegisterContext()->ReadRegisterAsUnsigned(edx_id, 0) &
404 0xffffffff)
405 << 32;
406
407 switch (*byte_size) {
408 default:
409 break;
410
411 case 16:
412 // For clang::BuiltinType::UInt128 & Int128 ToDo: Need to decide how to
413 // handle it
414 break;
415
416 case 8:
417 if (is_signed)
418 value.GetScalar() = (int64_t)(raw_value);
419 else
420 value.GetScalar() = (uint64_t)(raw_value);
421 success = true;
422 break;
423
424 case 4:
425 if (is_signed)
426 value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
427 else
428 value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
429 success = true;
430 break;
431
432 case 2:
433 if (is_signed)
434 value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
435 else
436 value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
437 success = true;
438 break;
439
440 case 1:
441 if (is_signed)
442 value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
443 else
444 value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
445 success = true;
446 break;
447 }
448
449 if (success)
450 return_valobj_sp = ValueObjectConstResult::Create(
451 thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
452 } else if (type_flags & eTypeIsEnumeration) // handles enum
453 {
454 uint32_t enm =
455 thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
456 0xffffffff;
457 value.SetValueType(Value::ValueType::Scalar);
458 value.GetScalar() = enm;
459 return_valobj_sp = ValueObjectConstResult::Create(
460 thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
461 } else if (type_flags & eTypeIsFloat) // 'Floating Point'
462 {
463 if (*byte_size <= 12) // handles float, double, long double, __float80
464 {
465 const RegisterInfo *st0_info = reg_ctx->GetRegisterInfoByName("st0", 0);
466 RegisterValue st0_value;
467
468 if (reg_ctx->ReadRegister(st0_info, st0_value)) {
469 DataExtractor data;
470 if (st0_value.GetData(data)) {
471 lldb::offset_t offset = 0;
472 long double value_long_double = data.GetLongDouble(&offset);
473
474 // float is 4 bytes.
475 if (*byte_size == 4) {
476 float value_float = (float)value_long_double;
477 value.GetScalar() = value_float;
478 success = true;
479 } else if (*byte_size == 8) {
480 // double is 8 bytes
481 // On Android Platform: long double is also 8 bytes It will be
482 // handled here only.
483 double value_double = (double)value_long_double;
484 value.GetScalar() = value_double;
485 success = true;
486 } else if (*byte_size == 12) {
487 // long double and __float80 are 12 bytes on i386.
488 value.GetScalar() = value_long_double;
489 success = true;
490 }
491 }
492 }
493
494 if (success)
495 return_valobj_sp = ValueObjectConstResult::Create(
496 thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
497 } else if (*byte_size == 16) // handles __float128
498 {
499 lldb::addr_t storage_addr = (uint32_t)(
500 thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
501 0xffffffff);
502 return_valobj_sp = ValueObjectMemory::Create(
503 &thread, "", Address(storage_addr, nullptr), return_compiler_type);
504 }
505 } else // Neither 'Integral' nor 'Floating Point'
506 {
507 // If flow reaches here then check type_flags This type_flags is
508 // unhandled
509 }
510 } else if (type_flags & eTypeIsComplex) // 'Complex Floating Point'
511 {
512 // ToDo: Yet to be implemented
513 } else if (type_flags & eTypeIsVector) // 'Packed'
514 {
515 std::optional<uint64_t> byte_size =
516 return_compiler_type.GetByteSize(&thread);
517 if (byte_size && *byte_size > 0) {
518 const RegisterInfo *vec_reg = reg_ctx->GetRegisterInfoByName("xmm0", 0);
519 if (vec_reg == nullptr)
520 vec_reg = reg_ctx->GetRegisterInfoByName("mm0", 0);
521
522 if (vec_reg) {
523 if (*byte_size <= vec_reg->byte_size) {
524 ProcessSP process_sp(thread.GetProcess());
525 if (process_sp) {
526 std::unique_ptr<DataBufferHeap> heap_data_up(
527 new DataBufferHeap(*byte_size, 0));
528 const ByteOrder byte_order = process_sp->GetByteOrder();
529 RegisterValue reg_value;
530 if (reg_ctx->ReadRegister(vec_reg, reg_value)) {
532 if (reg_value.GetAsMemoryData(*vec_reg, heap_data_up->GetBytes(),
533 heap_data_up->GetByteSize(),
534 byte_order, error)) {
535 DataExtractor data(DataBufferSP(heap_data_up.release()),
536 byte_order,
537 process_sp->GetTarget()
538 .GetArchitecture()
539 .GetAddressByteSize());
540 return_valobj_sp = ValueObjectConstResult::Create(
541 &thread, return_compiler_type, ConstString(""), data);
542 }
543 }
544 }
545 } else if (*byte_size <= vec_reg->byte_size * 2) {
546 const RegisterInfo *vec_reg2 =
547 reg_ctx->GetRegisterInfoByName("xmm1", 0);
548 if (vec_reg2) {
549 ProcessSP process_sp(thread.GetProcess());
550 if (process_sp) {
551 std::unique_ptr<DataBufferHeap> heap_data_up(
552 new DataBufferHeap(*byte_size, 0));
553 const ByteOrder byte_order = process_sp->GetByteOrder();
554 RegisterValue reg_value;
555 RegisterValue reg_value2;
556 if (reg_ctx->ReadRegister(vec_reg, reg_value) &&
557 reg_ctx->ReadRegister(vec_reg2, reg_value2)) {
558
560 if (reg_value.GetAsMemoryData(
561 *vec_reg, heap_data_up->GetBytes(), vec_reg->byte_size,
562 byte_order, error) &&
563 reg_value2.GetAsMemoryData(
564 *vec_reg2,
565 heap_data_up->GetBytes() + vec_reg->byte_size,
566 heap_data_up->GetByteSize() - vec_reg->byte_size,
567 byte_order, error)) {
568 DataExtractor data(DataBufferSP(heap_data_up.release()),
569 byte_order,
570 process_sp->GetTarget()
571 .GetArchitecture()
572 .GetAddressByteSize());
573 return_valobj_sp = ValueObjectConstResult::Create(
574 &thread, return_compiler_type, ConstString(""), data);
575 }
576 }
577 }
578 }
579 }
580 }
581 }
582 } else // 'Decimal Floating Point'
583 {
584 // ToDo: Yet to be implemented
585 }
586 return return_valobj_sp;
587}
588
590 Thread &thread, CompilerType &return_compiler_type) const {
591 ValueObjectSP return_valobj_sp;
592
593 if (!return_compiler_type)
594 return return_valobj_sp;
595
596 ExecutionContext exe_ctx(thread.shared_from_this());
597 return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
598 if (return_valobj_sp)
599 return return_valobj_sp;
600
601 RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
602 if (!reg_ctx_sp)
603 return return_valobj_sp;
604
605 if (return_compiler_type.IsAggregateType()) {
606 unsigned eax_id =
607 reg_ctx_sp->GetRegisterInfoByName("eax", 0)->kinds[eRegisterKindLLDB];
608 lldb::addr_t storage_addr = (uint32_t)(
609 thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) &
610 0xffffffff);
611 return_valobj_sp = ValueObjectMemory::Create(
612 &thread, "", Address(storage_addr, nullptr), return_compiler_type);
613 }
614
615 return return_valobj_sp;
616}
617
618// This defines CFA as esp+4
619// The saved pc is at CFA-4 (i.e. esp+0)
620// The saved esp is CFA+0
621
623 unwind_plan.Clear();
625
626 uint32_t sp_reg_num = dwarf_esp;
627 uint32_t pc_reg_num = dwarf_eip;
628
630 row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 4);
631 row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, -4, false);
632 row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
633 unwind_plan.AppendRow(row);
634 unwind_plan.SetSourceName("i386 at-func-entry default");
636 return true;
637}
638
639// This defines CFA as ebp+8
640// The saved pc is at CFA-4 (i.e. ebp+4)
641// The saved ebp is at CFA-8 (i.e. ebp+0)
642// The saved esp is CFA+0
643
645 unwind_plan.Clear();
647
648 uint32_t fp_reg_num = dwarf_ebp;
649 uint32_t sp_reg_num = dwarf_esp;
650 uint32_t pc_reg_num = dwarf_eip;
651
653 const int32_t ptr_size = 4;
654
655 row->GetCFAValue().SetIsRegisterPlusOffset(fp_reg_num, 2 * ptr_size);
656 row->SetOffset(0);
657 row->SetUnspecifiedRegistersAreUndefined(true);
658
659 row->SetRegisterLocationToAtCFAPlusOffset(fp_reg_num, ptr_size * -2, true);
660 row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * -1, true);
661 row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
662
663 unwind_plan.AppendRow(row);
664 unwind_plan.SetSourceName("i386 default unwind plan");
668 return true;
669}
670
671// According to "Register Usage" in reference document (specified on top of
672// this source file) ebx, ebp, esi, edi and esp registers are preserved i.e.
673// non-volatile i.e. callee-saved on i386
675 if (!reg_info)
676 return false;
677
678 // Saved registers are ebx, ebp, esi, edi, esp, eip
679 const char *name = reg_info->name;
680 if (name[0] == 'e') {
681 switch (name[1]) {
682 case 'b':
683 if (name[2] == 'x' || name[2] == 'p')
684 return name[3] == '\0';
685 break;
686 case 'd':
687 if (name[2] == 'i')
688 return name[3] == '\0';
689 break;
690 case 'i':
691 if (name[2] == 'p')
692 return name[3] == '\0';
693 break;
694 case 's':
695 if (name[2] == 'i' || name[2] == 'p')
696 return name[3] == '\0';
697 break;
698 }
699 }
700
701 if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp
702 return true;
703 if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp
704 return true;
705 if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc
706 return true;
707
708 return false;
709}
710
713 GetPluginNameStatic(), "System V ABI for i386 targets", CreateInstance);
714}
715
718}
@ dwarf_eip
@ dwarf_esp
@ dwarf_ebp
@ dwarf_edx
@ dwarf_ecx
@ dwarf_eip
@ dwarf_eax
@ dwarf_esi
@ dwarf_edi
@ dwarf_esp
@ dwarf_ebx
@ dwarf_ebp
static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width, bool is_signed, Process *process, addr_t &current_stack_argument)
dwarf_regnums
static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width, bool is_signed, Thread &thread, uint32_t *argument_register_ids, unsigned int &current_argument_register, addr_t &current_stack_argument)
static llvm::raw_ostream & error(Stream &strm)
#define LLDB_PLUGIN_DEFINE(PluginName)
Definition: PluginManager.h:32
bool GetArgumentValues(lldb_private::Thread &thread, lldb_private::ValueList &values) const override
bool RegisterIsCalleeSaved(const lldb_private::RegisterInfo *reg_info)
lldb::ValueObjectSP GetReturnValueObjectImpl(lldb_private::Thread &thread, lldb_private::CompilerType &type) const override
static lldb::ABISP CreateInstance(lldb::ProcessSP process_sp, const lldb_private::ArchSpec &arch)
bool PrepareTrivialCall(lldb_private::Thread &thread, lldb::addr_t sp, lldb::addr_t functionAddress, lldb::addr_t returnAddress, llvm::ArrayRef< lldb::addr_t > args) const override
lldb::ValueObjectSP GetReturnValueObjectSimple(lldb_private::Thread &thread, lldb_private::CompilerType &ast_type) const
static void Initialize()
static void Terminate()
bool CreateFunctionEntryUnwindPlan(lldb_private::UnwindPlan &unwind_plan) override
static llvm::StringRef GetPluginNameStatic()
Definition: ABISysV_i386.h:86
lldb_private::Status SetReturnValueObject(lldb::StackFrameSP &frame_sp, lldb::ValueObjectSP &new_value) override
bool CreateDefaultUnwindPlan(lldb_private::UnwindPlan &unwind_plan) override
static std::unique_ptr< llvm::MCRegisterInfo > MakeMCRegisterInfo(const ArchSpec &arch)
Utility function to construct a MCRegisterInfo using the ArchSpec triple.
Definition: ABI.cpp:234
A section + offset based address class.
Definition: Address.h:62
An architecture specification class.
Definition: ArchSpec.h:31
llvm::Triple & GetTriple()
Architecture triple accessor.
Definition: ArchSpec.h:450
Generic representation of a type in a programming language.
Definition: CompilerType.h:36
std::optional< uint64_t > GetByteSize(ExecutionContextScope *exe_scope) const
Return the size of the type in bytes.
bool IsIntegerOrEnumerationType(bool &is_signed) const
uint32_t GetTypeInfo(CompilerType *pointee_or_element_compiler_type=nullptr) const
std::optional< uint64_t > GetBitSize(ExecutionContextScope *exe_scope) const
Return the size of the type in bits.
bool IsPointerType(CompilerType *pointee_type=nullptr) const
A uniqued constant string class.
Definition: ConstString.h:40
A subclass of DataBuffer that stores a data buffer on the heap.
An data extractor class.
Definition: DataExtractor.h:48
float GetFloat(lldb::offset_t *offset_ptr) const
Extract a float from *offset_ptr.
long double GetLongDouble(lldb::offset_t *offset_ptr) const
uint32_t GetMaxU32(lldb::offset_t *offset_ptr, size_t byte_size) const
Extract an integer of size byte_size from *offset_ptr.
double GetDouble(lldb::offset_t *offset_ptr) const
"lldb/Target/ExecutionContext.h" A class that contains an execution context.
static bool RegisterPlugin(llvm::StringRef name, llvm::StringRef description, ABICreateInstance create_callback)
static bool UnregisterPlugin(ABICreateInstance create_callback)
A plug-in interface definition class for debugging a process.
Definition: Process.h:341
size_t ReadScalarIntegerFromMemory(lldb::addr_t addr, uint32_t byte_size, bool is_signed, Scalar &scalar, Status &error)
Definition: Process.cpp:2395
virtual uint32_t ConvertRegisterKindToRegisterNumber(lldb::RegisterKind kind, uint32_t num)
Convert from a given register numbering scheme to the lldb register numbering scheme.
uint64_t GetSP(uint64_t fail_value=LLDB_INVALID_ADDRESS)
virtual bool WriteRegister(const RegisterInfo *reg_info, const RegisterValue &reg_value)=0
virtual Status WriteRegisterValueToMemory(const lldb_private::RegisterInfo *reg_info, lldb::addr_t dst_addr, uint32_t dst_len, const RegisterValue &reg_value)
bool WriteRegisterFromUnsigned(uint32_t reg, uint64_t uval)
const RegisterInfo * GetRegisterInfoByName(llvm::StringRef reg_name, uint32_t start_idx=0)
virtual bool ReadRegister(const RegisterInfo *reg_info, RegisterValue &reg_value)=0
bool GetData(DataExtractor &data) const
uint32_t GetAsMemoryData(const RegisterInfo &reg_info, void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Status &error) const
void SetLongDouble(long double f)
void SetUInt32(uint32_t uint, Type t=eTypeUInt32)
An error handling class.
Definition: Status.h:44
bool Fail() const
Test for error condition.
Definition: Status.cpp:180
const char * AsCString(const char *default_error_str="unknown error") const
Get the error string associated with the current error.
Definition: Status.cpp:129
virtual lldb::StackFrameSP GetStackFrameAtIndex(uint32_t idx)
Definition: Thread.h:408
virtual lldb::RegisterContextSP GetRegisterContext()=0
lldb::ProcessSP GetProcess() const
Definition: Thread.h:157
void SetUnwindPlanForSignalTrap(lldb_private::LazyBool is_for_signal_trap)
Definition: UnwindPlan.h:517
void SetRegisterKind(lldb::RegisterKind kind)
Definition: UnwindPlan.h:452
void AppendRow(const RowSP &row_sp)
Definition: UnwindPlan.cpp:379
std::shared_ptr< Row > RowSP
Definition: UnwindPlan.h:410
void SetSourcedFromCompiler(lldb_private::LazyBool from_compiler)
Definition: UnwindPlan.h:493
void SetSourceName(const char *)
Definition: UnwindPlan.cpp:581
void SetUnwindPlanValidAtAllInstructions(lldb_private::LazyBool valid_at_all_insn)
Definition: UnwindPlan.h:505
Value * GetValueAtIndex(size_t idx)
Definition: Value.cpp:686
static lldb::ValueObjectSP Create(ExecutionContextScope *exe_scope, lldb::ByteOrder byte_order, uint32_t addr_byte_size, lldb::addr_t address=LLDB_INVALID_ADDRESS)
static lldb::ValueObjectSP Create(ExecutionContextScope *exe_scope, llvm::StringRef name, const Address &address, lldb::TypeSP &type_sp)
const Scalar & GetScalar() const
Definition: Value.h:112
void SetCompilerType(const CompilerType &compiler_type)
Definition: Value.cpp:268
void SetValueType(ValueType value_type)
Definition: Value.h:89
const CompilerType & GetCompilerType()
Definition: Value.cpp:239
#define LLDB_REGNUM_GENERIC_SP
Definition: lldb-defines.h:57
#define UINT32_MAX
Definition: lldb-defines.h:19
#define LLDB_REGNUM_GENERIC_PC
Definition: lldb-defines.h:56
A class that represents a running process on the host machine.
Definition: SBAddress.h:15
std::shared_ptr< lldb_private::ABI > ABISP
Definition: lldb-forward.h:314
std::shared_ptr< lldb_private::StackFrame > StackFrameSP
Definition: lldb-forward.h:419
std::shared_ptr< lldb_private::ValueObject > ValueObjectSP
Definition: lldb-forward.h:479
uint64_t offset_t
Definition: lldb-types.h:85
std::shared_ptr< lldb_private::Process > ProcessSP
Definition: lldb-forward.h:386
ByteOrder
Byte ordering definitions.
std::shared_ptr< lldb_private::DataBuffer > DataBufferSP
Definition: lldb-forward.h:333
uint64_t addr_t
Definition: lldb-types.h:80
std::shared_ptr< lldb_private::RegisterContext > RegisterContextSP
Definition: lldb-forward.h:391
@ eRegisterKindGeneric
insn ptr reg, stack ptr reg, etc not specific to any particular target
@ eRegisterKindLLDB
lldb's internal register numbers
@ eRegisterKindDWARF
the register numbers seen DWARF
Every register is described in detail including its name, alternate name (optional),...
uint32_t byte_size
Size in bytes of the register.
uint32_t kinds[lldb::kNumRegisterKinds]
Holds all of the various register numbers for all register kinds.
const char * name
Name of this register, can't be NULL.