LLDB mainline
ABISysV_ppc.cpp
Go to the documentation of this file.
1//===-- ABISysV_ppc.cpp ---------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "ABISysV_ppc.h"
10
11#include "llvm/ADT/STLExtras.h"
12#include "llvm/TargetParser/Triple.h"
13
14#include "lldb/Core/Module.h"
16#include "lldb/Core/Value.h"
21#include "lldb/Target/Process.h"
24#include "lldb/Target/Target.h"
25#include "lldb/Target/Thread.h"
29#include "lldb/Utility/Log.h"
31#include "lldb/Utility/Status.h"
32#include <optional>
33
34using namespace lldb;
35using namespace lldb_private;
36
38
107 dwarf_lr = 108,
111};
112
113// Note that the size and offset will be updated by platform-specific classes.
114#define DEFINE_GPR(reg, alt, kind1, kind2, kind3, kind4) \
115 { \
116 #reg, alt, 8, 0, eEncodingUint, eFormatHex, {kind1, kind2, kind3, kind4 }, \
117 nullptr, nullptr, \
118 }
119
120static const RegisterInfo g_register_infos[] = {
121 // General purpose registers. eh_frame, DWARF,
122 // Generic, Process Plugin
197 {nullptr,
198 nullptr,
199 8,
200 0,
204 nullptr,
205 nullptr,
206 }};
207
209
210const lldb_private::RegisterInfo *
212 count = k_num_register_infos;
213 return g_register_infos;
214}
215
216size_t ABISysV_ppc::GetRedZoneSize() const { return 224; }
217
218// Static Functions
219
220ABISP
221ABISysV_ppc::CreateInstance(lldb::ProcessSP process_sp, const ArchSpec &arch) {
222 if (arch.GetTriple().getArch() == llvm::Triple::ppc) {
223 return ABISP(
224 new ABISysV_ppc(std::move(process_sp), MakeMCRegisterInfo(arch)));
225 }
226 return ABISP();
227}
228
230 addr_t func_addr, addr_t return_addr,
231 llvm::ArrayRef<addr_t> args) const {
232 Log *log = GetLog(LLDBLog::Expressions);
233
234 if (log) {
235 StreamString s;
236 s.Printf("ABISysV_ppc::PrepareTrivialCall (tid = 0x%" PRIx64
237 ", sp = 0x%" PRIx64 ", func_addr = 0x%" PRIx64
238 ", return_addr = 0x%" PRIx64,
239 thread.GetID(), (uint64_t)sp, (uint64_t)func_addr,
240 (uint64_t)return_addr);
241
242 for (size_t i = 0; i < args.size(); ++i)
243 s.Printf(", arg%" PRIu64 " = 0x%" PRIx64, static_cast<uint64_t>(i + 1),
244 args[i]);
245 s.PutCString(")");
246 log->PutString(s.GetString());
247 }
248
249 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
250 if (!reg_ctx)
251 return false;
252
253 const RegisterInfo *reg_info = nullptr;
254
255 if (args.size() > 8) // TODO handle more than 8 arguments
256 return false;
257
258 for (size_t i = 0; i < args.size(); ++i) {
259 reg_info = reg_ctx->GetRegisterInfo(eRegisterKindGeneric,
261 LLDB_LOGF(log, "About to write arg%" PRIu64 " (0x%" PRIx64 ") into %s",
262 static_cast<uint64_t>(i + 1), args[i], reg_info->name);
263 if (!reg_ctx->WriteRegisterFromUnsigned(reg_info, args[i]))
264 return false;
265 }
266
267 // First, align the SP
268
269 LLDB_LOGF(log, "16-byte aligning SP: 0x%" PRIx64 " to 0x%" PRIx64,
270 (uint64_t)sp, (uint64_t)(sp & ~0xfull));
271
272 sp &= ~(0xfull); // 16-byte alignment
273
274 sp -= 8;
275
277 const RegisterInfo *pc_reg_info =
279 const RegisterInfo *sp_reg_info =
281 ProcessSP process_sp(thread.GetProcess());
282
283 RegisterValue reg_value;
284
285 LLDB_LOGF(log,
286 "Pushing the return address onto the stack: 0x%" PRIx64
287 ": 0x%" PRIx64,
288 (uint64_t)sp, (uint64_t)return_addr);
289
290 // Save return address onto the stack
291 if (!process_sp->WritePointerToMemory(sp, return_addr, error))
292 return false;
293
294 // %r1 is set to the actual stack value.
295
296 LLDB_LOGF(log, "Writing SP: 0x%" PRIx64, (uint64_t)sp);
297
298 if (!reg_ctx->WriteRegisterFromUnsigned(sp_reg_info, sp))
299 return false;
300
301 // %pc is set to the address of the called function.
302
303 LLDB_LOGF(log, "Writing IP: 0x%" PRIx64, (uint64_t)func_addr);
304
305 if (!reg_ctx->WriteRegisterFromUnsigned(pc_reg_info, func_addr))
306 return false;
307
308 return true;
309}
310
311static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width,
312 bool is_signed, Thread &thread,
313 uint32_t *argument_register_ids,
314 unsigned int &current_argument_register,
315 addr_t &current_stack_argument) {
316 if (bit_width > 64)
317 return false; // Scalar can't hold large integer arguments
318
319 if (current_argument_register < 6) {
320 scalar = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
321 argument_register_ids[current_argument_register], 0);
322 current_argument_register++;
323 if (is_signed)
324 scalar.SignExtend(bit_width);
325 } else {
326 uint32_t byte_size = (bit_width + (8 - 1)) / 8;
328 if (thread.GetProcess()->ReadScalarIntegerFromMemory(
329 current_stack_argument, byte_size, is_signed, scalar, error)) {
330 current_stack_argument += byte_size;
331 return true;
332 }
333 return false;
334 }
335 return true;
336}
337
338bool ABISysV_ppc::GetArgumentValues(Thread &thread, ValueList &values) const {
339 unsigned int num_values = values.GetSize();
340 unsigned int value_index;
341
342 // Extract the register context so we can read arguments from registers
343
344 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
345
346 if (!reg_ctx)
347 return false;
348
349 // Get the pointer to the first stack argument so we have a place to start
350 // when reading data
351
352 addr_t sp = reg_ctx->GetSP(0);
353
354 if (!sp)
355 return false;
356
357 addr_t current_stack_argument = sp + 48; // jump over return address
358
359 uint32_t argument_register_ids[8];
360
361 argument_register_ids[0] =
363 ->kinds[eRegisterKindLLDB];
364 argument_register_ids[1] =
366 ->kinds[eRegisterKindLLDB];
367 argument_register_ids[2] =
369 ->kinds[eRegisterKindLLDB];
370 argument_register_ids[3] =
372 ->kinds[eRegisterKindLLDB];
373 argument_register_ids[4] =
375 ->kinds[eRegisterKindLLDB];
376 argument_register_ids[5] =
378 ->kinds[eRegisterKindLLDB];
379 argument_register_ids[6] =
381 ->kinds[eRegisterKindLLDB];
382 argument_register_ids[7] =
384 ->kinds[eRegisterKindLLDB];
385
386 unsigned int current_argument_register = 0;
387
388 for (value_index = 0; value_index < num_values; ++value_index) {
389 Value *value = values.GetValueAtIndex(value_index);
390
391 if (!value)
392 return false;
393
394 // We currently only support extracting values with Clang QualTypes. Do we
395 // care about others?
396 CompilerType compiler_type = value->GetCompilerType();
397 std::optional<uint64_t> bit_size = compiler_type.GetBitSize(&thread);
398 if (!bit_size)
399 return false;
400 bool is_signed;
401 if (compiler_type.IsIntegerOrEnumerationType(is_signed))
402 ReadIntegerArgument(value->GetScalar(), *bit_size, is_signed, thread,
403 argument_register_ids, current_argument_register,
404 current_stack_argument);
405 else if (compiler_type.IsPointerType())
406 ReadIntegerArgument(value->GetScalar(), *bit_size, false, thread,
407 argument_register_ids, current_argument_register,
408 current_stack_argument);
409 }
410
411 return true;
412}
413
414Status ABISysV_ppc::SetReturnValueObject(lldb::StackFrameSP &frame_sp,
415 lldb::ValueObjectSP &new_value_sp) {
417 if (!new_value_sp) {
418 error.SetErrorString("Empty value object for return value.");
419 return error;
420 }
421
422 CompilerType compiler_type = new_value_sp->GetCompilerType();
423 if (!compiler_type) {
424 error.SetErrorString("Null clang type for return value.");
425 return error;
426 }
427
428 Thread *thread = frame_sp->GetThread().get();
429
430 bool is_signed;
431 uint32_t count;
432 bool is_complex;
433
434 RegisterContext *reg_ctx = thread->GetRegisterContext().get();
435
436 bool set_it_simple = false;
437 if (compiler_type.IsIntegerOrEnumerationType(is_signed) ||
438 compiler_type.IsPointerType()) {
439 const RegisterInfo *reg_info = reg_ctx->GetRegisterInfoByName("r3", 0);
440
441 DataExtractor data;
442 Status data_error;
443 size_t num_bytes = new_value_sp->GetData(data, data_error);
444 if (data_error.Fail()) {
445 error.SetErrorStringWithFormat(
446 "Couldn't convert return value to raw data: %s",
447 data_error.AsCString());
448 return error;
449 }
450 lldb::offset_t offset = 0;
451 if (num_bytes <= 8) {
452 uint64_t raw_value = data.GetMaxU64(&offset, num_bytes);
453
454 if (reg_ctx->WriteRegisterFromUnsigned(reg_info, raw_value))
455 set_it_simple = true;
456 } else {
457 error.SetErrorString("We don't support returning longer than 64 bit "
458 "integer values at present.");
459 }
460 } else if (compiler_type.IsFloatingPointType(count, is_complex)) {
461 if (is_complex)
462 error.SetErrorString(
463 "We don't support returning complex values at present");
464 else {
465 std::optional<uint64_t> bit_width =
466 compiler_type.GetBitSize(frame_sp.get());
467 if (!bit_width) {
468 error.SetErrorString("can't get type size");
469 return error;
470 }
471 if (*bit_width <= 64) {
472 DataExtractor data;
473 Status data_error;
474 size_t num_bytes = new_value_sp->GetData(data, data_error);
475 if (data_error.Fail()) {
476 error.SetErrorStringWithFormat(
477 "Couldn't convert return value to raw data: %s",
478 data_error.AsCString());
479 return error;
480 }
481
482 unsigned char buffer[16];
483 ByteOrder byte_order = data.GetByteOrder();
484
485 data.CopyByteOrderedData(0, num_bytes, buffer, 16, byte_order);
486 set_it_simple = true;
487 } else {
488 // FIXME - don't know how to do 80 bit long doubles yet.
489 error.SetErrorString(
490 "We don't support returning float values > 64 bits at present");
491 }
492 }
493 }
494
495 if (!set_it_simple) {
496 // Okay we've got a structure or something that doesn't fit in a simple
497 // register. We should figure out where it really goes, but we don't
498 // support this yet.
499 error.SetErrorString("We only support setting simple integer and float "
500 "return types at present.");
501 }
502
503 return error;
504}
505
507 Thread &thread, CompilerType &return_compiler_type) const {
508 ValueObjectSP return_valobj_sp;
509 Value value;
510
511 if (!return_compiler_type)
512 return return_valobj_sp;
513
514 // value.SetContext (Value::eContextTypeClangType, return_value_type);
515 value.SetCompilerType(return_compiler_type);
516
517 RegisterContext *reg_ctx = thread.GetRegisterContext().get();
518 if (!reg_ctx)
519 return return_valobj_sp;
520
521 const uint32_t type_flags = return_compiler_type.GetTypeInfo();
522 if (type_flags & eTypeIsScalar) {
523 value.SetValueType(Value::ValueType::Scalar);
524
525 bool success = false;
526 if (type_flags & eTypeIsInteger) {
527 // Extract the register context so we can read arguments from registers
528
529 std::optional<uint64_t> byte_size =
530 return_compiler_type.GetByteSize(&thread);
531 if (!byte_size)
532 return return_valobj_sp;
533 uint64_t raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(
534 reg_ctx->GetRegisterInfoByName("r3", 0), 0);
535 const bool is_signed = (type_flags & eTypeIsSigned) != 0;
536 switch (*byte_size) {
537 default:
538 break;
539
540 case sizeof(uint64_t):
541 if (is_signed)
542 value.GetScalar() = (int64_t)(raw_value);
543 else
544 value.GetScalar() = (uint64_t)(raw_value);
545 success = true;
546 break;
547
548 case sizeof(uint32_t):
549 if (is_signed)
550 value.GetScalar() = (int32_t)(raw_value & UINT32_MAX);
551 else
552 value.GetScalar() = (uint32_t)(raw_value & UINT32_MAX);
553 success = true;
554 break;
555
556 case sizeof(uint16_t):
557 if (is_signed)
558 value.GetScalar() = (int16_t)(raw_value & UINT16_MAX);
559 else
560 value.GetScalar() = (uint16_t)(raw_value & UINT16_MAX);
561 success = true;
562 break;
563
564 case sizeof(uint8_t):
565 if (is_signed)
566 value.GetScalar() = (int8_t)(raw_value & UINT8_MAX);
567 else
568 value.GetScalar() = (uint8_t)(raw_value & UINT8_MAX);
569 success = true;
570 break;
571 }
572 } else if (type_flags & eTypeIsFloat) {
573 if (type_flags & eTypeIsComplex) {
574 // Don't handle complex yet.
575 } else {
576 std::optional<uint64_t> byte_size =
577 return_compiler_type.GetByteSize(&thread);
578 if (byte_size && *byte_size <= sizeof(long double)) {
579 const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0);
580 RegisterValue f1_value;
581 if (reg_ctx->ReadRegister(f1_info, f1_value)) {
582 DataExtractor data;
583 if (f1_value.GetData(data)) {
584 lldb::offset_t offset = 0;
585 if (*byte_size == sizeof(float)) {
586 value.GetScalar() = (float)data.GetFloat(&offset);
587 success = true;
588 } else if (*byte_size == sizeof(double)) {
589 value.GetScalar() = (double)data.GetDouble(&offset);
590 success = true;
591 }
592 }
593 }
594 }
595 }
596 }
597
598 if (success)
599 return_valobj_sp = ValueObjectConstResult::Create(
600 thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
601 } else if (type_flags & eTypeIsPointer) {
602 unsigned r3_id =
603 reg_ctx->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
604 value.GetScalar() =
605 (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id, 0);
606 value.SetValueType(Value::ValueType::Scalar);
607 return_valobj_sp = ValueObjectConstResult::Create(
608 thread.GetStackFrameAtIndex(0).get(), value, ConstString(""));
609 } else if (type_flags & eTypeIsVector) {
610 std::optional<uint64_t> byte_size =
611 return_compiler_type.GetByteSize(&thread);
612 if (byte_size && *byte_size > 0) {
613 const RegisterInfo *altivec_reg = reg_ctx->GetRegisterInfoByName("v2", 0);
614 if (altivec_reg) {
615 if (*byte_size <= altivec_reg->byte_size) {
616 ProcessSP process_sp(thread.GetProcess());
617 if (process_sp) {
618 std::unique_ptr<DataBufferHeap> heap_data_up(
619 new DataBufferHeap(*byte_size, 0));
620 const ByteOrder byte_order = process_sp->GetByteOrder();
621 RegisterValue reg_value;
622 if (reg_ctx->ReadRegister(altivec_reg, reg_value)) {
624 if (reg_value.GetAsMemoryData(
625 *altivec_reg, heap_data_up->GetBytes(),
626 heap_data_up->GetByteSize(), byte_order, error)) {
627 DataExtractor data(DataBufferSP(heap_data_up.release()),
628 byte_order,
629 process_sp->GetTarget()
630 .GetArchitecture()
631 .GetAddressByteSize());
632 return_valobj_sp = ValueObjectConstResult::Create(
633 &thread, return_compiler_type, ConstString(""), data);
634 }
635 }
636 }
637 }
638 }
639 }
640 }
641
642 return return_valobj_sp;
643}
644
646 Thread &thread, CompilerType &return_compiler_type) const {
647 ValueObjectSP return_valobj_sp;
648
649 if (!return_compiler_type)
650 return return_valobj_sp;
651
652 ExecutionContext exe_ctx(thread.shared_from_this());
653 return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
654 if (return_valobj_sp)
655 return return_valobj_sp;
656
657 RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
658 if (!reg_ctx_sp)
659 return return_valobj_sp;
660
661 std::optional<uint64_t> bit_width = return_compiler_type.GetBitSize(&thread);
662 if (!bit_width)
663 return return_valobj_sp;
664 if (return_compiler_type.IsAggregateType()) {
665 Target *target = exe_ctx.GetTargetPtr();
666 bool is_memory = true;
667 if (*bit_width <= 128) {
668 ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder();
669 WritableDataBufferSP data_sp(new DataBufferHeap(16, 0));
670 DataExtractor return_ext(data_sp, target_byte_order,
672
673 const RegisterInfo *r3_info = reg_ctx_sp->GetRegisterInfoByName("r3", 0);
674 const RegisterInfo *rdx_info =
675 reg_ctx_sp->GetRegisterInfoByName("rdx", 0);
676
677 RegisterValue r3_value, rdx_value;
678 reg_ctx_sp->ReadRegister(r3_info, r3_value);
679 reg_ctx_sp->ReadRegister(rdx_info, rdx_value);
680
681 DataExtractor r3_data, rdx_data;
682
683 r3_value.GetData(r3_data);
684 rdx_value.GetData(rdx_data);
685
686 uint32_t integer_bytes =
687 0; // Tracks how much of the r3/rds registers we've consumed so far
688
689 const uint32_t num_children = return_compiler_type.GetNumFields();
690
691 // Since we are in the small struct regime, assume we are not in memory.
692 is_memory = false;
693
694 for (uint32_t idx = 0; idx < num_children; idx++) {
695 std::string name;
696 uint64_t field_bit_offset = 0;
697 bool is_signed;
698 bool is_complex;
699 uint32_t count;
700
701 CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
702 idx, name, &field_bit_offset, nullptr, nullptr);
703 std::optional<uint64_t> field_bit_width =
704 field_compiler_type.GetBitSize(&thread);
705 if (!field_bit_width)
706 return return_valobj_sp;
707
708 // If there are any unaligned fields, this is stored in memory.
709 if (field_bit_offset % *field_bit_width != 0) {
710 is_memory = true;
711 break;
712 }
713
714 uint32_t field_byte_width = *field_bit_width / 8;
715 uint32_t field_byte_offset = field_bit_offset / 8;
716
717 DataExtractor *copy_from_extractor = nullptr;
718 uint32_t copy_from_offset = 0;
719
720 if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
721 field_compiler_type.IsPointerType()) {
722 if (integer_bytes < 8) {
723 if (integer_bytes + field_byte_width <= 8) {
724 // This is in RAX, copy from register to our result structure:
725 copy_from_extractor = &r3_data;
726 copy_from_offset = integer_bytes;
727 integer_bytes += field_byte_width;
728 } else {
729 // The next field wouldn't fit in the remaining space, so we
730 // pushed it to rdx.
731 copy_from_extractor = &rdx_data;
732 copy_from_offset = 0;
733 integer_bytes = 8 + field_byte_width;
734 }
735 } else if (integer_bytes + field_byte_width <= 16) {
736 copy_from_extractor = &rdx_data;
737 copy_from_offset = integer_bytes - 8;
738 integer_bytes += field_byte_width;
739 } else {
740 // The last field didn't fit. I can't see how that would happen
741 // w/o the overall size being greater than 16 bytes. For now,
742 // return a nullptr return value object.
743 return return_valobj_sp;
744 }
745 } else if (field_compiler_type.IsFloatingPointType(count, is_complex)) {
746 // Structs with long doubles are always passed in memory.
747 if (*field_bit_width == 128) {
748 is_memory = true;
749 break;
750 } else if (*field_bit_width == 64) {
751 copy_from_offset = 0;
752 } else if (*field_bit_width == 32) {
753 // This one is kind of complicated. If we are in an "eightbyte"
754 // with another float, we'll be stuffed into an xmm register with
755 // it. If we are in an "eightbyte" with one or more ints, then we
756 // will be stuffed into the appropriate GPR with them.
757 bool in_gpr;
758 if (field_byte_offset % 8 == 0) {
759 // We are at the beginning of one of the eightbytes, so check the
760 // next element (if any)
761 if (idx == num_children - 1)
762 in_gpr = false;
763 else {
764 uint64_t next_field_bit_offset = 0;
765 CompilerType next_field_compiler_type =
766 return_compiler_type.GetFieldAtIndex(idx + 1, name,
767 &next_field_bit_offset,
768 nullptr, nullptr);
769 if (next_field_compiler_type.IsIntegerOrEnumerationType(
770 is_signed))
771 in_gpr = true;
772 else {
773 copy_from_offset = 0;
774 in_gpr = false;
775 }
776 }
777 } else if (field_byte_offset % 4 == 0) {
778 // We are inside of an eightbyte, so see if the field before us
779 // is floating point: This could happen if somebody put padding
780 // in the structure.
781 if (idx == 0)
782 in_gpr = false;
783 else {
784 uint64_t prev_field_bit_offset = 0;
785 CompilerType prev_field_compiler_type =
786 return_compiler_type.GetFieldAtIndex(idx - 1, name,
787 &prev_field_bit_offset,
788 nullptr, nullptr);
789 if (prev_field_compiler_type.IsIntegerOrEnumerationType(
790 is_signed))
791 in_gpr = true;
792 else {
793 copy_from_offset = 4;
794 in_gpr = false;
795 }
796 }
797 } else {
798 is_memory = true;
799 continue;
800 }
801
802 // Okay, we've figured out whether we are in GPR or XMM, now figure
803 // out which one.
804 if (in_gpr) {
805 if (integer_bytes < 8) {
806 // This is in RAX, copy from register to our result structure:
807 copy_from_extractor = &r3_data;
808 copy_from_offset = integer_bytes;
809 integer_bytes += field_byte_width;
810 } else {
811 copy_from_extractor = &rdx_data;
812 copy_from_offset = integer_bytes - 8;
813 integer_bytes += field_byte_width;
814 }
815 }
816 }
817 }
818
819 // These two tests are just sanity checks. If I somehow get the type
820 // calculation wrong above it is better to just return nothing than to
821 // assert or crash.
822 if (!copy_from_extractor)
823 return return_valobj_sp;
824 if (copy_from_offset + field_byte_width >
825 copy_from_extractor->GetByteSize())
826 return return_valobj_sp;
827
828 copy_from_extractor->CopyByteOrderedData(
829 copy_from_offset, field_byte_width,
830 data_sp->GetBytes() + field_byte_offset, field_byte_width,
831 target_byte_order);
832 }
833
834 if (!is_memory) {
835 // The result is in our data buffer. Let's make a variable object out
836 // of it:
837 return_valobj_sp = ValueObjectConstResult::Create(
838 &thread, return_compiler_type, ConstString(""), return_ext);
839 }
840 }
841
842 // FIXME: This is just taking a guess, r3 may very well no longer hold the
843 // return storage location.
844 // If we are going to do this right, when we make a new frame we should
845 // check to see if it uses a memory return, and if we are at the first
846 // instruction and if so stash away the return location. Then we would
847 // only return the memory return value if we know it is valid.
848
849 if (is_memory) {
850 unsigned r3_id =
851 reg_ctx_sp->GetRegisterInfoByName("r3", 0)->kinds[eRegisterKindLLDB];
852 lldb::addr_t storage_addr =
853 (uint64_t)thread.GetRegisterContext()->ReadRegisterAsUnsigned(r3_id,
854 0);
855 return_valobj_sp = ValueObjectMemory::Create(
856 &thread, "", Address(storage_addr, nullptr), return_compiler_type);
857 }
858 }
859
860 return return_valobj_sp;
861}
862
864 unwind_plan.Clear();
866
867 uint32_t lr_reg_num = dwarf_lr;
868 uint32_t sp_reg_num = dwarf_r1;
869 uint32_t pc_reg_num = dwarf_pc;
870
872
873 // Our Call Frame Address is the stack pointer value
874 row->GetCFAValue().SetIsRegisterPlusOffset(sp_reg_num, 0);
875
876 // The previous PC is in the LR
877 row->SetRegisterLocationToRegister(pc_reg_num, lr_reg_num, true);
878 unwind_plan.AppendRow(row);
879
880 // All other registers are the same.
881
882 unwind_plan.SetSourceName("ppc at-func-entry default");
884
885 return true;
886}
887
889 unwind_plan.Clear();
891
892 uint32_t sp_reg_num = dwarf_r1;
893 uint32_t pc_reg_num = dwarf_lr;
894
896
897 const int32_t ptr_size = 4;
898 row->SetUnspecifiedRegistersAreUndefined(true);
899 row->GetCFAValue().SetIsRegisterDereferenced(sp_reg_num);
900
901 row->SetRegisterLocationToAtCFAPlusOffset(pc_reg_num, ptr_size * 1, true);
902 row->SetRegisterLocationToIsCFAPlusOffset(sp_reg_num, 0, true);
903
904 unwind_plan.AppendRow(row);
905 unwind_plan.SetSourceName("ppc default unwind plan");
910 return true;
911}
912
913bool ABISysV_ppc::RegisterIsVolatile(const RegisterInfo *reg_info) {
914 return !RegisterIsCalleeSaved(reg_info);
915}
916
917// See "Register Usage" in the
918// "System V Application Binary Interface"
919// "64-bit PowerPC ELF Application Binary Interface Supplement" current version
920// is 1.9 released 2004 at http://refspecs.linuxfoundation.org/ELF/ppc/PPC-
921// elf64abi-1.9.pdf
922
923bool ABISysV_ppc::RegisterIsCalleeSaved(const RegisterInfo *reg_info) {
924 if (reg_info) {
925 // Preserved registers are :
926 // r1,r2,r13-r31
927 // f14-f31 (not yet)
928 // v20-v31 (not yet)
929 // vrsave (not yet)
930
931 const char *name = reg_info->name;
932 if (name[0] == 'r') {
933 if ((name[1] == '1' || name[1] == '2') && name[2] == '\0')
934 return true;
935 if (name[1] == '1' && name[2] > '2')
936 return true;
937 if ((name[1] == '2' || name[1] == '3') && name[2] != '\0')
938 return true;
939 }
940
941 if (name[0] == 'f' && name[1] >= '0' && name[1] <= '9') {
942 if (name[3] == '1' && name[4] >= '4')
943 return true;
944 if ((name[3] == '2' || name[3] == '3') && name[4] != '\0')
945 return true;
946 }
947
948 if (name[0] == 's' && name[1] == 'p' && name[2] == '\0') // sp
949 return true;
950 if (name[0] == 'f' && name[1] == 'p' && name[2] == '\0') // fp
951 return true;
952 if (name[0] == 'p' && name[1] == 'c' && name[2] == '\0') // pc
953 return true;
954 }
955 return false;
956}
957
960 "System V ABI for ppc targets", CreateInstance);
961}
962
965}
static const uint32_t k_num_register_infos
static const RegisterInfo g_register_infos[]
dwarf_regnums
@ dwarf_r1
@ dwarf_pc
@ dwarf_r7
Definition: ABISysV_ppc.cpp:47
@ dwarf_f12
Definition: ABISysV_ppc.cpp:84
@ dwarf_f27
Definition: ABISysV_ppc.cpp:99
@ dwarf_f17
Definition: ABISysV_ppc.cpp:89
@ dwarf_r21
Definition: ABISysV_ppc.cpp:61
@ dwarf_f9
Definition: ABISysV_ppc.cpp:81
@ dwarf_f28
@ dwarf_r24
Definition: ABISysV_ppc.cpp:64
@ dwarf_f19
Definition: ABISysV_ppc.cpp:91
@ dwarf_r12
Definition: ABISysV_ppc.cpp:52
@ dwarf_f11
Definition: ABISysV_ppc.cpp:83
@ dwarf_cr
@ dwarf_f31
@ dwarf_r3
Definition: ABISysV_ppc.cpp:43
@ dwarf_f16
Definition: ABISysV_ppc.cpp:88
@ dwarf_r13
Definition: ABISysV_ppc.cpp:53
@ dwarf_r2
Definition: ABISysV_ppc.cpp:42
@ dwarf_f22
Definition: ABISysV_ppc.cpp:94
@ dwarf_f26
Definition: ABISysV_ppc.cpp:98
@ dwarf_r8
Definition: ABISysV_ppc.cpp:48
@ dwarf_r28
Definition: ABISysV_ppc.cpp:68
@ dwarf_r11
Definition: ABISysV_ppc.cpp:51
@ dwarf_r31
Definition: ABISysV_ppc.cpp:71
@ dwarf_f10
Definition: ABISysV_ppc.cpp:82
@ dwarf_f23
Definition: ABISysV_ppc.cpp:95
@ dwarf_f6
Definition: ABISysV_ppc.cpp:78
@ dwarf_r19
Definition: ABISysV_ppc.cpp:59
@ dwarf_r1
Definition: ABISysV_ppc.cpp:41
@ dwarf_f5
Definition: ABISysV_ppc.cpp:77
@ dwarf_r26
Definition: ABISysV_ppc.cpp:66
@ dwarf_f2
Definition: ABISysV_ppc.cpp:74
@ dwarf_f0
Definition: ABISysV_ppc.cpp:72
@ dwarf_f7
Definition: ABISysV_ppc.cpp:79
@ dwarf_r9
Definition: ABISysV_ppc.cpp:49
@ dwarf_pc
@ dwarf_lr
@ dwarf_r29
Definition: ABISysV_ppc.cpp:69
@ dwarf_r16
Definition: ABISysV_ppc.cpp:56
@ dwarf_xer
@ dwarf_r18
Definition: ABISysV_ppc.cpp:58
@ dwarf_f15
Definition: ABISysV_ppc.cpp:87
@ dwarf_f14
Definition: ABISysV_ppc.cpp:86
@ dwarf_r17
Definition: ABISysV_ppc.cpp:57
@ dwarf_f30
@ dwarf_f24
Definition: ABISysV_ppc.cpp:96
@ dwarf_f1
Definition: ABISysV_ppc.cpp:73
@ dwarf_r15
Definition: ABISysV_ppc.cpp:55
@ dwarf_r23
Definition: ABISysV_ppc.cpp:63
@ dwarf_f18
Definition: ABISysV_ppc.cpp:90
@ dwarf_f25
Definition: ABISysV_ppc.cpp:97
@ dwarf_ctr
@ dwarf_r10
Definition: ABISysV_ppc.cpp:50
@ dwarf_r14
Definition: ABISysV_ppc.cpp:54
@ dwarf_f3
Definition: ABISysV_ppc.cpp:75
@ dwarf_r6
Definition: ABISysV_ppc.cpp:46
@ dwarf_f21
Definition: ABISysV_ppc.cpp:93
@ dwarf_r25
Definition: ABISysV_ppc.cpp:65
@ dwarf_fpscr
@ dwarf_f13
Definition: ABISysV_ppc.cpp:85
@ dwarf_f29
@ dwarf_r30
Definition: ABISysV_ppc.cpp:70
@ dwarf_r0
Definition: ABISysV_ppc.cpp:40
@ dwarf_cfa
@ dwarf_r5
Definition: ABISysV_ppc.cpp:45
@ dwarf_f20
Definition: ABISysV_ppc.cpp:92
@ dwarf_r20
Definition: ABISysV_ppc.cpp:60
@ dwarf_r27
Definition: ABISysV_ppc.cpp:67
@ dwarf_r4
Definition: ABISysV_ppc.cpp:44
@ dwarf_r22
Definition: ABISysV_ppc.cpp:62
@ dwarf_f8
Definition: ABISysV_ppc.cpp:80
@ dwarf_f4
Definition: ABISysV_ppc.cpp:76
static const uint32_t k_num_register_infos
static const RegisterInfo g_register_infos[]
#define DEFINE_GPR(reg, alt, kind1, kind2, kind3, kind4)
static bool ReadIntegerArgument(Scalar &scalar, unsigned int bit_width, bool is_signed, Thread &thread, uint32_t *argument_register_ids, unsigned int &current_argument_register, addr_t &current_stack_argument)
static llvm::raw_ostream & error(Stream &strm)
#define LLDB_LOGF(log,...)
Definition: Log.h:344
#define LLDB_PLUGIN_DEFINE(PluginName)
Definition: PluginManager.h:31
static lldb::ABISP CreateInstance(lldb::ProcessSP process_sp, const lldb_private::ArchSpec &arch)
const lldb_private::RegisterInfo * GetRegisterInfoArray(uint32_t &count) override
lldb::ValueObjectSP GetReturnValueObjectImpl(lldb_private::Thread &thread, lldb_private::CompilerType &type) const override
bool CreateFunctionEntryUnwindPlan(lldb_private::UnwindPlan &unwind_plan) override
bool RegisterIsVolatile(const lldb_private::RegisterInfo *reg_info) override
static llvm::StringRef GetPluginNameStatic()
Definition: ABISysV_ppc.h:81
static void Terminate()
lldb_private::Status SetReturnValueObject(lldb::StackFrameSP &frame_sp, lldb::ValueObjectSP &new_value) override
static void Initialize()
bool CreateDefaultUnwindPlan(lldb_private::UnwindPlan &unwind_plan) override
bool RegisterIsCalleeSaved(const lldb_private::RegisterInfo *reg_info)
bool PrepareTrivialCall(lldb_private::Thread &thread, lldb::addr_t sp, lldb::addr_t functionAddress, lldb::addr_t returnAddress, llvm::ArrayRef< lldb::addr_t > args) const override
bool GetArgumentValues(lldb_private::Thread &thread, lldb_private::ValueList &values) const override
lldb::ValueObjectSP GetReturnValueObjectSimple(lldb_private::Thread &thread, lldb_private::CompilerType &ast_type) const
size_t GetRedZoneSize() const override
static std::unique_ptr< llvm::MCRegisterInfo > MakeMCRegisterInfo(const ArchSpec &arch)
Utility function to construct a MCRegisterInfo using the ArchSpec triple.
Definition: ABI.cpp:201
A section + offset based address class.
Definition: Address.h:59
An architecture specification class.
Definition: ArchSpec.h:32
uint32_t GetAddressByteSize() const
Returns the size in bytes of an address of the current architecture.
Definition: ArchSpec.cpp:694
llvm::Triple & GetTriple()
Architecture triple accessor.
Definition: ArchSpec.h:463
lldb::ByteOrder GetByteOrder() const
Returns the byte order for the architecture specification.
Definition: ArchSpec.cpp:741
Generic representation of a type in a programming language.
Definition: CompilerType.h:36
std::optional< uint64_t > GetByteSize(ExecutionContextScope *exe_scope) const
Return the size of the type in bytes.
CompilerType GetFieldAtIndex(size_t idx, std::string &name, uint64_t *bit_offset_ptr, uint32_t *bitfield_bit_size_ptr, bool *is_bitfield_ptr) const
bool IsFloatingPointType(uint32_t &count, bool &is_complex) const
uint32_t GetNumFields() const
bool IsIntegerOrEnumerationType(bool &is_signed) const
uint32_t GetTypeInfo(CompilerType *pointee_or_element_compiler_type=nullptr) const
std::optional< uint64_t > GetBitSize(ExecutionContextScope *exe_scope) const
Return the size of the type in bits.
bool IsPointerType(CompilerType *pointee_type=nullptr) const
A uniqued constant string class.
Definition: ConstString.h:39
A subclass of DataBuffer that stores a data buffer on the heap.
An data extractor class.
Definition: DataExtractor.h:48
float GetFloat(lldb::offset_t *offset_ptr) const
Extract a float from *offset_ptr.
uint64_t GetByteSize() const
Get the number of bytes contained in this object.
uint64_t GetMaxU64(lldb::offset_t *offset_ptr, size_t byte_size) const
Extract an unsigned integer of size byte_size from *offset_ptr.
lldb::ByteOrder GetByteOrder() const
Get the current byte order value.
lldb::offset_t CopyByteOrderedData(lldb::offset_t src_offset, lldb::offset_t src_len, void *dst, lldb::offset_t dst_len, lldb::ByteOrder dst_byte_order) const
Copy dst_len bytes from *offset_ptr and ensure the copied data is treated as a value that can be swap...
double GetDouble(lldb::offset_t *offset_ptr) const
"lldb/Target/ExecutionContext.h" A class that contains an execution context.
Target * GetTargetPtr() const
Returns a pointer to the target object.
void PutString(llvm::StringRef str)
Definition: Log.cpp:135
static bool RegisterPlugin(llvm::StringRef name, llvm::StringRef description, ABICreateInstance create_callback)
static bool UnregisterPlugin(ABICreateInstance create_callback)
uint64_t GetSP(uint64_t fail_value=LLDB_INVALID_ADDRESS)
const RegisterInfo * GetRegisterInfo(lldb::RegisterKind reg_kind, uint32_t reg_num)
bool WriteRegisterFromUnsigned(uint32_t reg, uint64_t uval)
const RegisterInfo * GetRegisterInfoByName(llvm::StringRef reg_name, uint32_t start_idx=0)
virtual bool ReadRegister(const RegisterInfo *reg_info, RegisterValue &reg_value)=0
bool GetData(DataExtractor &data) const
uint32_t GetAsMemoryData(const RegisterInfo &reg_info, void *dst, uint32_t dst_len, lldb::ByteOrder dst_byte_order, Status &error) const
bool SignExtend(uint32_t bit_pos)
Definition: Scalar.cpp:745
An error handling class.
Definition: Status.h:44
bool Fail() const
Test for error condition.
Definition: Status.cpp:181
const char * AsCString(const char *default_error_str="unknown error") const
Get the error string associated with the current error.
Definition: Status.cpp:130
llvm::StringRef GetString() const
size_t Printf(const char *format,...) __attribute__((format(printf
Output printf formatted output to the stream.
Definition: Stream.cpp:107
size_t PutCString(llvm::StringRef cstr)
Output a C string to the stream.
Definition: Stream.cpp:63
const ArchSpec & GetArchitecture() const
Definition: Target.h:990
virtual lldb::StackFrameSP GetStackFrameAtIndex(uint32_t idx)
Definition: Thread.h:399
virtual lldb::RegisterContextSP GetRegisterContext()=0
lldb::ProcessSP GetProcess() const
Definition: Thread.h:153
void SetUnwindPlanForSignalTrap(lldb_private::LazyBool is_for_signal_trap)
Definition: UnwindPlan.h:502
void SetRegisterKind(lldb::RegisterKind kind)
Definition: UnwindPlan.h:437
void SetReturnAddressRegister(uint32_t regnum)
Definition: UnwindPlan.h:439
void AppendRow(const RowSP &row_sp)
Definition: UnwindPlan.cpp:362
std::shared_ptr< Row > RowSP
Definition: UnwindPlan.h:395
void SetSourcedFromCompiler(lldb_private::LazyBool from_compiler)
Definition: UnwindPlan.h:478
void SetSourceName(const char *)
Definition: UnwindPlan.cpp:564
void SetUnwindPlanValidAtAllInstructions(lldb_private::LazyBool valid_at_all_insn)
Definition: UnwindPlan.h:490
Value * GetValueAtIndex(size_t idx)
Definition: Value.cpp:670
static lldb::ValueObjectSP Create(ExecutionContextScope *exe_scope, lldb::ByteOrder byte_order, uint32_t addr_byte_size, lldb::addr_t address=LLDB_INVALID_ADDRESS)
static lldb::ValueObjectSP Create(ExecutionContextScope *exe_scope, llvm::StringRef name, const Address &address, lldb::TypeSP &type_sp)
const Scalar & GetScalar() const
Definition: Value.h:112
void SetCompilerType(const CompilerType &compiler_type)
Definition: Value.cpp:252
void SetValueType(ValueType value_type)
Definition: Value.h:89
const CompilerType & GetCompilerType()
Definition: Value.cpp:223
#define LLDB_REGNUM_GENERIC_RA
Definition: lldb-defines.h:54
#define LLDB_REGNUM_GENERIC_ARG8
Definition: lldb-defines.h:70
#define LLDB_REGNUM_GENERIC_ARG6
Definition: lldb-defines.h:66
#define LLDB_REGNUM_GENERIC_SP
Definition: lldb-defines.h:52
#define LLDB_REGNUM_GENERIC_ARG4
Definition: lldb-defines.h:62
#define LLDB_REGNUM_GENERIC_ARG3
Definition: lldb-defines.h:60
#define LLDB_REGNUM_GENERIC_ARG1
Definition: lldb-defines.h:56
#define LLDB_REGNUM_GENERIC_ARG7
Definition: lldb-defines.h:68
#define LLDB_REGNUM_GENERIC_FLAGS
Definition: lldb-defines.h:55
#define UINT32_MAX
Definition: lldb-defines.h:19
#define LLDB_INVALID_REGNUM
Definition: lldb-defines.h:79
#define LLDB_REGNUM_GENERIC_ARG2
Definition: lldb-defines.h:58
#define LLDB_REGNUM_GENERIC_PC
Definition: lldb-defines.h:51
#define LLDB_REGNUM_GENERIC_ARG5
Definition: lldb-defines.h:64
A class that represents a running process on the host machine.
Definition: SBAttachInfo.h:14
Log * GetLog(Cat mask)
Retrieve the Log object for the channel associated with the given log enum.
Definition: Log.h:309
Definition: SBAddress.h:15
uint64_t offset_t
Definition: lldb-types.h:83
@ eEncodingUint
unsigned integer
ByteOrder
Byte ordering definitions.
uint64_t addr_t
Definition: lldb-types.h:79
@ eRegisterKindGeneric
insn ptr reg, stack ptr reg, etc not specific to any particular target
@ eRegisterKindLLDB
lldb's internal register numbers
@ eRegisterKindDWARF
the register numbers seen DWARF
lldb::user_id_t GetID() const
Get accessor for the user ID.
Definition: UserID.h:47