LLDB mainline
DWARFExpression.cpp
Go to the documentation of this file.
1//===-- DWARFExpression.cpp -----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10
11#include <cinttypes>
12
13#include <optional>
14#include <vector>
15
16#include "lldb/Core/Module.h"
17#include "lldb/Core/Value.h"
18#include "lldb/Core/dwarf.h"
21#include "lldb/Utility/Log.h"
23#include "lldb/Utility/Scalar.h"
26
27#include "lldb/Host/Host.h"
28#include "lldb/Utility/Endian.h"
29
31
32#include "lldb/Target/ABI.h"
34#include "lldb/Target/Process.h"
37#include "lldb/Target/StackID.h"
38#include "lldb/Target/Target.h"
39#include "lldb/Target/Thread.h"
40#include "llvm/DebugInfo/DWARF/DWARFDebugLoc.h"
41#include "llvm/DebugInfo/DWARF/DWARFExpression.h"
42
44
45using namespace lldb;
46using namespace lldb_private;
47using namespace lldb_private::dwarf;
48using namespace lldb_private::plugin::dwarf;
49
50// DWARFExpression constructor
52
53DWARFExpression::DWARFExpression(const DataExtractor &data) : m_data(data) {}
54
55// Destructor
57
58bool DWARFExpression::IsValid() const { return m_data.GetByteSize() > 0; }
59
60void DWARFExpression::UpdateValue(uint64_t const_value,
61 lldb::offset_t const_value_byte_size,
62 uint8_t addr_byte_size) {
63 if (!const_value_byte_size)
64 return;
65
67 DataBufferSP(new DataBufferHeap(&const_value, const_value_byte_size)));
69 m_data.SetAddressByteSize(addr_byte_size);
70}
71
73 ABI *abi) const {
74 auto *MCRegInfo = abi ? &abi->GetMCRegisterInfo() : nullptr;
75 auto GetRegName = [&MCRegInfo](uint64_t DwarfRegNum,
76 bool IsEH) -> llvm::StringRef {
77 if (!MCRegInfo)
78 return {};
79 if (std::optional<unsigned> LLVMRegNum =
80 MCRegInfo->getLLVMRegNum(DwarfRegNum, IsEH))
81 if (const char *RegName = MCRegInfo->getName(*LLVMRegNum))
82 return llvm::StringRef(RegName);
83 return {};
84 };
85 llvm::DIDumpOptions DumpOpts;
86 DumpOpts.GetNameForDWARFReg = GetRegName;
87 llvm::DWARFExpression(m_data.GetAsLLVM(), m_data.GetAddressByteSize())
88 .print(s->AsRawOstream(), DumpOpts, nullptr);
89}
90
92
94 m_reg_kind = reg_kind;
95}
96
97
99 lldb::RegisterKind reg_kind,
100 uint32_t reg_num, Status *error_ptr,
101 Value &value) {
102 if (reg_ctx == nullptr) {
103 if (error_ptr)
104 error_ptr->SetErrorString("No register context in frame.\n");
105 } else {
106 uint32_t native_reg =
107 reg_ctx->ConvertRegisterKindToRegisterNumber(reg_kind, reg_num);
108 if (native_reg == LLDB_INVALID_REGNUM) {
109 if (error_ptr)
110 error_ptr->SetErrorStringWithFormat("Unable to convert register "
111 "kind=%u reg_num=%u to a native "
112 "register number.\n",
113 reg_kind, reg_num);
114 } else {
115 const RegisterInfo *reg_info =
116 reg_ctx->GetRegisterInfoAtIndex(native_reg);
117 RegisterValue reg_value;
118 if (reg_ctx->ReadRegister(reg_info, reg_value)) {
119 if (reg_value.GetScalarValue(value.GetScalar())) {
122 const_cast<RegisterInfo *>(reg_info));
123 if (error_ptr)
124 error_ptr->Clear();
125 return true;
126 } else {
127 // If we get this error, then we need to implement a value buffer in
128 // the dwarf expression evaluation function...
129 if (error_ptr)
130 error_ptr->SetErrorStringWithFormat(
131 "register %s can't be converted to a scalar value",
132 reg_info->name);
133 }
134 } else {
135 if (error_ptr)
136 error_ptr->SetErrorStringWithFormat("register %s is not available",
137 reg_info->name);
138 }
139 }
140 }
141 return false;
142}
143
144/// Return the length in bytes of the set of operands for \p op. No guarantees
145/// are made on the state of \p data after this call.
147 const lldb::offset_t data_offset,
148 const uint8_t op, const DWARFUnit *dwarf_cu) {
149 lldb::offset_t offset = data_offset;
150 switch (op) {
151 case DW_OP_addr:
152 case DW_OP_call_ref: // 0x9a 1 address sized offset of DIE (DWARF3)
153 return data.GetAddressByteSize();
154
155 // Opcodes with no arguments
156 case DW_OP_deref: // 0x06
157 case DW_OP_dup: // 0x12
158 case DW_OP_drop: // 0x13
159 case DW_OP_over: // 0x14
160 case DW_OP_swap: // 0x16
161 case DW_OP_rot: // 0x17
162 case DW_OP_xderef: // 0x18
163 case DW_OP_abs: // 0x19
164 case DW_OP_and: // 0x1a
165 case DW_OP_div: // 0x1b
166 case DW_OP_minus: // 0x1c
167 case DW_OP_mod: // 0x1d
168 case DW_OP_mul: // 0x1e
169 case DW_OP_neg: // 0x1f
170 case DW_OP_not: // 0x20
171 case DW_OP_or: // 0x21
172 case DW_OP_plus: // 0x22
173 case DW_OP_shl: // 0x24
174 case DW_OP_shr: // 0x25
175 case DW_OP_shra: // 0x26
176 case DW_OP_xor: // 0x27
177 case DW_OP_eq: // 0x29
178 case DW_OP_ge: // 0x2a
179 case DW_OP_gt: // 0x2b
180 case DW_OP_le: // 0x2c
181 case DW_OP_lt: // 0x2d
182 case DW_OP_ne: // 0x2e
183 case DW_OP_lit0: // 0x30
184 case DW_OP_lit1: // 0x31
185 case DW_OP_lit2: // 0x32
186 case DW_OP_lit3: // 0x33
187 case DW_OP_lit4: // 0x34
188 case DW_OP_lit5: // 0x35
189 case DW_OP_lit6: // 0x36
190 case DW_OP_lit7: // 0x37
191 case DW_OP_lit8: // 0x38
192 case DW_OP_lit9: // 0x39
193 case DW_OP_lit10: // 0x3A
194 case DW_OP_lit11: // 0x3B
195 case DW_OP_lit12: // 0x3C
196 case DW_OP_lit13: // 0x3D
197 case DW_OP_lit14: // 0x3E
198 case DW_OP_lit15: // 0x3F
199 case DW_OP_lit16: // 0x40
200 case DW_OP_lit17: // 0x41
201 case DW_OP_lit18: // 0x42
202 case DW_OP_lit19: // 0x43
203 case DW_OP_lit20: // 0x44
204 case DW_OP_lit21: // 0x45
205 case DW_OP_lit22: // 0x46
206 case DW_OP_lit23: // 0x47
207 case DW_OP_lit24: // 0x48
208 case DW_OP_lit25: // 0x49
209 case DW_OP_lit26: // 0x4A
210 case DW_OP_lit27: // 0x4B
211 case DW_OP_lit28: // 0x4C
212 case DW_OP_lit29: // 0x4D
213 case DW_OP_lit30: // 0x4E
214 case DW_OP_lit31: // 0x4f
215 case DW_OP_reg0: // 0x50
216 case DW_OP_reg1: // 0x51
217 case DW_OP_reg2: // 0x52
218 case DW_OP_reg3: // 0x53
219 case DW_OP_reg4: // 0x54
220 case DW_OP_reg5: // 0x55
221 case DW_OP_reg6: // 0x56
222 case DW_OP_reg7: // 0x57
223 case DW_OP_reg8: // 0x58
224 case DW_OP_reg9: // 0x59
225 case DW_OP_reg10: // 0x5A
226 case DW_OP_reg11: // 0x5B
227 case DW_OP_reg12: // 0x5C
228 case DW_OP_reg13: // 0x5D
229 case DW_OP_reg14: // 0x5E
230 case DW_OP_reg15: // 0x5F
231 case DW_OP_reg16: // 0x60
232 case DW_OP_reg17: // 0x61
233 case DW_OP_reg18: // 0x62
234 case DW_OP_reg19: // 0x63
235 case DW_OP_reg20: // 0x64
236 case DW_OP_reg21: // 0x65
237 case DW_OP_reg22: // 0x66
238 case DW_OP_reg23: // 0x67
239 case DW_OP_reg24: // 0x68
240 case DW_OP_reg25: // 0x69
241 case DW_OP_reg26: // 0x6A
242 case DW_OP_reg27: // 0x6B
243 case DW_OP_reg28: // 0x6C
244 case DW_OP_reg29: // 0x6D
245 case DW_OP_reg30: // 0x6E
246 case DW_OP_reg31: // 0x6F
247 case DW_OP_nop: // 0x96
248 case DW_OP_push_object_address: // 0x97 DWARF3
249 case DW_OP_form_tls_address: // 0x9b DWARF3
250 case DW_OP_call_frame_cfa: // 0x9c DWARF3
251 case DW_OP_stack_value: // 0x9f DWARF4
252 case DW_OP_GNU_push_tls_address: // 0xe0 GNU extension
253 return 0;
254
255 // Opcodes with a single 1 byte arguments
256 case DW_OP_const1u: // 0x08 1 1-byte constant
257 case DW_OP_const1s: // 0x09 1 1-byte constant
258 case DW_OP_pick: // 0x15 1 1-byte stack index
259 case DW_OP_deref_size: // 0x94 1 1-byte size of data retrieved
260 case DW_OP_xderef_size: // 0x95 1 1-byte size of data retrieved
261 return 1;
262
263 // Opcodes with a single 2 byte arguments
264 case DW_OP_const2u: // 0x0a 1 2-byte constant
265 case DW_OP_const2s: // 0x0b 1 2-byte constant
266 case DW_OP_skip: // 0x2f 1 signed 2-byte constant
267 case DW_OP_bra: // 0x28 1 signed 2-byte constant
268 case DW_OP_call2: // 0x98 1 2-byte offset of DIE (DWARF3)
269 return 2;
270
271 // Opcodes with a single 4 byte arguments
272 case DW_OP_const4u: // 0x0c 1 4-byte constant
273 case DW_OP_const4s: // 0x0d 1 4-byte constant
274 case DW_OP_call4: // 0x99 1 4-byte offset of DIE (DWARF3)
275 return 4;
276
277 // Opcodes with a single 8 byte arguments
278 case DW_OP_const8u: // 0x0e 1 8-byte constant
279 case DW_OP_const8s: // 0x0f 1 8-byte constant
280 return 8;
281
282 // All opcodes that have a single ULEB (signed or unsigned) argument
283 case DW_OP_addrx: // 0xa1 1 ULEB128 index
284 case DW_OP_constu: // 0x10 1 ULEB128 constant
285 case DW_OP_consts: // 0x11 1 SLEB128 constant
286 case DW_OP_plus_uconst: // 0x23 1 ULEB128 addend
287 case DW_OP_breg0: // 0x70 1 ULEB128 register
288 case DW_OP_breg1: // 0x71 1 ULEB128 register
289 case DW_OP_breg2: // 0x72 1 ULEB128 register
290 case DW_OP_breg3: // 0x73 1 ULEB128 register
291 case DW_OP_breg4: // 0x74 1 ULEB128 register
292 case DW_OP_breg5: // 0x75 1 ULEB128 register
293 case DW_OP_breg6: // 0x76 1 ULEB128 register
294 case DW_OP_breg7: // 0x77 1 ULEB128 register
295 case DW_OP_breg8: // 0x78 1 ULEB128 register
296 case DW_OP_breg9: // 0x79 1 ULEB128 register
297 case DW_OP_breg10: // 0x7a 1 ULEB128 register
298 case DW_OP_breg11: // 0x7b 1 ULEB128 register
299 case DW_OP_breg12: // 0x7c 1 ULEB128 register
300 case DW_OP_breg13: // 0x7d 1 ULEB128 register
301 case DW_OP_breg14: // 0x7e 1 ULEB128 register
302 case DW_OP_breg15: // 0x7f 1 ULEB128 register
303 case DW_OP_breg16: // 0x80 1 ULEB128 register
304 case DW_OP_breg17: // 0x81 1 ULEB128 register
305 case DW_OP_breg18: // 0x82 1 ULEB128 register
306 case DW_OP_breg19: // 0x83 1 ULEB128 register
307 case DW_OP_breg20: // 0x84 1 ULEB128 register
308 case DW_OP_breg21: // 0x85 1 ULEB128 register
309 case DW_OP_breg22: // 0x86 1 ULEB128 register
310 case DW_OP_breg23: // 0x87 1 ULEB128 register
311 case DW_OP_breg24: // 0x88 1 ULEB128 register
312 case DW_OP_breg25: // 0x89 1 ULEB128 register
313 case DW_OP_breg26: // 0x8a 1 ULEB128 register
314 case DW_OP_breg27: // 0x8b 1 ULEB128 register
315 case DW_OP_breg28: // 0x8c 1 ULEB128 register
316 case DW_OP_breg29: // 0x8d 1 ULEB128 register
317 case DW_OP_breg30: // 0x8e 1 ULEB128 register
318 case DW_OP_breg31: // 0x8f 1 ULEB128 register
319 case DW_OP_regx: // 0x90 1 ULEB128 register
320 case DW_OP_fbreg: // 0x91 1 SLEB128 offset
321 case DW_OP_piece: // 0x93 1 ULEB128 size of piece addressed
322 case DW_OP_GNU_addr_index: // 0xfb 1 ULEB128 index
323 case DW_OP_GNU_const_index: // 0xfc 1 ULEB128 index
324 data.Skip_LEB128(&offset);
325 return offset - data_offset;
326
327 // All opcodes that have a 2 ULEB (signed or unsigned) arguments
328 case DW_OP_bregx: // 0x92 2 ULEB128 register followed by SLEB128 offset
329 case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
330 data.Skip_LEB128(&offset);
331 data.Skip_LEB128(&offset);
332 return offset - data_offset;
333
334 case DW_OP_implicit_value: // 0x9e ULEB128 size followed by block of that size
335 // (DWARF4)
336 {
337 uint64_t block_len = data.Skip_LEB128(&offset);
338 offset += block_len;
339 return offset - data_offset;
340 }
341
342 case DW_OP_GNU_entry_value:
343 case DW_OP_entry_value: // 0xa3 ULEB128 size + variable-length block
344 {
345 uint64_t subexpr_len = data.GetULEB128(&offset);
346 return (offset - data_offset) + subexpr_len;
347 }
348
349 default:
350 if (!dwarf_cu) {
351 return LLDB_INVALID_OFFSET;
352 }
354 data, data_offset, op);
355 }
356}
357
359 bool &error) const {
360 error = false;
361 lldb::offset_t offset = 0;
362 while (m_data.ValidOffset(offset)) {
363 const uint8_t op = m_data.GetU8(&offset);
364
365 if (op == DW_OP_addr)
366 return m_data.GetAddress(&offset);
367 if (op == DW_OP_GNU_addr_index || op == DW_OP_addrx) {
368 uint64_t index = m_data.GetULEB128(&offset);
369 if (dwarf_cu)
370 return dwarf_cu->ReadAddressFromDebugAddrSection(index);
371 error = true;
372 break;
373 }
374 const offset_t op_arg_size =
375 GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
376 if (op_arg_size == LLDB_INVALID_OFFSET) {
377 error = true;
378 break;
379 }
380 offset += op_arg_size;
381 }
383}
384
386 lldb::addr_t file_addr) {
387 lldb::offset_t offset = 0;
388 while (m_data.ValidOffset(offset)) {
389 const uint8_t op = m_data.GetU8(&offset);
390
391 if (op == DW_OP_addr) {
392 const uint32_t addr_byte_size = m_data.GetAddressByteSize();
393 // We have to make a copy of the data as we don't know if this data is
394 // from a read only memory mapped buffer, so we duplicate all of the data
395 // first, then modify it, and if all goes well, we then replace the data
396 // for this expression
397
398 // Make en encoder that contains a copy of the location expression data
399 // so we can write the address into the buffer using the correct byte
400 // order.
402 m_data.GetByteOrder(), addr_byte_size);
403
404 // Replace the address in the new buffer
405 if (encoder.PutAddress(offset, file_addr) == UINT32_MAX)
406 return false;
407
408 // All went well, so now we can reset the data using a shared pointer to
409 // the heap data so "m_data" will now correctly manage the heap data.
410 m_data.SetData(encoder.GetDataBuffer());
411 return true;
412 }
413 if (op == DW_OP_addrx) {
414 // Replace DW_OP_addrx with DW_OP_addr, since we can't modify the
415 // read-only debug_addr table.
416 // Subtract one to account for the opcode.
417 llvm::ArrayRef data_before_op = m_data.GetData().take_front(offset - 1);
418
419 // Read the addrx index to determine how many bytes it needs.
420 const lldb::offset_t old_offset = offset;
421 m_data.GetULEB128(&offset);
422 if (old_offset == offset)
423 return false;
424 llvm::ArrayRef data_after_op = m_data.GetData().drop_front(offset);
425
427 encoder.AppendData(data_before_op);
428 encoder.AppendU8(DW_OP_addr);
429 encoder.AppendAddress(file_addr);
430 encoder.AppendData(data_after_op);
431 m_data.SetData(encoder.GetDataBuffer());
432 return true;
433 }
434 const offset_t op_arg_size =
435 GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
436 if (op_arg_size == LLDB_INVALID_OFFSET)
437 break;
438 offset += op_arg_size;
439 }
440 return false;
441}
442
444 const DWARFUnit *dwarf_cu) const {
445 lldb::offset_t offset = 0;
446 while (m_data.ValidOffset(offset)) {
447 const uint8_t op = m_data.GetU8(&offset);
448
449 if (op == DW_OP_form_tls_address || op == DW_OP_GNU_push_tls_address)
450 return true;
451 const offset_t op_arg_size =
452 GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
453 if (op_arg_size == LLDB_INVALID_OFFSET)
454 return false;
455 offset += op_arg_size;
456 }
457 return false;
458}
460 const DWARFUnit *dwarf_cu,
461 std::function<lldb::addr_t(lldb::addr_t file_addr)> const
462 &link_address_callback) {
463 const uint32_t addr_byte_size = m_data.GetAddressByteSize();
464 // We have to make a copy of the data as we don't know if this data is from a
465 // read only memory mapped buffer, so we duplicate all of the data first,
466 // then modify it, and if all goes well, we then replace the data for this
467 // expression.
468 // Make en encoder that contains a copy of the location expression data so we
469 // can write the address into the buffer using the correct byte order.
471 m_data.GetByteOrder(), addr_byte_size);
472
473 lldb::offset_t offset = 0;
474 lldb::offset_t const_offset = 0;
475 lldb::addr_t const_value = 0;
476 size_t const_byte_size = 0;
477 while (m_data.ValidOffset(offset)) {
478 const uint8_t op = m_data.GetU8(&offset);
479
480 bool decoded_data = false;
481 switch (op) {
482 case DW_OP_const4u:
483 // Remember the const offset in case we later have a
484 // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
485 const_offset = offset;
486 const_value = m_data.GetU32(&offset);
487 decoded_data = true;
488 const_byte_size = 4;
489 break;
490
491 case DW_OP_const8u:
492 // Remember the const offset in case we later have a
493 // DW_OP_form_tls_address or DW_OP_GNU_push_tls_address
494 const_offset = offset;
495 const_value = m_data.GetU64(&offset);
496 decoded_data = true;
497 const_byte_size = 8;
498 break;
499
500 case DW_OP_form_tls_address:
501 case DW_OP_GNU_push_tls_address:
502 // DW_OP_form_tls_address and DW_OP_GNU_push_tls_address must be preceded
503 // by a file address on the stack. We assume that DW_OP_const4u or
504 // DW_OP_const8u is used for these values, and we check that the last
505 // opcode we got before either of these was DW_OP_const4u or
506 // DW_OP_const8u. If so, then we can link the value accordingly. For
507 // Darwin, the value in the DW_OP_const4u or DW_OP_const8u is the file
508 // address of a structure that contains a function pointer, the pthread
509 // key and the offset into the data pointed to by the pthread key. So we
510 // must link this address and also set the module of this expression to
511 // the new_module_sp so we can resolve the file address correctly
512 if (const_byte_size > 0) {
513 lldb::addr_t linked_file_addr = link_address_callback(const_value);
514 if (linked_file_addr == LLDB_INVALID_ADDRESS)
515 return false;
516 // Replace the address in the new buffer
517 if (encoder.PutUnsigned(const_offset, const_byte_size,
518 linked_file_addr) == UINT32_MAX)
519 return false;
520 }
521 break;
522
523 default:
524 const_offset = 0;
525 const_value = 0;
526 const_byte_size = 0;
527 break;
528 }
529
530 if (!decoded_data) {
531 const offset_t op_arg_size =
532 GetOpcodeDataSize(m_data, offset, op, dwarf_cu);
533 if (op_arg_size == LLDB_INVALID_OFFSET)
534 return false;
535 else
536 offset += op_arg_size;
537 }
538 }
539
540 m_data.SetData(encoder.GetDataBuffer());
541 return true;
542}
543
544static bool Evaluate_DW_OP_entry_value(std::vector<Value> &stack,
545 ExecutionContext *exe_ctx,
546 RegisterContext *reg_ctx,
547 const DataExtractor &opcodes,
548 lldb::offset_t &opcode_offset,
549 Status *error_ptr, Log *log) {
550 // DW_OP_entry_value(sub-expr) describes the location a variable had upon
551 // function entry: this variable location is presumed to be optimized out at
552 // the current PC value. The caller of the function may have call site
553 // information that describes an alternate location for the variable (e.g. a
554 // constant literal, or a spilled stack value) in the parent frame.
555 //
556 // Example (this is pseudo-code & pseudo-DWARF, but hopefully illustrative):
557 //
558 // void child(int &sink, int x) {
559 // ...
560 // /* "x" gets optimized out. */
561 //
562 // /* The location of "x" here is: DW_OP_entry_value($reg2). */
563 // ++sink;
564 // }
565 //
566 // void parent() {
567 // int sink;
568 //
569 // /*
570 // * The callsite information emitted here is:
571 // *
572 // * DW_TAG_call_site
573 // * DW_AT_return_pc ... (for "child(sink, 123);")
574 // * DW_TAG_call_site_parameter (for "sink")
575 // * DW_AT_location ($reg1)
576 // * DW_AT_call_value ($SP - 8)
577 // * DW_TAG_call_site_parameter (for "x")
578 // * DW_AT_location ($reg2)
579 // * DW_AT_call_value ($literal 123)
580 // *
581 // * DW_TAG_call_site
582 // * DW_AT_return_pc ... (for "child(sink, 456);")
583 // * ...
584 // */
585 // child(sink, 123);
586 // child(sink, 456);
587 // }
588 //
589 // When the program stops at "++sink" within `child`, the debugger determines
590 // the call site by analyzing the return address. Once the call site is found,
591 // the debugger determines which parameter is referenced by DW_OP_entry_value
592 // and evaluates the corresponding location for that parameter in `parent`.
593
594 // 1. Find the function which pushed the current frame onto the stack.
595 if ((!exe_ctx || !exe_ctx->HasTargetScope()) || !reg_ctx) {
596 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no exe/reg context");
597 return false;
598 }
599
600 StackFrame *current_frame = exe_ctx->GetFramePtr();
601 Thread *thread = exe_ctx->GetThreadPtr();
602 if (!current_frame || !thread) {
603 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current frame/thread");
604 return false;
605 }
606
607 Target &target = exe_ctx->GetTargetRef();
608 StackFrameSP parent_frame = nullptr;
609 addr_t return_pc = LLDB_INVALID_ADDRESS;
610 uint32_t current_frame_idx = current_frame->GetFrameIndex();
611
612 for (uint32_t parent_frame_idx = current_frame_idx + 1;;parent_frame_idx++) {
613 parent_frame = thread->GetStackFrameAtIndex(parent_frame_idx);
614 // If this is null, we're at the end of the stack.
615 if (!parent_frame)
616 break;
617
618 // Record the first valid return address, even if this is an inlined frame,
619 // in order to look up the associated call edge in the first non-inlined
620 // parent frame.
621 if (return_pc == LLDB_INVALID_ADDRESS) {
622 return_pc = parent_frame->GetFrameCodeAddress().GetLoadAddress(&target);
623 LLDB_LOG(log,
624 "Evaluate_DW_OP_entry_value: immediate ancestor with pc = {0:x}",
625 return_pc);
626 }
627
628 // If we've found an inlined frame, skip it (these have no call site
629 // parameters).
630 if (parent_frame->IsInlined())
631 continue;
632
633 // We've found the first non-inlined parent frame.
634 break;
635 }
636 if (!parent_frame || !parent_frame->GetRegisterContext()) {
637 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent frame with reg ctx");
638 return false;
639 }
640
641 Function *parent_func =
642 parent_frame->GetSymbolContext(eSymbolContextFunction).function;
643 if (!parent_func) {
644 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no parent function");
645 return false;
646 }
647
648 // 2. Find the call edge in the parent function responsible for creating the
649 // current activation.
650 Function *current_func =
651 current_frame->GetSymbolContext(eSymbolContextFunction).function;
652 if (!current_func) {
653 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no current function");
654 return false;
655 }
656
657 CallEdge *call_edge = nullptr;
658 ModuleList &modlist = target.GetImages();
659 ExecutionContext parent_exe_ctx = *exe_ctx;
660 parent_exe_ctx.SetFrameSP(parent_frame);
661 if (!parent_frame->IsArtificial()) {
662 // If the parent frame is not artificial, the current activation may be
663 // produced by an ambiguous tail call. In this case, refuse to proceed.
664 call_edge = parent_func->GetCallEdgeForReturnAddress(return_pc, target);
665 if (!call_edge) {
666 LLDB_LOG(log,
667 "Evaluate_DW_OP_entry_value: no call edge for retn-pc = {0:x} "
668 "in parent frame {1}",
669 return_pc, parent_func->GetName());
670 return false;
671 }
672 Function *callee_func = call_edge->GetCallee(modlist, parent_exe_ctx);
673 if (callee_func != current_func) {
674 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: ambiguous call sequence, "
675 "can't find real parent frame");
676 return false;
677 }
678 } else {
679 // The StackFrameList solver machinery has deduced that an unambiguous tail
680 // call sequence that produced the current activation. The first edge in
681 // the parent that points to the current function must be valid.
682 for (auto &edge : parent_func->GetTailCallingEdges()) {
683 if (edge->GetCallee(modlist, parent_exe_ctx) == current_func) {
684 call_edge = edge.get();
685 break;
686 }
687 }
688 }
689 if (!call_edge) {
690 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: no unambiguous edge from parent "
691 "to current function");
692 return false;
693 }
694
695 // 3. Attempt to locate the DW_OP_entry_value expression in the set of
696 // available call site parameters. If found, evaluate the corresponding
697 // parameter in the context of the parent frame.
698 const uint32_t subexpr_len = opcodes.GetULEB128(&opcode_offset);
699 const void *subexpr_data = opcodes.GetData(&opcode_offset, subexpr_len);
700 if (!subexpr_data) {
701 LLDB_LOG(log, "Evaluate_DW_OP_entry_value: subexpr could not be read");
702 return false;
703 }
704
705 const CallSiteParameter *matched_param = nullptr;
706 for (const CallSiteParameter &param : call_edge->GetCallSiteParameters()) {
707 DataExtractor param_subexpr_extractor;
708 if (!param.LocationInCallee.GetExpressionData(param_subexpr_extractor))
709 continue;
710 lldb::offset_t param_subexpr_offset = 0;
711 const void *param_subexpr_data =
712 param_subexpr_extractor.GetData(&param_subexpr_offset, subexpr_len);
713 if (!param_subexpr_data ||
714 param_subexpr_extractor.BytesLeft(param_subexpr_offset) != 0)
715 continue;
716
717 // At this point, the DW_OP_entry_value sub-expression and the callee-side
718 // expression in the call site parameter are known to have the same length.
719 // Check whether they are equal.
720 //
721 // Note that an equality check is sufficient: the contents of the
722 // DW_OP_entry_value subexpression are only used to identify the right call
723 // site parameter in the parent, and do not require any special handling.
724 if (memcmp(subexpr_data, param_subexpr_data, subexpr_len) == 0) {
725 matched_param = &param;
726 break;
727 }
728 }
729 if (!matched_param) {
730 LLDB_LOG(log,
731 "Evaluate_DW_OP_entry_value: no matching call site param found");
732 return false;
733 }
734
735 // TODO: Add support for DW_OP_push_object_address within a DW_OP_entry_value
736 // subexpresion whenever llvm does.
737 Value result;
738 const DWARFExpressionList &param_expr = matched_param->LocationInCaller;
739 if (!param_expr.Evaluate(&parent_exe_ctx,
740 parent_frame->GetRegisterContext().get(),
742 /*initial_value_ptr=*/nullptr,
743 /*object_address_ptr=*/nullptr, result, error_ptr)) {
744 LLDB_LOG(log,
745 "Evaluate_DW_OP_entry_value: call site param evaluation failed");
746 return false;
747 }
748
749 stack.push_back(result);
750 return true;
751}
752
753namespace {
754/// The location description kinds described by the DWARF v5
755/// specification. Composite locations are handled out-of-band and
756/// thus aren't part of the enum.
757enum LocationDescriptionKind {
758 Empty,
759 Memory,
760 Register,
761 Implicit
762 /* Composite*/
763};
764/// Adjust value's ValueType according to the kind of location description.
765void UpdateValueTypeFromLocationDescription(Log *log, const DWARFUnit *dwarf_cu,
766 LocationDescriptionKind kind,
767 Value *value = nullptr) {
768 // Note that this function is conflating DWARF expressions with
769 // DWARF location descriptions. Perhaps it would be better to define
770 // a wrapper for DWARFExpression::Eval() that deals with DWARF
771 // location descriptions (which consist of one or more DWARF
772 // expressions). But doing this would mean we'd also need factor the
773 // handling of DW_OP_(bit_)piece out of this function.
774 if (dwarf_cu && dwarf_cu->GetVersion() >= 4) {
775 const char *log_msg = "DWARF location description kind: %s";
776 switch (kind) {
777 case Empty:
778 LLDB_LOGF(log, log_msg, "Empty");
779 break;
780 case Memory:
781 LLDB_LOGF(log, log_msg, "Memory");
782 if (value->GetValueType() == Value::ValueType::Scalar)
783 value->SetValueType(Value::ValueType::LoadAddress);
784 break;
785 case Register:
786 LLDB_LOGF(log, log_msg, "Register");
787 value->SetValueType(Value::ValueType::Scalar);
788 break;
789 case Implicit:
790 LLDB_LOGF(log, log_msg, "Implicit");
791 if (value->GetValueType() == Value::ValueType::LoadAddress)
792 value->SetValueType(Value::ValueType::Scalar);
793 break;
794 }
795 }
796}
797} // namespace
798
799/// Helper function to move common code used to resolve a file address and turn
800/// into a load address.
801///
802/// \param exe_ctx Pointer to the execution context
803/// \param module_sp shared_ptr contains the module if we have one
804/// \param error_ptr pointer to Status object if we have one
805/// \param dw_op_type C-style string used to vary the error output
806/// \param file_addr the file address we are trying to resolve and turn into a
807/// load address
808/// \param so_addr out parameter, will be set to load address or section offset
809/// \param check_sectionoffset bool which determines if having a section offset
810/// but not a load address is considerd a success
811/// \returns std::optional containing the load address if resolving and getting
812/// the load address succeed or an empty Optinal otherwise. If
813/// check_sectionoffset is true we consider LLDB_INVALID_ADDRESS a
814/// success if so_addr.IsSectionOffset() is true.
815static std::optional<lldb::addr_t>
817 Status *error_ptr, const char *dw_op_type,
818 lldb::addr_t file_addr, Address &so_addr,
819 bool check_sectionoffset = false) {
820 if (!module_sp) {
821 if (error_ptr)
822 error_ptr->SetErrorStringWithFormat(
823 "need module to resolve file address for %s", dw_op_type);
824 return {};
825 }
826
827 if (!module_sp->ResolveFileAddress(file_addr, so_addr)) {
828 if (error_ptr)
829 error_ptr->SetErrorString("failed to resolve file address in module");
830 return {};
831 }
832
833 addr_t load_addr = so_addr.GetLoadAddress(exe_ctx->GetTargetPtr());
834
835 if (load_addr == LLDB_INVALID_ADDRESS &&
836 (check_sectionoffset && !so_addr.IsSectionOffset())) {
837 if (error_ptr)
838 error_ptr->SetErrorString("failed to resolve load address");
839 return {};
840 }
841
842 return load_addr;
843}
844
845/// Helper function to move common code used to load sized data from a uint8_t
846/// buffer.
847///
848/// \param addr_bytes uint8_t buffer containg raw data
849/// \param size_addr_bytes how large is the underlying raw data
850/// \param byte_order what is the byter order of the underlyig data
851/// \param size How much of the underlying data we want to use
852/// \return The underlying data converted into a Scalar
853static Scalar DerefSizeExtractDataHelper(uint8_t *addr_bytes,
854 size_t size_addr_bytes,
855 ByteOrder byte_order, size_t size) {
856 DataExtractor addr_data(addr_bytes, size_addr_bytes, byte_order, size);
857
858 lldb::offset_t addr_data_offset = 0;
859 if (size <= 8)
860 return addr_data.GetMaxU64(&addr_data_offset, size);
861 else
862 return addr_data.GetAddress(&addr_data_offset);
863}
864
866 ExecutionContext *exe_ctx, RegisterContext *reg_ctx,
867 lldb::ModuleSP module_sp, const DataExtractor &opcodes,
868 const DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_kind,
869 const Value *initial_value_ptr, const Value *object_address_ptr,
870 Value &result, Status *error_ptr) {
871
872 if (opcodes.GetByteSize() == 0) {
873 if (error_ptr)
874 error_ptr->SetErrorString(
875 "no location, value may have been optimized out");
876 return false;
877 }
878 std::vector<Value> stack;
879
880 Process *process = nullptr;
881 StackFrame *frame = nullptr;
882 Target *target = nullptr;
883
884 if (exe_ctx) {
885 process = exe_ctx->GetProcessPtr();
886 frame = exe_ctx->GetFramePtr();
887 target = exe_ctx->GetTargetPtr();
888 }
889 if (reg_ctx == nullptr && frame)
890 reg_ctx = frame->GetRegisterContext().get();
891
892 if (initial_value_ptr)
893 stack.push_back(*initial_value_ptr);
894
895 lldb::offset_t offset = 0;
896 Value tmp;
897 uint32_t reg_num;
898
899 /// Insertion point for evaluating multi-piece expression.
900 uint64_t op_piece_offset = 0;
901 Value pieces; // Used for DW_OP_piece
902
904 // A generic type is "an integral type that has the size of an address and an
905 // unspecified signedness". For now, just use the signedness of the operand.
906 // TODO: Implement a real typed stack, and store the genericness of the value
907 // there.
908 auto to_generic = [&](auto v) {
909 bool is_signed = std::is_signed<decltype(v)>::value;
910 return Scalar(llvm::APSInt(
911 llvm::APInt(8 * opcodes.GetAddressByteSize(), v, is_signed),
912 !is_signed));
913 };
914
915 // The default kind is a memory location. This is updated by any
916 // operation that changes this, such as DW_OP_stack_value, and reset
917 // by composition operations like DW_OP_piece.
918 LocationDescriptionKind dwarf4_location_description_kind = Memory;
919
920 while (opcodes.ValidOffset(offset)) {
921 const lldb::offset_t op_offset = offset;
922 const uint8_t op = opcodes.GetU8(&offset);
923
924 if (log && log->GetVerbose()) {
925 size_t count = stack.size();
926 LLDB_LOGF(log, "Stack before operation has %" PRIu64 " values:",
927 (uint64_t)count);
928 for (size_t i = 0; i < count; ++i) {
929 StreamString new_value;
930 new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
931 stack[i].Dump(&new_value);
932 LLDB_LOGF(log, " %s", new_value.GetData());
933 }
934 LLDB_LOGF(log, "0x%8.8" PRIx64 ": %s", op_offset,
936 }
937
938 switch (op) {
939 // The DW_OP_addr operation has a single operand that encodes a machine
940 // address and whose size is the size of an address on the target machine.
941 case DW_OP_addr:
942 stack.push_back(Scalar(opcodes.GetAddress(&offset)));
943 if (target &&
945 // wasm file sections aren't mapped into memory, therefore addresses can
946 // never point into a file section and are always LoadAddresses.
947 stack.back().SetValueType(Value::ValueType::LoadAddress);
948 } else {
949 stack.back().SetValueType(Value::ValueType::FileAddress);
950 }
951 break;
952
953 // The DW_OP_addr_sect_offset4 is used for any location expressions in
954 // shared libraries that have a location like:
955 // DW_OP_addr(0x1000)
956 // If this address resides in a shared library, then this virtual address
957 // won't make sense when it is evaluated in the context of a running
958 // process where shared libraries have been slid. To account for this, this
959 // new address type where we can store the section pointer and a 4 byte
960 // offset.
961 // case DW_OP_addr_sect_offset4:
962 // {
963 // result_type = eResultTypeFileAddress;
964 // lldb::Section *sect = (lldb::Section
965 // *)opcodes.GetMaxU64(&offset, sizeof(void *));
966 // lldb::addr_t sect_offset = opcodes.GetU32(&offset);
967 //
968 // Address so_addr (sect, sect_offset);
969 // lldb::addr_t load_addr = so_addr.GetLoadAddress();
970 // if (load_addr != LLDB_INVALID_ADDRESS)
971 // {
972 // // We successfully resolve a file address to a load
973 // // address.
974 // stack.push_back(load_addr);
975 // break;
976 // }
977 // else
978 // {
979 // // We were able
980 // if (error_ptr)
981 // error_ptr->SetErrorStringWithFormat ("Section %s in
982 // %s is not currently loaded.\n",
983 // sect->GetName().AsCString(),
984 // sect->GetModule()->GetFileSpec().GetFilename().AsCString());
985 // return false;
986 // }
987 // }
988 // break;
989
990 // OPCODE: DW_OP_deref
991 // OPERANDS: none
992 // DESCRIPTION: Pops the top stack entry and treats it as an address.
993 // The value retrieved from that address is pushed. The size of the data
994 // retrieved from the dereferenced address is the size of an address on the
995 // target machine.
996 case DW_OP_deref: {
997 if (stack.empty()) {
998 if (error_ptr)
999 error_ptr->SetErrorString("Expression stack empty for DW_OP_deref.");
1000 return false;
1001 }
1002 Value::ValueType value_type = stack.back().GetValueType();
1003 switch (value_type) {
1005 void *src = (void *)stack.back().GetScalar().ULongLong();
1006 intptr_t ptr;
1007 ::memcpy(&ptr, src, sizeof(void *));
1008 stack.back().GetScalar() = ptr;
1009 stack.back().ClearContext();
1010 } break;
1012 auto file_addr = stack.back().GetScalar().ULongLong(
1014
1015 Address so_addr;
1016 auto maybe_load_addr = ResolveLoadAddress(
1017 exe_ctx, module_sp, error_ptr, "DW_OP_deref", file_addr, so_addr);
1018
1019 if (!maybe_load_addr)
1020 return false;
1021
1022 stack.back().GetScalar() = *maybe_load_addr;
1023 // Fall through to load address promotion code below.
1024 }
1025 [[fallthrough]];
1027 // Promote Scalar to LoadAddress and fall through.
1028 stack.back().SetValueType(Value::ValueType::LoadAddress);
1029 [[fallthrough]];
1031 if (exe_ctx) {
1032 if (process) {
1033 lldb::addr_t pointer_addr =
1034 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1035 Status error;
1036 lldb::addr_t pointer_value =
1037 process->ReadPointerFromMemory(pointer_addr, error);
1038 if (pointer_value != LLDB_INVALID_ADDRESS) {
1039 if (ABISP abi_sp = process->GetABI())
1040 pointer_value = abi_sp->FixCodeAddress(pointer_value);
1041 stack.back().GetScalar() = pointer_value;
1042 stack.back().ClearContext();
1043 } else {
1044 if (error_ptr)
1045 error_ptr->SetErrorStringWithFormat(
1046 "Failed to dereference pointer from 0x%" PRIx64
1047 " for DW_OP_deref: %s\n",
1048 pointer_addr, error.AsCString());
1049 return false;
1050 }
1051 } else {
1052 if (error_ptr)
1053 error_ptr->SetErrorString("NULL process for DW_OP_deref.\n");
1054 return false;
1055 }
1056 } else {
1057 if (error_ptr)
1058 error_ptr->SetErrorString(
1059 "NULL execution context for DW_OP_deref.\n");
1060 return false;
1061 }
1062 break;
1063
1065 if (error_ptr)
1066 error_ptr->SetErrorString("Invalid value type for DW_OP_deref.\n");
1067 return false;
1068 }
1069
1070 } break;
1071
1072 // OPCODE: DW_OP_deref_size
1073 // OPERANDS: 1
1074 // 1 - uint8_t that specifies the size of the data to dereference.
1075 // DESCRIPTION: Behaves like the DW_OP_deref operation: it pops the top
1076 // stack entry and treats it as an address. The value retrieved from that
1077 // address is pushed. In the DW_OP_deref_size operation, however, the size
1078 // in bytes of the data retrieved from the dereferenced address is
1079 // specified by the single operand. This operand is a 1-byte unsigned
1080 // integral constant whose value may not be larger than the size of an
1081 // address on the target machine. The data retrieved is zero extended to
1082 // the size of an address on the target machine before being pushed on the
1083 // expression stack.
1084 case DW_OP_deref_size: {
1085 if (stack.empty()) {
1086 if (error_ptr)
1087 error_ptr->SetErrorString(
1088 "Expression stack empty for DW_OP_deref_size.");
1089 return false;
1090 }
1091 uint8_t size = opcodes.GetU8(&offset);
1092 if (size > 8) {
1093 if (error_ptr)
1094 error_ptr->SetErrorStringWithFormat(
1095 "Invalid address size for DW_OP_deref_size: %d\n",
1096 size);
1097 return false;
1098 }
1099 Value::ValueType value_type = stack.back().GetValueType();
1100 switch (value_type) {
1102 void *src = (void *)stack.back().GetScalar().ULongLong();
1103 intptr_t ptr;
1104 ::memcpy(&ptr, src, sizeof(void *));
1105 // I can't decide whether the size operand should apply to the bytes in
1106 // their
1107 // lldb-host endianness or the target endianness.. I doubt this'll ever
1108 // come up but I'll opt for assuming big endian regardless.
1109 switch (size) {
1110 case 1:
1111 ptr = ptr & 0xff;
1112 break;
1113 case 2:
1114 ptr = ptr & 0xffff;
1115 break;
1116 case 3:
1117 ptr = ptr & 0xffffff;
1118 break;
1119 case 4:
1120 ptr = ptr & 0xffffffff;
1121 break;
1122 // the casts are added to work around the case where intptr_t is a 32
1123 // bit quantity;
1124 // presumably we won't hit the 5..7 cases if (void*) is 32-bits in this
1125 // program.
1126 case 5:
1127 ptr = (intptr_t)ptr & 0xffffffffffULL;
1128 break;
1129 case 6:
1130 ptr = (intptr_t)ptr & 0xffffffffffffULL;
1131 break;
1132 case 7:
1133 ptr = (intptr_t)ptr & 0xffffffffffffffULL;
1134 break;
1135 default:
1136 break;
1137 }
1138 stack.back().GetScalar() = ptr;
1139 stack.back().ClearContext();
1140 } break;
1142 auto file_addr =
1143 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1144 Address so_addr;
1145 auto maybe_load_addr =
1146 ResolveLoadAddress(exe_ctx, module_sp, error_ptr,
1147 "DW_OP_deref_size", file_addr, so_addr,
1148 /*check_sectionoffset=*/true);
1149
1150 if (!maybe_load_addr)
1151 return false;
1152
1153 addr_t load_addr = *maybe_load_addr;
1154
1155 if (load_addr == LLDB_INVALID_ADDRESS && so_addr.IsSectionOffset()) {
1156 uint8_t addr_bytes[8];
1157 Status error;
1158
1159 if (target &&
1160 target->ReadMemory(so_addr, &addr_bytes, size, error,
1161 /*force_live_memory=*/false) == size) {
1162 ObjectFile *objfile = module_sp->GetObjectFile();
1163
1164 stack.back().GetScalar() = DerefSizeExtractDataHelper(
1165 addr_bytes, size, objfile->GetByteOrder(), size);
1166 stack.back().ClearContext();
1167 break;
1168 } else {
1169 if (error_ptr)
1170 error_ptr->SetErrorStringWithFormat(
1171 "Failed to dereference pointer for DW_OP_deref_size: "
1172 "%s\n",
1173 error.AsCString());
1174 return false;
1175 }
1176 }
1177 stack.back().GetScalar() = load_addr;
1178 // Fall through to load address promotion code below.
1179 }
1180
1181 [[fallthrough]];
1184 if (exe_ctx) {
1185 if (process) {
1186 lldb::addr_t pointer_addr =
1187 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
1188 uint8_t addr_bytes[sizeof(lldb::addr_t)];
1189 Status error;
1190 if (process->ReadMemory(pointer_addr, &addr_bytes, size, error) ==
1191 size) {
1192
1193 stack.back().GetScalar() =
1194 DerefSizeExtractDataHelper(addr_bytes, sizeof(addr_bytes),
1195 process->GetByteOrder(), size);
1196 stack.back().ClearContext();
1197 } else {
1198 if (error_ptr)
1199 error_ptr->SetErrorStringWithFormat(
1200 "Failed to dereference pointer from 0x%" PRIx64
1201 " for DW_OP_deref: %s\n",
1202 pointer_addr, error.AsCString());
1203 return false;
1204 }
1205 } else {
1206 if (error_ptr)
1207 error_ptr->SetErrorString("NULL process for DW_OP_deref_size.\n");
1208 return false;
1209 }
1210 } else {
1211 if (error_ptr)
1212 error_ptr->SetErrorString(
1213 "NULL execution context for DW_OP_deref_size.\n");
1214 return false;
1215 }
1216 break;
1217
1219 if (error_ptr)
1220 error_ptr->SetErrorString("Invalid value for DW_OP_deref_size.\n");
1221 return false;
1222 }
1223
1224 } break;
1225
1226 // OPCODE: DW_OP_xderef_size
1227 // OPERANDS: 1
1228 // 1 - uint8_t that specifies the size of the data to dereference.
1229 // DESCRIPTION: Behaves like the DW_OP_xderef operation: the entry at
1230 // the top of the stack is treated as an address. The second stack entry is
1231 // treated as an "address space identifier" for those architectures that
1232 // support multiple address spaces. The top two stack elements are popped,
1233 // a data item is retrieved through an implementation-defined address
1234 // calculation and pushed as the new stack top. In the DW_OP_xderef_size
1235 // operation, however, the size in bytes of the data retrieved from the
1236 // dereferenced address is specified by the single operand. This operand is
1237 // a 1-byte unsigned integral constant whose value may not be larger than
1238 // the size of an address on the target machine. The data retrieved is zero
1239 // extended to the size of an address on the target machine before being
1240 // pushed on the expression stack.
1241 case DW_OP_xderef_size:
1242 if (error_ptr)
1243 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef_size.");
1244 return false;
1245 // OPCODE: DW_OP_xderef
1246 // OPERANDS: none
1247 // DESCRIPTION: Provides an extended dereference mechanism. The entry at
1248 // the top of the stack is treated as an address. The second stack entry is
1249 // treated as an "address space identifier" for those architectures that
1250 // support multiple address spaces. The top two stack elements are popped,
1251 // a data item is retrieved through an implementation-defined address
1252 // calculation and pushed as the new stack top. The size of the data
1253 // retrieved from the dereferenced address is the size of an address on the
1254 // target machine.
1255 case DW_OP_xderef:
1256 if (error_ptr)
1257 error_ptr->SetErrorString("Unimplemented opcode: DW_OP_xderef.");
1258 return false;
1259
1260 // All DW_OP_constXXX opcodes have a single operand as noted below:
1261 //
1262 // Opcode Operand 1
1263 // DW_OP_const1u 1-byte unsigned integer constant
1264 // DW_OP_const1s 1-byte signed integer constant
1265 // DW_OP_const2u 2-byte unsigned integer constant
1266 // DW_OP_const2s 2-byte signed integer constant
1267 // DW_OP_const4u 4-byte unsigned integer constant
1268 // DW_OP_const4s 4-byte signed integer constant
1269 // DW_OP_const8u 8-byte unsigned integer constant
1270 // DW_OP_const8s 8-byte signed integer constant
1271 // DW_OP_constu unsigned LEB128 integer constant
1272 // DW_OP_consts signed LEB128 integer constant
1273 case DW_OP_const1u:
1274 stack.push_back(to_generic(opcodes.GetU8(&offset)));
1275 break;
1276 case DW_OP_const1s:
1277 stack.push_back(to_generic((int8_t)opcodes.GetU8(&offset)));
1278 break;
1279 case DW_OP_const2u:
1280 stack.push_back(to_generic(opcodes.GetU16(&offset)));
1281 break;
1282 case DW_OP_const2s:
1283 stack.push_back(to_generic((int16_t)opcodes.GetU16(&offset)));
1284 break;
1285 case DW_OP_const4u:
1286 stack.push_back(to_generic(opcodes.GetU32(&offset)));
1287 break;
1288 case DW_OP_const4s:
1289 stack.push_back(to_generic((int32_t)opcodes.GetU32(&offset)));
1290 break;
1291 case DW_OP_const8u:
1292 stack.push_back(to_generic(opcodes.GetU64(&offset)));
1293 break;
1294 case DW_OP_const8s:
1295 stack.push_back(to_generic((int64_t)opcodes.GetU64(&offset)));
1296 break;
1297 // These should also use to_generic, but we can't do that due to a
1298 // producer-side bug in llvm. See llvm.org/pr48087.
1299 case DW_OP_constu:
1300 stack.push_back(Scalar(opcodes.GetULEB128(&offset)));
1301 break;
1302 case DW_OP_consts:
1303 stack.push_back(Scalar(opcodes.GetSLEB128(&offset)));
1304 break;
1305
1306 // OPCODE: DW_OP_dup
1307 // OPERANDS: none
1308 // DESCRIPTION: duplicates the value at the top of the stack
1309 case DW_OP_dup:
1310 if (stack.empty()) {
1311 if (error_ptr)
1312 error_ptr->SetErrorString("Expression stack empty for DW_OP_dup.");
1313 return false;
1314 } else
1315 stack.push_back(stack.back());
1316 break;
1317
1318 // OPCODE: DW_OP_drop
1319 // OPERANDS: none
1320 // DESCRIPTION: pops the value at the top of the stack
1321 case DW_OP_drop:
1322 if (stack.empty()) {
1323 if (error_ptr)
1324 error_ptr->SetErrorString("Expression stack empty for DW_OP_drop.");
1325 return false;
1326 } else
1327 stack.pop_back();
1328 break;
1329
1330 // OPCODE: DW_OP_over
1331 // OPERANDS: none
1332 // DESCRIPTION: Duplicates the entry currently second in the stack at
1333 // the top of the stack.
1334 case DW_OP_over:
1335 if (stack.size() < 2) {
1336 if (error_ptr)
1337 error_ptr->SetErrorString(
1338 "Expression stack needs at least 2 items for DW_OP_over.");
1339 return false;
1340 } else
1341 stack.push_back(stack[stack.size() - 2]);
1342 break;
1343
1344 // OPCODE: DW_OP_pick
1345 // OPERANDS: uint8_t index into the current stack
1346 // DESCRIPTION: The stack entry with the specified index (0 through 255,
1347 // inclusive) is pushed on the stack
1348 case DW_OP_pick: {
1349 uint8_t pick_idx = opcodes.GetU8(&offset);
1350 if (pick_idx < stack.size())
1351 stack.push_back(stack[stack.size() - 1 - pick_idx]);
1352 else {
1353 if (error_ptr)
1354 error_ptr->SetErrorStringWithFormat(
1355 "Index %u out of range for DW_OP_pick.\n", pick_idx);
1356 return false;
1357 }
1358 } break;
1359
1360 // OPCODE: DW_OP_swap
1361 // OPERANDS: none
1362 // DESCRIPTION: swaps the top two stack entries. The entry at the top
1363 // of the stack becomes the second stack entry, and the second entry
1364 // becomes the top of the stack
1365 case DW_OP_swap:
1366 if (stack.size() < 2) {
1367 if (error_ptr)
1368 error_ptr->SetErrorString(
1369 "Expression stack needs at least 2 items for DW_OP_swap.");
1370 return false;
1371 } else {
1372 tmp = stack.back();
1373 stack.back() = stack[stack.size() - 2];
1374 stack[stack.size() - 2] = tmp;
1375 }
1376 break;
1377
1378 // OPCODE: DW_OP_rot
1379 // OPERANDS: none
1380 // DESCRIPTION: Rotates the first three stack entries. The entry at
1381 // the top of the stack becomes the third stack entry, the second entry
1382 // becomes the top of the stack, and the third entry becomes the second
1383 // entry.
1384 case DW_OP_rot:
1385 if (stack.size() < 3) {
1386 if (error_ptr)
1387 error_ptr->SetErrorString(
1388 "Expression stack needs at least 3 items for DW_OP_rot.");
1389 return false;
1390 } else {
1391 size_t last_idx = stack.size() - 1;
1392 Value old_top = stack[last_idx];
1393 stack[last_idx] = stack[last_idx - 1];
1394 stack[last_idx - 1] = stack[last_idx - 2];
1395 stack[last_idx - 2] = old_top;
1396 }
1397 break;
1398
1399 // OPCODE: DW_OP_abs
1400 // OPERANDS: none
1401 // DESCRIPTION: pops the top stack entry, interprets it as a signed
1402 // value and pushes its absolute value. If the absolute value can not be
1403 // represented, the result is undefined.
1404 case DW_OP_abs:
1405 if (stack.empty()) {
1406 if (error_ptr)
1407 error_ptr->SetErrorString(
1408 "Expression stack needs at least 1 item for DW_OP_abs.");
1409 return false;
1410 } else if (!stack.back().ResolveValue(exe_ctx).AbsoluteValue()) {
1411 if (error_ptr)
1412 error_ptr->SetErrorString(
1413 "Failed to take the absolute value of the first stack item.");
1414 return false;
1415 }
1416 break;
1417
1418 // OPCODE: DW_OP_and
1419 // OPERANDS: none
1420 // DESCRIPTION: pops the top two stack values, performs a bitwise and
1421 // operation on the two, and pushes the result.
1422 case DW_OP_and:
1423 if (stack.size() < 2) {
1424 if (error_ptr)
1425 error_ptr->SetErrorString(
1426 "Expression stack needs at least 2 items for DW_OP_and.");
1427 return false;
1428 } else {
1429 tmp = stack.back();
1430 stack.pop_back();
1431 stack.back().ResolveValue(exe_ctx) =
1432 stack.back().ResolveValue(exe_ctx) & tmp.ResolveValue(exe_ctx);
1433 }
1434 break;
1435
1436 // OPCODE: DW_OP_div
1437 // OPERANDS: none
1438 // DESCRIPTION: pops the top two stack values, divides the former second
1439 // entry by the former top of the stack using signed division, and pushes
1440 // the result.
1441 case DW_OP_div:
1442 if (stack.size() < 2) {
1443 if (error_ptr)
1444 error_ptr->SetErrorString(
1445 "Expression stack needs at least 2 items for DW_OP_div.");
1446 return false;
1447 } else {
1448 tmp = stack.back();
1449 if (tmp.ResolveValue(exe_ctx).IsZero()) {
1450 if (error_ptr)
1451 error_ptr->SetErrorString("Divide by zero.");
1452 return false;
1453 } else {
1454 stack.pop_back();
1455 Scalar divisor, dividend;
1456 divisor = tmp.ResolveValue(exe_ctx);
1457 dividend = stack.back().ResolveValue(exe_ctx);
1458 divisor.MakeSigned();
1459 dividend.MakeSigned();
1460 stack.back() = dividend / divisor;
1461 if (!stack.back().ResolveValue(exe_ctx).IsValid()) {
1462 if (error_ptr)
1463 error_ptr->SetErrorString("Divide failed.");
1464 return false;
1465 }
1466 }
1467 }
1468 break;
1469
1470 // OPCODE: DW_OP_minus
1471 // OPERANDS: none
1472 // DESCRIPTION: pops the top two stack values, subtracts the former top
1473 // of the stack from the former second entry, and pushes the result.
1474 case DW_OP_minus:
1475 if (stack.size() < 2) {
1476 if (error_ptr)
1477 error_ptr->SetErrorString(
1478 "Expression stack needs at least 2 items for DW_OP_minus.");
1479 return false;
1480 } else {
1481 tmp = stack.back();
1482 stack.pop_back();
1483 stack.back().ResolveValue(exe_ctx) =
1484 stack.back().ResolveValue(exe_ctx) - tmp.ResolveValue(exe_ctx);
1485 }
1486 break;
1487
1488 // OPCODE: DW_OP_mod
1489 // OPERANDS: none
1490 // DESCRIPTION: pops the top two stack values and pushes the result of
1491 // the calculation: former second stack entry modulo the former top of the
1492 // stack.
1493 case DW_OP_mod:
1494 if (stack.size() < 2) {
1495 if (error_ptr)
1496 error_ptr->SetErrorString(
1497 "Expression stack needs at least 2 items for DW_OP_mod.");
1498 return false;
1499 } else {
1500 tmp = stack.back();
1501 stack.pop_back();
1502 stack.back().ResolveValue(exe_ctx) =
1503 stack.back().ResolveValue(exe_ctx) % tmp.ResolveValue(exe_ctx);
1504 }
1505 break;
1506
1507 // OPCODE: DW_OP_mul
1508 // OPERANDS: none
1509 // DESCRIPTION: pops the top two stack entries, multiplies them
1510 // together, and pushes the result.
1511 case DW_OP_mul:
1512 if (stack.size() < 2) {
1513 if (error_ptr)
1514 error_ptr->SetErrorString(
1515 "Expression stack needs at least 2 items for DW_OP_mul.");
1516 return false;
1517 } else {
1518 tmp = stack.back();
1519 stack.pop_back();
1520 stack.back().ResolveValue(exe_ctx) =
1521 stack.back().ResolveValue(exe_ctx) * tmp.ResolveValue(exe_ctx);
1522 }
1523 break;
1524
1525 // OPCODE: DW_OP_neg
1526 // OPERANDS: none
1527 // DESCRIPTION: pops the top stack entry, and pushes its negation.
1528 case DW_OP_neg:
1529 if (stack.empty()) {
1530 if (error_ptr)
1531 error_ptr->SetErrorString(
1532 "Expression stack needs at least 1 item for DW_OP_neg.");
1533 return false;
1534 } else {
1535 if (!stack.back().ResolveValue(exe_ctx).UnaryNegate()) {
1536 if (error_ptr)
1537 error_ptr->SetErrorString("Unary negate failed.");
1538 return false;
1539 }
1540 }
1541 break;
1542
1543 // OPCODE: DW_OP_not
1544 // OPERANDS: none
1545 // DESCRIPTION: pops the top stack entry, and pushes its bitwise
1546 // complement
1547 case DW_OP_not:
1548 if (stack.empty()) {
1549 if (error_ptr)
1550 error_ptr->SetErrorString(
1551 "Expression stack needs at least 1 item for DW_OP_not.");
1552 return false;
1553 } else {
1554 if (!stack.back().ResolveValue(exe_ctx).OnesComplement()) {
1555 if (error_ptr)
1556 error_ptr->SetErrorString("Logical NOT failed.");
1557 return false;
1558 }
1559 }
1560 break;
1561
1562 // OPCODE: DW_OP_or
1563 // OPERANDS: none
1564 // DESCRIPTION: pops the top two stack entries, performs a bitwise or
1565 // operation on the two, and pushes the result.
1566 case DW_OP_or:
1567 if (stack.size() < 2) {
1568 if (error_ptr)
1569 error_ptr->SetErrorString(
1570 "Expression stack needs at least 2 items for DW_OP_or.");
1571 return false;
1572 } else {
1573 tmp = stack.back();
1574 stack.pop_back();
1575 stack.back().ResolveValue(exe_ctx) =
1576 stack.back().ResolveValue(exe_ctx) | tmp.ResolveValue(exe_ctx);
1577 }
1578 break;
1579
1580 // OPCODE: DW_OP_plus
1581 // OPERANDS: none
1582 // DESCRIPTION: pops the top two stack entries, adds them together, and
1583 // pushes the result.
1584 case DW_OP_plus:
1585 if (stack.size() < 2) {
1586 if (error_ptr)
1587 error_ptr->SetErrorString(
1588 "Expression stack needs at least 2 items for DW_OP_plus.");
1589 return false;
1590 } else {
1591 tmp = stack.back();
1592 stack.pop_back();
1593 stack.back().GetScalar() += tmp.GetScalar();
1594 }
1595 break;
1596
1597 // OPCODE: DW_OP_plus_uconst
1598 // OPERANDS: none
1599 // DESCRIPTION: pops the top stack entry, adds it to the unsigned LEB128
1600 // constant operand and pushes the result.
1601 case DW_OP_plus_uconst:
1602 if (stack.empty()) {
1603 if (error_ptr)
1604 error_ptr->SetErrorString(
1605 "Expression stack needs at least 1 item for DW_OP_plus_uconst.");
1606 return false;
1607 } else {
1608 const uint64_t uconst_value = opcodes.GetULEB128(&offset);
1609 // Implicit conversion from a UINT to a Scalar...
1610 stack.back().GetScalar() += uconst_value;
1611 if (!stack.back().GetScalar().IsValid()) {
1612 if (error_ptr)
1613 error_ptr->SetErrorString("DW_OP_plus_uconst failed.");
1614 return false;
1615 }
1616 }
1617 break;
1618
1619 // OPCODE: DW_OP_shl
1620 // OPERANDS: none
1621 // DESCRIPTION: pops the top two stack entries, shifts the former
1622 // second entry left by the number of bits specified by the former top of
1623 // the stack, and pushes the result.
1624 case DW_OP_shl:
1625 if (stack.size() < 2) {
1626 if (error_ptr)
1627 error_ptr->SetErrorString(
1628 "Expression stack needs at least 2 items for DW_OP_shl.");
1629 return false;
1630 } else {
1631 tmp = stack.back();
1632 stack.pop_back();
1633 stack.back().ResolveValue(exe_ctx) <<= tmp.ResolveValue(exe_ctx);
1634 }
1635 break;
1636
1637 // OPCODE: DW_OP_shr
1638 // OPERANDS: none
1639 // DESCRIPTION: pops the top two stack entries, shifts the former second
1640 // entry right logically (filling with zero bits) by the number of bits
1641 // specified by the former top of the stack, and pushes the result.
1642 case DW_OP_shr:
1643 if (stack.size() < 2) {
1644 if (error_ptr)
1645 error_ptr->SetErrorString(
1646 "Expression stack needs at least 2 items for DW_OP_shr.");
1647 return false;
1648 } else {
1649 tmp = stack.back();
1650 stack.pop_back();
1651 if (!stack.back().ResolveValue(exe_ctx).ShiftRightLogical(
1652 tmp.ResolveValue(exe_ctx))) {
1653 if (error_ptr)
1654 error_ptr->SetErrorString("DW_OP_shr failed.");
1655 return false;
1656 }
1657 }
1658 break;
1659
1660 // OPCODE: DW_OP_shra
1661 // OPERANDS: none
1662 // DESCRIPTION: pops the top two stack entries, shifts the former second
1663 // entry right arithmetically (divide the magnitude by 2, keep the same
1664 // sign for the result) by the number of bits specified by the former top
1665 // of the stack, and pushes the result.
1666 case DW_OP_shra:
1667 if (stack.size() < 2) {
1668 if (error_ptr)
1669 error_ptr->SetErrorString(
1670 "Expression stack needs at least 2 items for DW_OP_shra.");
1671 return false;
1672 } else {
1673 tmp = stack.back();
1674 stack.pop_back();
1675 stack.back().ResolveValue(exe_ctx) >>= tmp.ResolveValue(exe_ctx);
1676 }
1677 break;
1678
1679 // OPCODE: DW_OP_xor
1680 // OPERANDS: none
1681 // DESCRIPTION: pops the top two stack entries, performs the bitwise
1682 // exclusive-or operation on the two, and pushes the result.
1683 case DW_OP_xor:
1684 if (stack.size() < 2) {
1685 if (error_ptr)
1686 error_ptr->SetErrorString(
1687 "Expression stack needs at least 2 items for DW_OP_xor.");
1688 return false;
1689 } else {
1690 tmp = stack.back();
1691 stack.pop_back();
1692 stack.back().ResolveValue(exe_ctx) =
1693 stack.back().ResolveValue(exe_ctx) ^ tmp.ResolveValue(exe_ctx);
1694 }
1695 break;
1696
1697 // OPCODE: DW_OP_skip
1698 // OPERANDS: int16_t
1699 // DESCRIPTION: An unconditional branch. Its single operand is a 2-byte
1700 // signed integer constant. The 2-byte constant is the number of bytes of
1701 // the DWARF expression to skip forward or backward from the current
1702 // operation, beginning after the 2-byte constant.
1703 case DW_OP_skip: {
1704 int16_t skip_offset = (int16_t)opcodes.GetU16(&offset);
1705 lldb::offset_t new_offset = offset + skip_offset;
1706 // New offset can point at the end of the data, in this case we should
1707 // terminate the DWARF expression evaluation (will happen in the loop
1708 // condition).
1709 if (new_offset <= opcodes.GetByteSize())
1710 offset = new_offset;
1711 else {
1712 if (error_ptr)
1713 error_ptr->SetErrorStringWithFormatv(
1714 "Invalid opcode offset in DW_OP_skip: {0}+({1}) > {2}", offset,
1715 skip_offset, opcodes.GetByteSize());
1716 return false;
1717 }
1718 } break;
1719
1720 // OPCODE: DW_OP_bra
1721 // OPERANDS: int16_t
1722 // DESCRIPTION: A conditional branch. Its single operand is a 2-byte
1723 // signed integer constant. This operation pops the top of stack. If the
1724 // value popped is not the constant 0, the 2-byte constant operand is the
1725 // number of bytes of the DWARF expression to skip forward or backward from
1726 // the current operation, beginning after the 2-byte constant.
1727 case DW_OP_bra:
1728 if (stack.empty()) {
1729 if (error_ptr)
1730 error_ptr->SetErrorString(
1731 "Expression stack needs at least 1 item for DW_OP_bra.");
1732 return false;
1733 } else {
1734 tmp = stack.back();
1735 stack.pop_back();
1736 int16_t bra_offset = (int16_t)opcodes.GetU16(&offset);
1737 Scalar zero(0);
1738 if (tmp.ResolveValue(exe_ctx) != zero) {
1739 lldb::offset_t new_offset = offset + bra_offset;
1740 // New offset can point at the end of the data, in this case we should
1741 // terminate the DWARF expression evaluation (will happen in the loop
1742 // condition).
1743 if (new_offset <= opcodes.GetByteSize())
1744 offset = new_offset;
1745 else {
1746 if (error_ptr)
1747 error_ptr->SetErrorStringWithFormatv(
1748 "Invalid opcode offset in DW_OP_bra: {0}+({1}) > {2}", offset,
1749 bra_offset, opcodes.GetByteSize());
1750 return false;
1751 }
1752 }
1753 }
1754 break;
1755
1756 // OPCODE: DW_OP_eq
1757 // OPERANDS: none
1758 // DESCRIPTION: pops the top two stack values, compares using the
1759 // equals (==) operator.
1760 // STACK RESULT: push the constant value 1 onto the stack if the result
1761 // of the operation is true or the constant value 0 if the result of the
1762 // operation is false.
1763 case DW_OP_eq:
1764 if (stack.size() < 2) {
1765 if (error_ptr)
1766 error_ptr->SetErrorString(
1767 "Expression stack needs at least 2 items for DW_OP_eq.");
1768 return false;
1769 } else {
1770 tmp = stack.back();
1771 stack.pop_back();
1772 stack.back().ResolveValue(exe_ctx) =
1773 stack.back().ResolveValue(exe_ctx) == tmp.ResolveValue(exe_ctx);
1774 }
1775 break;
1776
1777 // OPCODE: DW_OP_ge
1778 // OPERANDS: none
1779 // DESCRIPTION: pops the top two stack values, compares using the
1780 // greater than or equal to (>=) operator.
1781 // STACK RESULT: push the constant value 1 onto the stack if the result
1782 // of the operation is true or the constant value 0 if the result of the
1783 // operation is false.
1784 case DW_OP_ge:
1785 if (stack.size() < 2) {
1786 if (error_ptr)
1787 error_ptr->SetErrorString(
1788 "Expression stack needs at least 2 items for DW_OP_ge.");
1789 return false;
1790 } else {
1791 tmp = stack.back();
1792 stack.pop_back();
1793 stack.back().ResolveValue(exe_ctx) =
1794 stack.back().ResolveValue(exe_ctx) >= tmp.ResolveValue(exe_ctx);
1795 }
1796 break;
1797
1798 // OPCODE: DW_OP_gt
1799 // OPERANDS: none
1800 // DESCRIPTION: pops the top two stack values, compares using the
1801 // greater than (>) operator.
1802 // STACK RESULT: push the constant value 1 onto the stack if the result
1803 // of the operation is true or the constant value 0 if the result of the
1804 // operation is false.
1805 case DW_OP_gt:
1806 if (stack.size() < 2) {
1807 if (error_ptr)
1808 error_ptr->SetErrorString(
1809 "Expression stack needs at least 2 items for DW_OP_gt.");
1810 return false;
1811 } else {
1812 tmp = stack.back();
1813 stack.pop_back();
1814 stack.back().ResolveValue(exe_ctx) =
1815 stack.back().ResolveValue(exe_ctx) > tmp.ResolveValue(exe_ctx);
1816 }
1817 break;
1818
1819 // OPCODE: DW_OP_le
1820 // OPERANDS: none
1821 // DESCRIPTION: pops the top two stack values, compares using the
1822 // less than or equal to (<=) operator.
1823 // STACK RESULT: push the constant value 1 onto the stack if the result
1824 // of the operation is true or the constant value 0 if the result of the
1825 // operation is false.
1826 case DW_OP_le:
1827 if (stack.size() < 2) {
1828 if (error_ptr)
1829 error_ptr->SetErrorString(
1830 "Expression stack needs at least 2 items for DW_OP_le.");
1831 return false;
1832 } else {
1833 tmp = stack.back();
1834 stack.pop_back();
1835 stack.back().ResolveValue(exe_ctx) =
1836 stack.back().ResolveValue(exe_ctx) <= tmp.ResolveValue(exe_ctx);
1837 }
1838 break;
1839
1840 // OPCODE: DW_OP_lt
1841 // OPERANDS: none
1842 // DESCRIPTION: pops the top two stack values, compares using the
1843 // less than (<) operator.
1844 // STACK RESULT: push the constant value 1 onto the stack if the result
1845 // of the operation is true or the constant value 0 if the result of the
1846 // operation is false.
1847 case DW_OP_lt:
1848 if (stack.size() < 2) {
1849 if (error_ptr)
1850 error_ptr->SetErrorString(
1851 "Expression stack needs at least 2 items for DW_OP_lt.");
1852 return false;
1853 } else {
1854 tmp = stack.back();
1855 stack.pop_back();
1856 stack.back().ResolveValue(exe_ctx) =
1857 stack.back().ResolveValue(exe_ctx) < tmp.ResolveValue(exe_ctx);
1858 }
1859 break;
1860
1861 // OPCODE: DW_OP_ne
1862 // OPERANDS: none
1863 // DESCRIPTION: pops the top two stack values, compares using the
1864 // not equal (!=) operator.
1865 // STACK RESULT: push the constant value 1 onto the stack if the result
1866 // of the operation is true or the constant value 0 if the result of the
1867 // operation is false.
1868 case DW_OP_ne:
1869 if (stack.size() < 2) {
1870 if (error_ptr)
1871 error_ptr->SetErrorString(
1872 "Expression stack needs at least 2 items for DW_OP_ne.");
1873 return false;
1874 } else {
1875 tmp = stack.back();
1876 stack.pop_back();
1877 stack.back().ResolveValue(exe_ctx) =
1878 stack.back().ResolveValue(exe_ctx) != tmp.ResolveValue(exe_ctx);
1879 }
1880 break;
1881
1882 // OPCODE: DW_OP_litn
1883 // OPERANDS: none
1884 // DESCRIPTION: encode the unsigned literal values from 0 through 31.
1885 // STACK RESULT: push the unsigned literal constant value onto the top
1886 // of the stack.
1887 case DW_OP_lit0:
1888 case DW_OP_lit1:
1889 case DW_OP_lit2:
1890 case DW_OP_lit3:
1891 case DW_OP_lit4:
1892 case DW_OP_lit5:
1893 case DW_OP_lit6:
1894 case DW_OP_lit7:
1895 case DW_OP_lit8:
1896 case DW_OP_lit9:
1897 case DW_OP_lit10:
1898 case DW_OP_lit11:
1899 case DW_OP_lit12:
1900 case DW_OP_lit13:
1901 case DW_OP_lit14:
1902 case DW_OP_lit15:
1903 case DW_OP_lit16:
1904 case DW_OP_lit17:
1905 case DW_OP_lit18:
1906 case DW_OP_lit19:
1907 case DW_OP_lit20:
1908 case DW_OP_lit21:
1909 case DW_OP_lit22:
1910 case DW_OP_lit23:
1911 case DW_OP_lit24:
1912 case DW_OP_lit25:
1913 case DW_OP_lit26:
1914 case DW_OP_lit27:
1915 case DW_OP_lit28:
1916 case DW_OP_lit29:
1917 case DW_OP_lit30:
1918 case DW_OP_lit31:
1919 stack.push_back(to_generic(op - DW_OP_lit0));
1920 break;
1921
1922 // OPCODE: DW_OP_regN
1923 // OPERANDS: none
1924 // DESCRIPTION: Push the value in register n on the top of the stack.
1925 case DW_OP_reg0:
1926 case DW_OP_reg1:
1927 case DW_OP_reg2:
1928 case DW_OP_reg3:
1929 case DW_OP_reg4:
1930 case DW_OP_reg5:
1931 case DW_OP_reg6:
1932 case DW_OP_reg7:
1933 case DW_OP_reg8:
1934 case DW_OP_reg9:
1935 case DW_OP_reg10:
1936 case DW_OP_reg11:
1937 case DW_OP_reg12:
1938 case DW_OP_reg13:
1939 case DW_OP_reg14:
1940 case DW_OP_reg15:
1941 case DW_OP_reg16:
1942 case DW_OP_reg17:
1943 case DW_OP_reg18:
1944 case DW_OP_reg19:
1945 case DW_OP_reg20:
1946 case DW_OP_reg21:
1947 case DW_OP_reg22:
1948 case DW_OP_reg23:
1949 case DW_OP_reg24:
1950 case DW_OP_reg25:
1951 case DW_OP_reg26:
1952 case DW_OP_reg27:
1953 case DW_OP_reg28:
1954 case DW_OP_reg29:
1955 case DW_OP_reg30:
1956 case DW_OP_reg31: {
1957 dwarf4_location_description_kind = Register;
1958 reg_num = op - DW_OP_reg0;
1959
1960 if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1961 stack.push_back(tmp);
1962 else
1963 return false;
1964 } break;
1965 // OPCODE: DW_OP_regx
1966 // OPERANDS:
1967 // ULEB128 literal operand that encodes the register.
1968 // DESCRIPTION: Push the value in register on the top of the stack.
1969 case DW_OP_regx: {
1970 dwarf4_location_description_kind = Register;
1971 reg_num = opcodes.GetULEB128(&offset);
1972 if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr, tmp))
1973 stack.push_back(tmp);
1974 else
1975 return false;
1976 } break;
1977
1978 // OPCODE: DW_OP_bregN
1979 // OPERANDS:
1980 // SLEB128 offset from register N
1981 // DESCRIPTION: Value is in memory at the address specified by register
1982 // N plus an offset.
1983 case DW_OP_breg0:
1984 case DW_OP_breg1:
1985 case DW_OP_breg2:
1986 case DW_OP_breg3:
1987 case DW_OP_breg4:
1988 case DW_OP_breg5:
1989 case DW_OP_breg6:
1990 case DW_OP_breg7:
1991 case DW_OP_breg8:
1992 case DW_OP_breg9:
1993 case DW_OP_breg10:
1994 case DW_OP_breg11:
1995 case DW_OP_breg12:
1996 case DW_OP_breg13:
1997 case DW_OP_breg14:
1998 case DW_OP_breg15:
1999 case DW_OP_breg16:
2000 case DW_OP_breg17:
2001 case DW_OP_breg18:
2002 case DW_OP_breg19:
2003 case DW_OP_breg20:
2004 case DW_OP_breg21:
2005 case DW_OP_breg22:
2006 case DW_OP_breg23:
2007 case DW_OP_breg24:
2008 case DW_OP_breg25:
2009 case DW_OP_breg26:
2010 case DW_OP_breg27:
2011 case DW_OP_breg28:
2012 case DW_OP_breg29:
2013 case DW_OP_breg30:
2014 case DW_OP_breg31: {
2015 reg_num = op - DW_OP_breg0;
2016
2017 if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2018 tmp)) {
2019 int64_t breg_offset = opcodes.GetSLEB128(&offset);
2020 tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2021 tmp.ClearContext();
2022 stack.push_back(tmp);
2023 stack.back().SetValueType(Value::ValueType::LoadAddress);
2024 } else
2025 return false;
2026 } break;
2027 // OPCODE: DW_OP_bregx
2028 // OPERANDS: 2
2029 // ULEB128 literal operand that encodes the register.
2030 // SLEB128 offset from register N
2031 // DESCRIPTION: Value is in memory at the address specified by register
2032 // N plus an offset.
2033 case DW_OP_bregx: {
2034 reg_num = opcodes.GetULEB128(&offset);
2035
2036 if (ReadRegisterValueAsScalar(reg_ctx, reg_kind, reg_num, error_ptr,
2037 tmp)) {
2038 int64_t breg_offset = opcodes.GetSLEB128(&offset);
2039 tmp.ResolveValue(exe_ctx) += (uint64_t)breg_offset;
2040 tmp.ClearContext();
2041 stack.push_back(tmp);
2042 stack.back().SetValueType(Value::ValueType::LoadAddress);
2043 } else
2044 return false;
2045 } break;
2046
2047 case DW_OP_fbreg:
2048 if (exe_ctx) {
2049 if (frame) {
2050 Scalar value;
2051 if (frame->GetFrameBaseValue(value, error_ptr)) {
2052 int64_t fbreg_offset = opcodes.GetSLEB128(&offset);
2053 value += fbreg_offset;
2054 stack.push_back(value);
2055 stack.back().SetValueType(Value::ValueType::LoadAddress);
2056 } else
2057 return false;
2058 } else {
2059 if (error_ptr)
2060 error_ptr->SetErrorString(
2061 "Invalid stack frame in context for DW_OP_fbreg opcode.");
2062 return false;
2063 }
2064 } else {
2065 if (error_ptr)
2066 error_ptr->SetErrorString(
2067 "NULL execution context for DW_OP_fbreg.\n");
2068 return false;
2069 }
2070
2071 break;
2072
2073 // OPCODE: DW_OP_nop
2074 // OPERANDS: none
2075 // DESCRIPTION: A place holder. It has no effect on the location stack
2076 // or any of its values.
2077 case DW_OP_nop:
2078 break;
2079
2080 // OPCODE: DW_OP_piece
2081 // OPERANDS: 1
2082 // ULEB128: byte size of the piece
2083 // DESCRIPTION: The operand describes the size in bytes of the piece of
2084 // the object referenced by the DWARF expression whose result is at the top
2085 // of the stack. If the piece is located in a register, but does not occupy
2086 // the entire register, the placement of the piece within that register is
2087 // defined by the ABI.
2088 //
2089 // Many compilers store a single variable in sets of registers, or store a
2090 // variable partially in memory and partially in registers. DW_OP_piece
2091 // provides a way of describing how large a part of a variable a particular
2092 // DWARF expression refers to.
2093 case DW_OP_piece: {
2094 LocationDescriptionKind piece_locdesc = dwarf4_location_description_kind;
2095 // Reset for the next piece.
2096 dwarf4_location_description_kind = Memory;
2097
2098 const uint64_t piece_byte_size = opcodes.GetULEB128(&offset);
2099
2100 if (piece_byte_size > 0) {
2101 Value curr_piece;
2102
2103 if (stack.empty()) {
2104 UpdateValueTypeFromLocationDescription(
2105 log, dwarf_cu, LocationDescriptionKind::Empty);
2106 // In a multi-piece expression, this means that the current piece is
2107 // not available. Fill with zeros for now by resizing the data and
2108 // appending it
2109 curr_piece.ResizeData(piece_byte_size);
2110 // Note that "0" is not a correct value for the unknown bits.
2111 // It would be better to also return a mask of valid bits together
2112 // with the expression result, so the debugger can print missing
2113 // members as "<optimized out>" or something.
2114 ::memset(curr_piece.GetBuffer().GetBytes(), 0, piece_byte_size);
2115 pieces.AppendDataToHostBuffer(curr_piece);
2116 } else {
2117 Status error;
2118 // Extract the current piece into "curr_piece"
2119 Value curr_piece_source_value(stack.back());
2120 stack.pop_back();
2121 UpdateValueTypeFromLocationDescription(log, dwarf_cu, piece_locdesc,
2122 &curr_piece_source_value);
2123
2124 const Value::ValueType curr_piece_source_value_type =
2125 curr_piece_source_value.GetValueType();
2126 switch (curr_piece_source_value_type) {
2128 return false;
2130 if (process) {
2131 if (curr_piece.ResizeData(piece_byte_size) == piece_byte_size) {
2132 lldb::addr_t load_addr =
2133 curr_piece_source_value.GetScalar().ULongLong(
2135 if (process->ReadMemory(
2136 load_addr, curr_piece.GetBuffer().GetBytes(),
2137 piece_byte_size, error) != piece_byte_size) {
2138 if (error_ptr)
2139 error_ptr->SetErrorStringWithFormat(
2140 "failed to read memory DW_OP_piece(%" PRIu64
2141 ") from 0x%" PRIx64,
2142 piece_byte_size, load_addr);
2143 return false;
2144 }
2145 } else {
2146 if (error_ptr)
2147 error_ptr->SetErrorStringWithFormat(
2148 "failed to resize the piece memory buffer for "
2149 "DW_OP_piece(%" PRIu64 ")",
2150 piece_byte_size);
2151 return false;
2152 }
2153 }
2154 break;
2155
2158 if (error_ptr) {
2159 lldb::addr_t addr = curr_piece_source_value.GetScalar().ULongLong(
2161 error_ptr->SetErrorStringWithFormat(
2162 "failed to read memory DW_OP_piece(%" PRIu64
2163 ") from %s address 0x%" PRIx64,
2164 piece_byte_size, curr_piece_source_value.GetValueType() ==
2166 ? "file"
2167 : "host",
2168 addr);
2169 }
2170 return false;
2171
2173 uint32_t bit_size = piece_byte_size * 8;
2174 uint32_t bit_offset = 0;
2175 Scalar &scalar = curr_piece_source_value.GetScalar();
2176 if (!scalar.ExtractBitfield(
2177 bit_size, bit_offset)) {
2178 if (error_ptr)
2179 error_ptr->SetErrorStringWithFormat(
2180 "unable to extract %" PRIu64 " bytes from a %" PRIu64
2181 " byte scalar value.",
2182 piece_byte_size,
2183 (uint64_t)curr_piece_source_value.GetScalar()
2184 .GetByteSize());
2185 return false;
2186 }
2187 // Create curr_piece with bit_size. By default Scalar
2188 // grows to the nearest host integer type.
2189 llvm::APInt fail_value(1, 0, false);
2190 llvm::APInt ap_int = scalar.UInt128(fail_value);
2191 assert(ap_int.getBitWidth() >= bit_size);
2192 llvm::ArrayRef<uint64_t> buf{ap_int.getRawData(),
2193 ap_int.getNumWords()};
2194 curr_piece.GetScalar() = Scalar(llvm::APInt(bit_size, buf));
2195 } break;
2196 }
2197
2198 // Check if this is the first piece?
2199 if (op_piece_offset == 0) {
2200 // This is the first piece, we should push it back onto the stack
2201 // so subsequent pieces will be able to access this piece and add
2202 // to it.
2203 if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2204 if (error_ptr)
2205 error_ptr->SetErrorString("failed to append piece data");
2206 return false;
2207 }
2208 } else {
2209 // If this is the second or later piece there should be a value on
2210 // the stack.
2211 if (pieces.GetBuffer().GetByteSize() != op_piece_offset) {
2212 if (error_ptr)
2213 error_ptr->SetErrorStringWithFormat(
2214 "DW_OP_piece for offset %" PRIu64
2215 " but top of stack is of size %" PRIu64,
2216 op_piece_offset, pieces.GetBuffer().GetByteSize());
2217 return false;
2218 }
2219
2220 if (pieces.AppendDataToHostBuffer(curr_piece) == 0) {
2221 if (error_ptr)
2222 error_ptr->SetErrorString("failed to append piece data");
2223 return false;
2224 }
2225 }
2226 }
2227 op_piece_offset += piece_byte_size;
2228 }
2229 } break;
2230
2231 case DW_OP_bit_piece: // 0x9d ULEB128 bit size, ULEB128 bit offset (DWARF3);
2232 if (stack.size() < 1) {
2233 UpdateValueTypeFromLocationDescription(log, dwarf_cu,
2234 LocationDescriptionKind::Empty);
2235 // Reset for the next piece.
2236 dwarf4_location_description_kind = Memory;
2237 if (error_ptr)
2238 error_ptr->SetErrorString(
2239 "Expression stack needs at least 1 item for DW_OP_bit_piece.");
2240 return false;
2241 } else {
2242 UpdateValueTypeFromLocationDescription(
2243 log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2244 // Reset for the next piece.
2245 dwarf4_location_description_kind = Memory;
2246 const uint64_t piece_bit_size = opcodes.GetULEB128(&offset);
2247 const uint64_t piece_bit_offset = opcodes.GetULEB128(&offset);
2248 switch (stack.back().GetValueType()) {
2250 return false;
2252 if (!stack.back().GetScalar().ExtractBitfield(piece_bit_size,
2253 piece_bit_offset)) {
2254 if (error_ptr)
2255 error_ptr->SetErrorStringWithFormat(
2256 "unable to extract %" PRIu64 " bit value with %" PRIu64
2257 " bit offset from a %" PRIu64 " bit scalar value.",
2258 piece_bit_size, piece_bit_offset,
2259 (uint64_t)(stack.back().GetScalar().GetByteSize() * 8));
2260 return false;
2261 }
2262 } break;
2263
2267 if (error_ptr) {
2268 error_ptr->SetErrorStringWithFormat(
2269 "unable to extract DW_OP_bit_piece(bit_size = %" PRIu64
2270 ", bit_offset = %" PRIu64 ") from an address value.",
2271 piece_bit_size, piece_bit_offset);
2272 }
2273 return false;
2274 }
2275 }
2276 break;
2277
2278 // OPCODE: DW_OP_implicit_value
2279 // OPERANDS: 2
2280 // ULEB128 size of the value block in bytes
2281 // uint8_t* block bytes encoding value in target's memory
2282 // representation
2283 // DESCRIPTION: Value is immediately stored in block in the debug info with
2284 // the memory representation of the target.
2285 case DW_OP_implicit_value: {
2286 dwarf4_location_description_kind = Implicit;
2287
2288 const uint32_t len = opcodes.GetULEB128(&offset);
2289 const void *data = opcodes.GetData(&offset, len);
2290
2291 if (!data) {
2292 LLDB_LOG(log, "Evaluate_DW_OP_implicit_value: could not be read data");
2293 LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2295 return false;
2296 }
2297
2298 Value result(data, len);
2299 stack.push_back(result);
2300 break;
2301 }
2302
2303 case DW_OP_implicit_pointer: {
2304 dwarf4_location_description_kind = Implicit;
2305 LLDB_ERRORF(error_ptr, "Could not evaluate %s.", DW_OP_value_to_name(op));
2306 return false;
2307 }
2308
2309 // OPCODE: DW_OP_push_object_address
2310 // OPERANDS: none
2311 // DESCRIPTION: Pushes the address of the object currently being
2312 // evaluated as part of evaluation of a user presented expression. This
2313 // object may correspond to an independent variable described by its own
2314 // DIE or it may be a component of an array, structure, or class whose
2315 // address has been dynamically determined by an earlier step during user
2316 // expression evaluation.
2317 case DW_OP_push_object_address:
2318 if (object_address_ptr)
2319 stack.push_back(*object_address_ptr);
2320 else {
2321 if (error_ptr)
2322 error_ptr->SetErrorString("DW_OP_push_object_address used without "
2323 "specifying an object address");
2324 return false;
2325 }
2326 break;
2327
2328 // OPCODE: DW_OP_call2
2329 // OPERANDS:
2330 // uint16_t compile unit relative offset of a DIE
2331 // DESCRIPTION: Performs subroutine calls during evaluation
2332 // of a DWARF expression. The operand is the 2-byte unsigned offset of a
2333 // debugging information entry in the current compilation unit.
2334 //
2335 // Operand interpretation is exactly like that for DW_FORM_ref2.
2336 //
2337 // This operation transfers control of DWARF expression evaluation to the
2338 // DW_AT_location attribute of the referenced DIE. If there is no such
2339 // attribute, then there is no effect. Execution of the DWARF expression of
2340 // a DW_AT_location attribute may add to and/or remove from values on the
2341 // stack. Execution returns to the point following the call when the end of
2342 // the attribute is reached. Values on the stack at the time of the call
2343 // may be used as parameters by the called expression and values left on
2344 // the stack by the called expression may be used as return values by prior
2345 // agreement between the calling and called expressions.
2346 case DW_OP_call2:
2347 if (error_ptr)
2348 error_ptr->SetErrorString("Unimplemented opcode DW_OP_call2.");
2349 return false;
2350 // OPCODE: DW_OP_call4
2351 // OPERANDS: 1
2352 // uint32_t compile unit relative offset of a DIE
2353 // DESCRIPTION: Performs a subroutine call during evaluation of a DWARF
2354 // expression. For DW_OP_call4, the operand is a 4-byte unsigned offset of
2355 // a debugging information entry in the current compilation unit.
2356 //
2357 // Operand interpretation DW_OP_call4 is exactly like that for
2358 // DW_FORM_ref4.
2359 //
2360 // This operation transfers control of DWARF expression evaluation to the
2361 // DW_AT_location attribute of the referenced DIE. If there is no such
2362 // attribute, then there is no effect. Execution of the DWARF expression of
2363 // a DW_AT_location attribute may add to and/or remove from values on the
2364 // stack. Execution returns to the point following the call when the end of
2365 // the attribute is reached. Values on the stack at the time of the call
2366 // may be used as parameters by the called expression and values left on
2367 // the stack by the called expression may be used as return values by prior
2368 // agreement between the calling and called expressions.
2369 case DW_OP_call4:
2370 if (error_ptr)
2371 error_ptr->SetErrorString("Unimplemented opcode DW_OP_call4.");
2372 return false;
2373
2374 // OPCODE: DW_OP_stack_value
2375 // OPERANDS: None
2376 // DESCRIPTION: Specifies that the object does not exist in memory but
2377 // rather is a constant value. The value from the top of the stack is the
2378 // value to be used. This is the actual object value and not the location.
2379 case DW_OP_stack_value:
2380 dwarf4_location_description_kind = Implicit;
2381 if (stack.empty()) {
2382 if (error_ptr)
2383 error_ptr->SetErrorString(
2384 "Expression stack needs at least 1 item for DW_OP_stack_value.");
2385 return false;
2386 }
2387 stack.back().SetValueType(Value::ValueType::Scalar);
2388 break;
2389
2390 // OPCODE: DW_OP_convert
2391 // OPERANDS: 1
2392 // A ULEB128 that is either a DIE offset of a
2393 // DW_TAG_base_type or 0 for the generic (pointer-sized) type.
2394 //
2395 // DESCRIPTION: Pop the top stack element, convert it to a
2396 // different type, and push the result.
2397 case DW_OP_convert: {
2398 if (stack.size() < 1) {
2399 if (error_ptr)
2400 error_ptr->SetErrorString(
2401 "Expression stack needs at least 1 item for DW_OP_convert.");
2402 return false;
2403 }
2404 const uint64_t die_offset = opcodes.GetULEB128(&offset);
2405 uint64_t bit_size;
2406 bool sign;
2407 if (die_offset == 0) {
2408 // The generic type has the size of an address on the target
2409 // machine and an unspecified signedness. Scalar has no
2410 // "unspecified signedness", so we use unsigned types.
2411 if (!module_sp) {
2412 if (error_ptr)
2413 error_ptr->SetErrorString("No module");
2414 return false;
2415 }
2416 sign = false;
2417 bit_size = module_sp->GetArchitecture().GetAddressByteSize() * 8;
2418 if (!bit_size) {
2419 if (error_ptr)
2420 error_ptr->SetErrorString("unspecified architecture");
2421 return false;
2422 }
2423 } else {
2424 // Retrieve the type DIE that the value is being converted to. This
2425 // offset is compile unit relative so we need to fix it up.
2426 const uint64_t abs_die_offset = die_offset + dwarf_cu->GetOffset();
2427 // FIXME: the constness has annoying ripple effects.
2428 DWARFDIE die = const_cast<DWARFUnit *>(dwarf_cu)->GetDIE(abs_die_offset);
2429 if (!die) {
2430 if (error_ptr)
2431 error_ptr->SetErrorString("Cannot resolve DW_OP_convert type DIE");
2432 return false;
2433 }
2434 uint64_t encoding =
2435 die.GetAttributeValueAsUnsigned(DW_AT_encoding, DW_ATE_hi_user);
2436 bit_size = die.GetAttributeValueAsUnsigned(DW_AT_byte_size, 0) * 8;
2437 if (!bit_size)
2438 bit_size = die.GetAttributeValueAsUnsigned(DW_AT_bit_size, 0);
2439 if (!bit_size) {
2440 if (error_ptr)
2441 error_ptr->SetErrorString("Unsupported type size in DW_OP_convert");
2442 return false;
2443 }
2444 switch (encoding) {
2445 case DW_ATE_signed:
2446 case DW_ATE_signed_char:
2447 sign = true;
2448 break;
2449 case DW_ATE_unsigned:
2450 case DW_ATE_unsigned_char:
2451 sign = false;
2452 break;
2453 default:
2454 if (error_ptr)
2455 error_ptr->SetErrorString("Unsupported encoding in DW_OP_convert");
2456 return false;
2457 }
2458 }
2459 Scalar &top = stack.back().ResolveValue(exe_ctx);
2460 top.TruncOrExtendTo(bit_size, sign);
2461 break;
2462 }
2463
2464 // OPCODE: DW_OP_call_frame_cfa
2465 // OPERANDS: None
2466 // DESCRIPTION: Specifies a DWARF expression that pushes the value of
2467 // the canonical frame address consistent with the call frame information
2468 // located in .debug_frame (or in the FDEs of the eh_frame section).
2469 case DW_OP_call_frame_cfa:
2470 if (frame) {
2471 // Note that we don't have to parse FDEs because this DWARF expression
2472 // is commonly evaluated with a valid stack frame.
2473 StackID id = frame->GetStackID();
2474 addr_t cfa = id.GetCallFrameAddress();
2475 if (cfa != LLDB_INVALID_ADDRESS) {
2476 stack.push_back(Scalar(cfa));
2477 stack.back().SetValueType(Value::ValueType::LoadAddress);
2478 } else if (error_ptr)
2479 error_ptr->SetErrorString("Stack frame does not include a canonical "
2480 "frame address for DW_OP_call_frame_cfa "
2481 "opcode.");
2482 } else {
2483 if (error_ptr)
2484 error_ptr->SetErrorString("Invalid stack frame in context for "
2485 "DW_OP_call_frame_cfa opcode.");
2486 return false;
2487 }
2488 break;
2489
2490 // OPCODE: DW_OP_form_tls_address (or the old pre-DWARFv3 vendor extension
2491 // opcode, DW_OP_GNU_push_tls_address)
2492 // OPERANDS: none
2493 // DESCRIPTION: Pops a TLS offset from the stack, converts it to
2494 // an address in the current thread's thread-local storage block, and
2495 // pushes it on the stack.
2496 case DW_OP_form_tls_address:
2497 case DW_OP_GNU_push_tls_address: {
2498 if (stack.size() < 1) {
2499 if (error_ptr) {
2500 if (op == DW_OP_form_tls_address)
2501 error_ptr->SetErrorString(
2502 "DW_OP_form_tls_address needs an argument.");
2503 else
2504 error_ptr->SetErrorString(
2505 "DW_OP_GNU_push_tls_address needs an argument.");
2506 }
2507 return false;
2508 }
2509
2510 if (!exe_ctx || !module_sp) {
2511 if (error_ptr)
2512 error_ptr->SetErrorString("No context to evaluate TLS within.");
2513 return false;
2514 }
2515
2516 Thread *thread = exe_ctx->GetThreadPtr();
2517 if (!thread) {
2518 if (error_ptr)
2519 error_ptr->SetErrorString("No thread to evaluate TLS within.");
2520 return false;
2521 }
2522
2523 // Lookup the TLS block address for this thread and module.
2524 const addr_t tls_file_addr =
2525 stack.back().GetScalar().ULongLong(LLDB_INVALID_ADDRESS);
2526 const addr_t tls_load_addr =
2527 thread->GetThreadLocalData(module_sp, tls_file_addr);
2528
2529 if (tls_load_addr == LLDB_INVALID_ADDRESS) {
2530 if (error_ptr)
2531 error_ptr->SetErrorString(
2532 "No TLS data currently exists for this thread.");
2533 return false;
2534 }
2535
2536 stack.back().GetScalar() = tls_load_addr;
2537 stack.back().SetValueType(Value::ValueType::LoadAddress);
2538 } break;
2539
2540 // OPCODE: DW_OP_addrx (DW_OP_GNU_addr_index is the legacy name.)
2541 // OPERANDS: 1
2542 // ULEB128: index to the .debug_addr section
2543 // DESCRIPTION: Pushes an address to the stack from the .debug_addr
2544 // section with the base address specified by the DW_AT_addr_base attribute
2545 // and the 0 based index is the ULEB128 encoded index.
2546 case DW_OP_addrx:
2547 case DW_OP_GNU_addr_index: {
2548 if (!dwarf_cu) {
2549 if (error_ptr)
2550 error_ptr->SetErrorString("DW_OP_GNU_addr_index found without a "
2551 "compile unit being specified");
2552 return false;
2553 }
2554 uint64_t index = opcodes.GetULEB128(&offset);
2555 lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2556 stack.push_back(Scalar(value));
2557 if (target &&
2559 // wasm file sections aren't mapped into memory, therefore addresses can
2560 // never point into a file section and are always LoadAddresses.
2561 stack.back().SetValueType(Value::ValueType::LoadAddress);
2562 } else {
2563 stack.back().SetValueType(Value::ValueType::FileAddress);
2564 }
2565 } break;
2566
2567 // OPCODE: DW_OP_GNU_const_index
2568 // OPERANDS: 1
2569 // ULEB128: index to the .debug_addr section
2570 // DESCRIPTION: Pushes an constant with the size of a machine address to
2571 // the stack from the .debug_addr section with the base address specified
2572 // by the DW_AT_addr_base attribute and the 0 based index is the ULEB128
2573 // encoded index.
2574 case DW_OP_GNU_const_index: {
2575 if (!dwarf_cu) {
2576 if (error_ptr)
2577 error_ptr->SetErrorString("DW_OP_GNU_const_index found without a "
2578 "compile unit being specified");
2579 return false;
2580 }
2581 uint64_t index = opcodes.GetULEB128(&offset);
2582 lldb::addr_t value = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2583 stack.push_back(Scalar(value));
2584 } break;
2585
2586 case DW_OP_GNU_entry_value:
2587 case DW_OP_entry_value: {
2588 if (!Evaluate_DW_OP_entry_value(stack, exe_ctx, reg_ctx, opcodes, offset,
2589 error_ptr, log)) {
2590 LLDB_ERRORF(error_ptr, "Could not evaluate %s.",
2592 return false;
2593 }
2594 break;
2595 }
2596
2597 default:
2598 if (dwarf_cu) {
2600 op, opcodes, offset, stack)) {
2601 break;
2602 }
2603 }
2604 if (error_ptr)
2605 error_ptr->SetErrorStringWithFormatv(
2606 "Unhandled opcode {0} in DWARFExpression", LocationAtom(op));
2607 return false;
2608 }
2609 }
2610
2611 if (stack.empty()) {
2612 // Nothing on the stack, check if we created a piece value from DW_OP_piece
2613 // or DW_OP_bit_piece opcodes
2614 if (pieces.GetBuffer().GetByteSize()) {
2615 result = pieces;
2616 return true;
2617 }
2618 if (error_ptr)
2619 error_ptr->SetErrorString("Stack empty after evaluation.");
2620 return false;
2621 }
2622
2623 UpdateValueTypeFromLocationDescription(
2624 log, dwarf_cu, dwarf4_location_description_kind, &stack.back());
2625
2626 if (log && log->GetVerbose()) {
2627 size_t count = stack.size();
2628 LLDB_LOGF(log,
2629 "Stack after operation has %" PRIu64 " values:", (uint64_t)count);
2630 for (size_t i = 0; i < count; ++i) {
2631 StreamString new_value;
2632 new_value.Printf("[%" PRIu64 "]", (uint64_t)i);
2633 stack[i].Dump(&new_value);
2634 LLDB_LOGF(log, " %s", new_value.GetData());
2635 }
2636 }
2637 result = stack.back();
2638 return true; // Return true on success
2639}
2640
2642 const DWARFUnit *dwarf_cu, const DataExtractor &data,
2643 DWARFExpressionList *location_list) {
2644 location_list->Clear();
2645 std::unique_ptr<llvm::DWARFLocationTable> loctable_up =
2646 dwarf_cu->GetLocationTable(data);
2648 auto lookup_addr =
2649 [&](uint32_t index) -> std::optional<llvm::object::SectionedAddress> {
2650 addr_t address = dwarf_cu->ReadAddressFromDebugAddrSection(index);
2651 if (address == LLDB_INVALID_ADDRESS)
2652 return std::nullopt;
2653 return llvm::object::SectionedAddress{address};
2654 };
2655 auto process_list = [&](llvm::Expected<llvm::DWARFLocationExpression> loc) {
2656 if (!loc) {
2657 LLDB_LOG_ERROR(log, loc.takeError(), "{0}");
2658 return true;
2659 }
2660 auto buffer_sp =
2661 std::make_shared<DataBufferHeap>(loc->Expr.data(), loc->Expr.size());
2663 buffer_sp, data.GetByteOrder(), data.GetAddressByteSize()));
2664 location_list->AddExpression(loc->Range->LowPC, loc->Range->HighPC, expr);
2665 return true;
2666 };
2667 llvm::Error error = loctable_up->visitAbsoluteLocationList(
2668 0, llvm::object::SectionedAddress{dwarf_cu->GetBaseAddress()},
2669 lookup_addr, process_list);
2670 location_list->Sort();
2671 if (error) {
2672 LLDB_LOG_ERROR(log, std::move(error), "{0}");
2673 return false;
2674 }
2675 return true;
2676}
2677
2679 StackFrame &frame, const Instruction::Operand &operand) const {
2680 using namespace OperandMatchers;
2681
2682 RegisterContextSP reg_ctx_sp = frame.GetRegisterContext();
2683 if (!reg_ctx_sp) {
2684 return false;
2685 }
2686
2687 DataExtractor opcodes(m_data);
2688
2689 lldb::offset_t op_offset = 0;
2690 uint8_t opcode = opcodes.GetU8(&op_offset);
2691
2692 if (opcode == DW_OP_fbreg) {
2693 int64_t offset = opcodes.GetSLEB128(&op_offset);
2694
2695 DWARFExpressionList *fb_expr = frame.GetFrameBaseExpression(nullptr);
2696 if (!fb_expr) {
2697 return false;
2698 }
2699
2700 auto recurse = [&frame, fb_expr](const Instruction::Operand &child) {
2701 return fb_expr->MatchesOperand(frame, child);
2702 };
2703
2704 if (!offset &&
2705 MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2706 recurse)(operand)) {
2707 return true;
2708 }
2709
2710 return MatchUnaryOp(
2712 MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2713 MatchImmOp(offset), recurse))(operand);
2714 }
2715
2716 bool dereference = false;
2717 const RegisterInfo *reg = nullptr;
2718 int64_t offset = 0;
2719
2720 if (opcode >= DW_OP_reg0 && opcode <= DW_OP_reg31) {
2721 reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_reg0);
2722 } else if (opcode >= DW_OP_breg0 && opcode <= DW_OP_breg31) {
2723 offset = opcodes.GetSLEB128(&op_offset);
2724 reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, opcode - DW_OP_breg0);
2725 } else if (opcode == DW_OP_regx) {
2726 uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2727 reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2728 } else if (opcode == DW_OP_bregx) {
2729 uint32_t reg_num = static_cast<uint32_t>(opcodes.GetULEB128(&op_offset));
2730 offset = opcodes.GetSLEB128(&op_offset);
2731 reg = reg_ctx_sp->GetRegisterInfo(m_reg_kind, reg_num);
2732 } else {
2733 return false;
2734 }
2735
2736 if (!reg) {
2737 return false;
2738 }
2739
2740 if (dereference) {
2741 if (!offset &&
2742 MatchUnaryOp(MatchOpType(Instruction::Operand::Type::Dereference),
2743 MatchRegOp(*reg))(operand)) {
2744 return true;
2745 }
2746
2747 return MatchUnaryOp(
2749 MatchBinaryOp(MatchOpType(Instruction::Operand::Type::Sum),
2750 MatchRegOp(*reg),
2751 MatchImmOp(offset)))(operand);
2752 } else {
2753 return MatchRegOp(*reg)(operand);
2754 }
2755}
static llvm::raw_ostream & error(Stream &strm)
static offset_t GetOpcodeDataSize(const DataExtractor &data, const lldb::offset_t data_offset, const uint8_t op, const DWARFUnit *dwarf_cu)
Return the length in bytes of the set of operands for op.
static bool ReadRegisterValueAsScalar(RegisterContext *reg_ctx, lldb::RegisterKind reg_kind, uint32_t reg_num, Status *error_ptr, Value &value)
static bool Evaluate_DW_OP_entry_value(std::vector< Value > &stack, ExecutionContext *exe_ctx, RegisterContext *reg_ctx, const DataExtractor &opcodes, lldb::offset_t &opcode_offset, Status *error_ptr, Log *log)
static Scalar DerefSizeExtractDataHelper(uint8_t *addr_bytes, size_t size_addr_bytes, ByteOrder byte_order, size_t size)
Helper function to move common code used to load sized data from a uint8_t buffer.
static std::optional< lldb::addr_t > ResolveLoadAddress(ExecutionContext *exe_ctx, lldb::ModuleSP &module_sp, Status *error_ptr, const char *dw_op_type, lldb::addr_t file_addr, Address &so_addr, bool check_sectionoffset=false)
Helper function to move common code used to resolve a file address and turn into a load address.
#define LLDB_LOG(log,...)
The LLDB_LOG* macros defined below are the way to emit log messages.
Definition: Log.h:342
#define LLDB_LOGF(log,...)
Definition: Log.h:349
#define LLDB_LOG_ERROR(log, error,...)
Definition: Log.h:365
@ Empty
If the Mangled object has neither a mangled name or demangled name we can encode the object with one ...
Definition: Mangled.cpp:411
#define LLDB_ERRORF(status, fmt,...)
Definition: Status.h:205
llvm::MCRegisterInfo & GetMCRegisterInfo()
Definition: ABI.h:143
A section + offset based address class.
Definition: Address.h:62
lldb::addr_t GetLoadAddress(Target *target) const
Get the load address.
Definition: Address.cpp:313
bool IsSectionOffset() const
Check if an address is section offset.
Definition: Address.h:342
Core GetCore() const
Definition: ArchSpec.h:429
Represent a call made within a Function.
Definition: Function.h:267
virtual Function * GetCallee(ModuleList &images, ExecutionContext &exe_ctx)=0
Get the callee's definition.
llvm::ArrayRef< CallSiteParameter > GetCallSiteParameters() const
Get the call site parameters available at this call edge.
Definition: Function.h:296
"lldb/Expression/DWARFExpressionList.h" Encapsulates a range map from file address range to a single ...
bool AddExpression(lldb::addr_t base, lldb::addr_t end, DWARFExpression expr)
bool Evaluate(ExecutionContext *exe_ctx, RegisterContext *reg_ctx, lldb::addr_t func_load_addr, const Value *initial_value_ptr, const Value *object_address_ptr, Value &result, Status *error_ptr) const
bool MatchesOperand(StackFrame &frame, const Instruction::Operand &operand) const
void Sort()
Sort m_expressions.
"lldb/Expression/DWARFExpression.h" Encapsulates a DWARF location expression and interprets it.
DataExtractor m_data
A data extractor capable of reading opcode bytes.
bool LinkThreadLocalStorage(const plugin::dwarf::DWARFUnit *dwarf_cu, std::function< lldb::addr_t(lldb::addr_t file_addr)> const &link_address_callback)
void DumpLocation(Stream *s, lldb::DescriptionLevel level, ABI *abi) const
lldb::addr_t GetLocation_DW_OP_addr(const plugin::dwarf::DWARFUnit *dwarf_cu, bool &error) const
Return the address specified by the first DW_OP_{addr, addrx, GNU_addr_index} in the operation stream...
bool Update_DW_OP_addr(const plugin::dwarf::DWARFUnit *dwarf_cu, lldb::addr_t file_addr)
void UpdateValue(uint64_t const_value, lldb::offset_t const_value_byte_size, uint8_t addr_byte_size)
static bool ParseDWARFLocationList(const plugin::dwarf::DWARFUnit *dwarf_cu, const DataExtractor &data, DWARFExpressionList *loc_list)
bool ContainsThreadLocalStorage(const plugin::dwarf::DWARFUnit *dwarf_cu) const
lldb::RegisterKind m_reg_kind
One of the defines that starts with LLDB_REGKIND_.
static bool Evaluate(ExecutionContext *exe_ctx, RegisterContext *reg_ctx, lldb::ModuleSP module_sp, const DataExtractor &opcodes, const plugin::dwarf::DWARFUnit *dwarf_cu, const lldb::RegisterKind reg_set, const Value *initial_value_ptr, const Value *object_address_ptr, Value &result, Status *error_ptr)
Evaluate a DWARF location expression in a particular context.
void SetRegisterKind(lldb::RegisterKind reg_kind)
Set the call-frame-info style register kind.
bool MatchesOperand(StackFrame &frame, const Instruction::Operand &op) const
lldb::RegisterKind GetRegisterKind() const
Return the call-frame-info style register kind.
bool IsValid() const
Return true if the location expression contains data.
A subclass of DataBuffer that stores a data buffer on the heap.
lldb::offset_t GetByteSize() const override
Get the number of bytes in the data buffer.
An binary data encoding class.
Definition: DataEncoder.h:42
std::shared_ptr< lldb_private::DataBufferHeap > GetDataBuffer()
Get a shared copy of the heap based memory buffer owned by this object.
Definition: DataEncoder.h:239
uint32_t PutUnsigned(uint32_t offset, uint32_t byte_size, uint64_t value)
Encode an unsigned integer of size byte_size to offset.
Definition: DataEncoder.cpp:94
uint32_t PutAddress(uint32_t offset, lldb::addr_t addr)
Encode an address in the existing buffer at offset bytes into the buffer.
void AppendAddress(lldb::addr_t addr)
Append an address sized integer to the end of the owned data.
void AppendU8(uint8_t value)
Append a unsigned integer to the end of the owned data.
void AppendData(llvm::StringRef data)
Append a bytes to the end of the owned data.
An data extractor class.
Definition: DataExtractor.h:48
uint64_t GetULEB128(lldb::offset_t *offset_ptr) const
Extract a unsigned LEB128 value from *offset_ptr.
uint64_t GetU64(lldb::offset_t *offset_ptr) const
Extract a uint64_t value from *offset_ptr.
const void * GetData(lldb::offset_t *offset_ptr, lldb::offset_t length) const
Extract length bytes from *offset_ptr.
llvm::DataExtractor GetAsLLVM() const
uint32_t Skip_LEB128(lldb::offset_t *offset_ptr) const
Skip an LEB128 number at *offset_ptr.
void SetByteOrder(lldb::ByteOrder byte_order)
Set the byte_order value.
uint32_t GetU32(lldb::offset_t *offset_ptr) const
Extract a uint32_t value from *offset_ptr.
uint64_t GetByteSize() const
Get the number of bytes contained in this object.
uint64_t GetAddress(lldb::offset_t *offset_ptr) const
Extract an address from *offset_ptr.
uint16_t GetU16(lldb::offset_t *offset_ptr) const
Extract a uint16_t value from *offset_ptr.
const uint8_t * GetDataStart() const
Get the data start pointer.
bool ValidOffset(lldb::offset_t offset) const
Test the validity of offset.
lldb::offset_t SetData(const void *bytes, lldb::offset_t length, lldb::ByteOrder byte_order)
Set data with a buffer that is caller owned.
uint32_t GetAddressByteSize() const
Get the current address size.
uint64_t GetMaxU64(lldb::offset_t *offset_ptr, size_t byte_size) const
Extract an unsigned integer of size byte_size from *offset_ptr.
int64_t GetSLEB128(lldb::offset_t *offset_ptr) const
Extract a signed LEB128 value from *offset_ptr.
lldb::offset_t BytesLeft(lldb::offset_t offset) const
lldb::ByteOrder GetByteOrder() const
Get the current byte order value.
void SetAddressByteSize(uint32_t addr_size)
Set the address byte size.
uint8_t GetU8(lldb::offset_t *offset_ptr) const
Extract a uint8_t value from *offset_ptr.
"lldb/Target/ExecutionContext.h" A class that contains an execution context.
void SetFrameSP(const lldb::StackFrameSP &frame_sp)
Set accessor to set only the frame shared pointer.
StackFrame * GetFramePtr() const
Returns a pointer to the frame object.
Target * GetTargetPtr() const
Returns a pointer to the target object.
bool HasTargetScope() const
Returns true the ExecutionContext object contains a valid target.
Target & GetTargetRef() const
Returns a reference to the target object.
Process * GetProcessPtr() const
Returns a pointer to the process object.
RegisterContext * GetRegisterContext() const
Thread * GetThreadPtr() const
Returns a pointer to the thread object.
A class that describes a function.
Definition: Function.h:399
ConstString GetName() const
Definition: Function.cpp:692
CallEdge * GetCallEdgeForReturnAddress(lldb::addr_t return_pc, Target &target)
Get the outgoing call edge from this function which has the given return address return_pc,...
Definition: Function.cpp:355
llvm::ArrayRef< std::unique_ptr< CallEdge > > GetTailCallingEdges()
Get the outgoing tail-calling edges from this function.
Definition: Function.cpp:348
bool GetVerbose() const
Definition: Log.cpp:313
A collection class for Module objects.
Definition: ModuleList.h:103
A plug-in interface definition class for object file parsers.
Definition: ObjectFile.h:44
virtual lldb::ByteOrder GetByteOrder() const =0
Gets whether endian swapping should occur when extracting data from this object file.
A plug-in interface definition class for debugging a process.
Definition: Process.h:340
virtual size_t ReadMemory(lldb::addr_t vm_addr, void *buf, size_t size, Status &error)
Read of memory from a process.
Definition: Process.cpp:1938
lldb::ByteOrder GetByteOrder() const
Definition: Process.cpp:3399
lldb::addr_t ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error)
Definition: Process.cpp:2101
const lldb::ABISP & GetABI()
Definition: Process.cpp:1496
virtual uint32_t ConvertRegisterKindToRegisterNumber(lldb::RegisterKind kind, uint32_t num)
Convert from a given register numbering scheme to the lldb register numbering scheme.
virtual const RegisterInfo * GetRegisterInfoAtIndex(size_t reg)=0
virtual bool ReadRegister(const RegisterInfo *reg_info, RegisterValue &reg_value)=0
bool GetScalarValue(Scalar &scalar) const
size_t GetByteSize() const
Definition: Scalar.cpp:132
bool IsZero() const
Definition: Scalar.cpp:144
void TruncOrExtendTo(uint16_t bits, bool sign)
Convert to an integer with bits and the given signedness.
Definition: Scalar.cpp:174
unsigned long long ULongLong(unsigned long long fail_value=0) const
Definition: Scalar.cpp:335
bool ExtractBitfield(uint32_t bit_size, uint32_t bit_offset)
Definition: Scalar.cpp:799
llvm::APInt UInt128(const llvm::APInt &fail_value) const
Definition: Scalar.cpp:351
This base class provides an interface to stack frames.
Definition: StackFrame.h:42
DWARFExpressionList * GetFrameBaseExpression(Status *error_ptr)
Get the DWARFExpressionList corresponding to the Canonical Frame Address.
lldb::RegisterContextSP GetRegisterContext()
Get the RegisterContext for this frame, if possible.
const SymbolContext & GetSymbolContext(lldb::SymbolContextItem resolve_scope)
Provide a SymbolContext for this StackFrame's current pc value.
Definition: StackFrame.cpp:300
uint32_t GetFrameIndex() const
Query this frame to find what frame it is in this Thread's StackFrameList.
Definition: StackFrame.cpp:175
bool GetFrameBaseValue(Scalar &value, Status *error_ptr)
Return the Canonical Frame Address (DWARF term) for this frame.
lldb::addr_t GetCallFrameAddress() const
Definition: StackID.h:33
An error handling class.
Definition: Status.h:44
void SetErrorStringWithFormatv(const char *format, Args &&... args)
Definition: Status.h:169
void Clear()
Clear the object state.
Definition: Status.cpp:167
int SetErrorStringWithFormat(const char *format,...) __attribute__((format(printf
Set the current error string to a formatted error string.
Definition: Status.cpp:247
void SetErrorString(llvm::StringRef err_str)
Set the current error string to err_str.
Definition: Status.cpp:233
const char * GetData() const
Definition: StreamString.h:43
A stream class that can stream formatted output to a file.
Definition: Stream.h:28
llvm::raw_ostream & AsRawOstream()
Returns a raw_ostream that forwards the data to this Stream object.
Definition: Stream.h:401
size_t Printf(const char *format,...) __attribute__((format(printf
Output printf formatted output to the stream.
Definition: Stream.cpp:134
Function * function
The Function for a given query.
size_t ReadMemory(const Address &addr, void *dst, size_t dst_len, Status &error, bool force_live_memory=false, lldb::addr_t *load_addr_ptr=nullptr)
Definition: Target.cpp:1835
const ModuleList & GetImages() const
Get accessor for the images for this process.
Definition: Target.h:970
const ArchSpec & GetArchitecture() const
Definition: Target.h:1012
virtual lldb::StackFrameSP GetStackFrameAtIndex(uint32_t idx)
Definition: Thread.h:405
virtual lldb::addr_t GetThreadLocalData(const lldb::ModuleSP module, lldb::addr_t tls_file_addr)
Retrieves the per-module TLS block for a thread.
Definition: Thread.cpp:1654
const Scalar & GetScalar() const
Definition: Value.h:112
ValueType
Type that describes Value::m_value.
Definition: Value.h:41
@ HostAddress
A host address value (for memory in the process that < A is using liblldb).
@ FileAddress
A file address value.
@ LoadAddress
A load address value.
@ Scalar
A raw scalar value.
void ClearContext()
Definition: Value.h:91
size_t AppendDataToHostBuffer(const Value &rhs)
Definition: Value.cpp:152
ValueType GetValueType() const
Definition: Value.cpp:109
void SetContext(ContextType context_type, void *p)
Definition: Value.h:96
Scalar & ResolveValue(ExecutionContext *exe_ctx, Module *module=nullptr)
Definition: Value.cpp:577
DataBufferHeap & GetBuffer()
Definition: Value.h:120
void SetValueType(ValueType value_type)
Definition: Value.h:89
@ RegisterInfo
RegisterInfo * (can be a scalar or a vector register).
size_t ResizeData(size_t len)
Definition: Value.cpp:190
uint8_t * GetBytes()
Get a pointer to the data.
Definition: DataBuffer.h:108
uint64_t GetAttributeValueAsUnsigned(const dw_attr_t attr, uint64_t fail_value) const
std::unique_ptr< llvm::DWARFLocationTable > GetLocationTable(const DataExtractor &data) const
Return the location table for parsing the given location list data.
Definition: DWARFUnit.cpp:522
SymbolFileDWARF & GetSymbolFileDWARF() const
Definition: DWARFUnit.h:229
dw_addr_t ReadAddressFromDebugAddrSection(uint32_t index) const
Definition: DWARFUnit.cpp:612
virtual bool ParseVendorDWARFOpcode(uint8_t op, const DataExtractor &opcodes, lldb::offset_t &offset, std::vector< Value > &stack) const
virtual lldb::offset_t GetVendorDWARFOpcodeSize(const DataExtractor &data, const lldb::offset_t data_offset, const uint8_t op) const
#define LLDB_INVALID_ADDRESS
Definition: lldb-defines.h:82
#define LLDB_INVALID_OFFSET
Definition: lldb-defines.h:93
#define UINT32_MAX
Definition: lldb-defines.h:19
#define LLDB_INVALID_REGNUM
Definition: lldb-defines.h:87
lldb::ByteOrder InlHostByteOrder()
Definition: Endian.h:25
const char * DW_OP_value_to_name(uint32_t val)
A class that represents a running process on the host machine.
Definition: SBAttachInfo.h:14
Log * GetLog(Cat mask)
Retrieve the Log object for the channel associated with the given log enum.
Definition: Log.h:314
Definition: SBAddress.h:15
std::shared_ptr< lldb_private::ABI > ABISP
Definition: lldb-forward.h:310
std::shared_ptr< lldb_private::StackFrame > StackFrameSP
Definition: lldb-forward.h:412
DescriptionLevel
Description levels for "void GetDescription(Stream *, DescriptionLevel)" calls.
uint64_t offset_t
Definition: lldb-types.h:83
ByteOrder
Byte ordering definitions.
std::shared_ptr< lldb_private::DataBuffer > DataBufferSP
Definition: lldb-forward.h:328
uint64_t addr_t
Definition: lldb-types.h:79
std::shared_ptr< lldb_private::RegisterContext > RegisterContextSP
Definition: lldb-forward.h:386
std::shared_ptr< lldb_private::Module > ModuleSP
Definition: lldb-forward.h:365
RegisterKind
Register numbering types.
Represent the locations of a parameter at a call site, both in the caller and in the callee.
Definition: Function.h:255
DWARFExpressionList LocationInCaller
Definition: Function.h:257
Every register is described in detail including its name, alternate name (optional),...
const char * name
Name of this register, can't be NULL.