LLDB mainline
ObjectFileELF.cpp
Go to the documentation of this file.
1//===-- ObjectFileELF.cpp -------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "ObjectFileELF.h"
10
11#include <algorithm>
12#include <cassert>
13#include <optional>
14#include <unordered_map>
15
16#include "lldb/Core/Module.h"
19#include "lldb/Core/Progress.h"
20#include "lldb/Core/Section.h"
22#include "lldb/Host/LZMA.h"
25#include "lldb/Target/Process.h"
27#include "lldb/Target/Target.h"
32#include "lldb/Utility/Log.h"
34#include "lldb/Utility/Status.h"
35#include "lldb/Utility/Stream.h"
36#include "lldb/Utility/Timer.h"
37#include "llvm/ADT/IntervalMap.h"
38#include "llvm/ADT/PointerUnion.h"
39#include "llvm/ADT/StringRef.h"
40#include "llvm/BinaryFormat/ELF.h"
41#include "llvm/Object/Decompressor.h"
42#include "llvm/Support/ARMBuildAttributes.h"
43#include "llvm/Support/CRC.h"
44#include "llvm/Support/FormatVariadic.h"
45#include "llvm/Support/MathExtras.h"
46#include "llvm/Support/MemoryBuffer.h"
47#include "llvm/Support/MipsABIFlags.h"
48
49#define CASE_AND_STREAM(s, def, width) \
50 case def: \
51 s->Printf("%-*s", width, #def); \
52 break;
53
54using namespace lldb;
55using namespace lldb_private;
56using namespace elf;
57using namespace llvm::ELF;
58
60
61// ELF note owner definitions
62static const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
63static const char *const LLDB_NT_OWNER_GNU = "GNU";
64static const char *const LLDB_NT_OWNER_NETBSD = "NetBSD";
65static const char *const LLDB_NT_OWNER_NETBSDCORE = "NetBSD-CORE";
66static const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD";
67static const char *const LLDB_NT_OWNER_ANDROID = "Android";
68static const char *const LLDB_NT_OWNER_CORE = "CORE";
69static const char *const LLDB_NT_OWNER_LINUX = "LINUX";
70
71// ELF note type definitions
74
75static const elf_word LLDB_NT_GNU_ABI_TAG = 0x01;
77
79
84
85// GNU ABI note OS constants
89
90namespace {
91
92//===----------------------------------------------------------------------===//
93/// \class ELFRelocation
94/// Generic wrapper for ELFRel and ELFRela.
95///
96/// This helper class allows us to parse both ELFRel and ELFRela relocation
97/// entries in a generic manner.
98class ELFRelocation {
99public:
100 /// Constructs an ELFRelocation entry with a personality as given by @p
101 /// type.
102 ///
103 /// \param type Either DT_REL or DT_RELA. Any other value is invalid.
104 ELFRelocation(unsigned type);
105
106 ~ELFRelocation();
107
108 bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
109
110 static unsigned RelocType32(const ELFRelocation &rel);
111
112 static unsigned RelocType64(const ELFRelocation &rel);
113
114 static unsigned RelocSymbol32(const ELFRelocation &rel);
115
116 static unsigned RelocSymbol64(const ELFRelocation &rel);
117
118 static elf_addr RelocOffset32(const ELFRelocation &rel);
119
120 static elf_addr RelocOffset64(const ELFRelocation &rel);
121
122 static elf_sxword RelocAddend32(const ELFRelocation &rel);
123
124 static elf_sxword RelocAddend64(const ELFRelocation &rel);
125
126 bool IsRela() { return (llvm::isa<ELFRela *>(reloc)); }
127
128private:
129 typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion;
130
131 RelocUnion reloc;
132};
133} // end anonymous namespace
134
135ELFRelocation::ELFRelocation(unsigned type) {
136 if (type == DT_REL || type == SHT_REL)
137 reloc = new ELFRel();
138 else if (type == DT_RELA || type == SHT_RELA)
139 reloc = new ELFRela();
140 else {
141 assert(false && "unexpected relocation type");
142 reloc = static_cast<ELFRel *>(nullptr);
143 }
144}
145
146ELFRelocation::~ELFRelocation() {
147 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(reloc))
148 delete elfrel;
149 else
150 delete llvm::cast<ELFRela *>(reloc);
151}
152
153bool ELFRelocation::Parse(const lldb_private::DataExtractor &data,
154 lldb::offset_t *offset) {
155 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(reloc))
156 return elfrel->Parse(data, offset);
157 else
158 return llvm::cast<ELFRela *>(reloc)->Parse(data, offset);
159}
160
161unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) {
162 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(rel.reloc))
163 return ELFRel::RelocType32(*elfrel);
164 else
165 return ELFRela::RelocType32(*llvm::cast<ELFRela *>(rel.reloc));
166}
167
168unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) {
169 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(rel.reloc))
170 return ELFRel::RelocType64(*elfrel);
171 else
172 return ELFRela::RelocType64(*llvm::cast<ELFRela *>(rel.reloc));
173}
174
175unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) {
176 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(rel.reloc))
177 return ELFRel::RelocSymbol32(*elfrel);
178 else
179 return ELFRela::RelocSymbol32(*llvm::cast<ELFRela *>(rel.reloc));
180}
181
182unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) {
183 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(rel.reloc))
184 return ELFRel::RelocSymbol64(*elfrel);
185 else
186 return ELFRela::RelocSymbol64(*llvm::cast<ELFRela *>(rel.reloc));
187}
188
189elf_addr ELFRelocation::RelocOffset32(const ELFRelocation &rel) {
190 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(rel.reloc))
191 return elfrel->r_offset;
192 else
193 return llvm::cast<ELFRela *>(rel.reloc)->r_offset;
194}
195
196elf_addr ELFRelocation::RelocOffset64(const ELFRelocation &rel) {
197 if (auto *elfrel = llvm::dyn_cast<ELFRel *>(rel.reloc))
198 return elfrel->r_offset;
199 else
200 return llvm::cast<ELFRela *>(rel.reloc)->r_offset;
201}
202
203elf_sxword ELFRelocation::RelocAddend32(const ELFRelocation &rel) {
204 if (llvm::isa<ELFRel *>(rel.reloc))
205 return 0;
206 else
207 return llvm::cast<ELFRela *>(rel.reloc)->r_addend;
208}
209
210elf_sxword ELFRelocation::RelocAddend64(const ELFRelocation &rel) {
211 if (llvm::isa<ELFRel *>(rel.reloc))
212 return 0;
213 else
214 return llvm::cast<ELFRela *>(rel.reloc)->r_addend;
215}
216
217static user_id_t SegmentID(size_t PHdrIndex) {
218 return ~user_id_t(PHdrIndex);
219}
220
221bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) {
222 // Read all fields.
223 if (data.GetU32(offset, &n_namesz, 3) == nullptr)
224 return false;
225
226 // The name field is required to be nul-terminated, and n_namesz includes the
227 // terminating nul in observed implementations (contrary to the ELF-64 spec).
228 // A special case is needed for cores generated by some older Linux versions,
229 // which write a note named "CORE" without a nul terminator and n_namesz = 4.
230 if (n_namesz == 4) {
231 char buf[4];
232 if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4)
233 return false;
234 if (strncmp(buf, "CORE", 4) == 0) {
235 n_name = "CORE";
236 *offset += 4;
237 return true;
238 }
239 }
240
241 const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4));
242 if (cstr == nullptr) {
244 LLDB_LOGF(log, "Failed to parse note name lacking nul terminator");
245
246 return false;
247 }
248 n_name = cstr;
249 return true;
250}
251
252static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) {
253 const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH;
254 uint32_t endian = header.e_ident[EI_DATA];
255 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
256 uint32_t fileclass = header.e_ident[EI_CLASS];
257
258 // If there aren't any elf flags available (e.g core elf file) then return
259 // default
260 // 32 or 64 bit arch (without any architecture revision) based on object file's class.
261 if (header.e_type == ET_CORE) {
262 switch (fileclass) {
263 case llvm::ELF::ELFCLASS32:
264 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
266 case llvm::ELF::ELFCLASS64:
267 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
269 default:
270 return arch_variant;
271 }
272 }
273
274 switch (mips_arch) {
275 case llvm::ELF::EF_MIPS_ARCH_1:
276 case llvm::ELF::EF_MIPS_ARCH_2:
277 case llvm::ELF::EF_MIPS_ARCH_32:
278 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
280 case llvm::ELF::EF_MIPS_ARCH_32R2:
281 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el
283 case llvm::ELF::EF_MIPS_ARCH_32R6:
284 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el
286 case llvm::ELF::EF_MIPS_ARCH_3:
287 case llvm::ELF::EF_MIPS_ARCH_4:
288 case llvm::ELF::EF_MIPS_ARCH_5:
289 case llvm::ELF::EF_MIPS_ARCH_64:
290 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
292 case llvm::ELF::EF_MIPS_ARCH_64R2:
293 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el
295 case llvm::ELF::EF_MIPS_ARCH_64R6:
296 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el
298 default:
299 break;
300 }
301
302 return arch_variant;
303}
304
305static uint32_t riscvVariantFromElfFlags(const elf::ELFHeader &header) {
306 uint32_t fileclass = header.e_ident[EI_CLASS];
307 switch (fileclass) {
308 case llvm::ELF::ELFCLASS32:
310 case llvm::ELF::ELFCLASS64:
312 default:
314 }
315}
316
317static uint32_t ppc64VariantFromElfFlags(const elf::ELFHeader &header) {
318 uint32_t endian = header.e_ident[EI_DATA];
319 if (endian == ELFDATA2LSB)
321 else
323}
324
325static uint32_t loongarchVariantFromElfFlags(const elf::ELFHeader &header) {
326 uint32_t fileclass = header.e_ident[EI_CLASS];
327 switch (fileclass) {
328 case llvm::ELF::ELFCLASS32:
330 case llvm::ELF::ELFCLASS64:
332 default:
334 }
335}
336
337static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) {
338 if (header.e_machine == llvm::ELF::EM_MIPS)
339 return mipsVariantFromElfFlags(header);
340 else if (header.e_machine == llvm::ELF::EM_PPC64)
341 return ppc64VariantFromElfFlags(header);
342 else if (header.e_machine == llvm::ELF::EM_RISCV)
343 return riscvVariantFromElfFlags(header);
344 else if (header.e_machine == llvm::ELF::EM_LOONGARCH)
345 return loongarchVariantFromElfFlags(header);
346
348}
349
351
352// Arbitrary constant used as UUID prefix for core files.
353const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C);
354
355// Static methods.
361
365
367 DataBufferSP data_sp,
368 lldb::offset_t data_offset,
369 const lldb_private::FileSpec *file,
370 lldb::offset_t file_offset,
371 lldb::offset_t length) {
372 bool mapped_writable = false;
373 if (!data_sp) {
374 data_sp = MapFileDataWritable(*file, length, file_offset);
375 if (!data_sp)
376 return nullptr;
377 data_offset = 0;
378 mapped_writable = true;
379 }
380
381 assert(data_sp);
382
383 if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset))
384 return nullptr;
385
386 const uint8_t *magic = data_sp->GetBytes() + data_offset;
387 if (!ELFHeader::MagicBytesMatch(magic))
388 return nullptr;
389
390 // Update the data to contain the entire file if it doesn't already
391 if (data_sp->GetByteSize() < length) {
392 data_sp = MapFileDataWritable(*file, length, file_offset);
393 if (!data_sp)
394 return nullptr;
395 data_offset = 0;
396 mapped_writable = true;
397 magic = data_sp->GetBytes();
398 }
399
400 // If we didn't map the data as writable take ownership of the buffer.
401 if (!mapped_writable) {
402 data_sp = std::make_shared<DataBufferHeap>(data_sp->GetBytes(),
403 data_sp->GetByteSize());
404 data_offset = 0;
405 magic = data_sp->GetBytes();
406 }
407
408 unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
409 if (address_size == 4 || address_size == 8) {
410 std::unique_ptr<ObjectFileELF> objfile_up(new ObjectFileELF(
411 module_sp, data_sp, data_offset, file, file_offset, length));
412 ArchSpec spec = objfile_up->GetArchitecture();
413 if (spec && objfile_up->SetModulesArchitecture(spec))
414 return objfile_up.release();
415 }
416
417 return nullptr;
418}
419
421 const lldb::ModuleSP &module_sp, WritableDataBufferSP data_sp,
422 const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) {
423 if (!data_sp || data_sp->GetByteSize() < (llvm::ELF::EI_NIDENT))
424 return nullptr;
425 const uint8_t *magic = data_sp->GetBytes();
426 if (!ELFHeader::MagicBytesMatch(magic))
427 return nullptr;
428 // Read the ELF header first so we can figure out how many bytes we need
429 // to read to get as least the ELF header + program headers.
430 DataExtractor data;
431 data.SetData(data_sp);
432 elf::ELFHeader hdr;
433 lldb::offset_t offset = 0;
434 if (!hdr.Parse(data, &offset))
435 return nullptr;
436
437 // Make sure the address size is set correctly in the ELF header.
438 if (!hdr.Is32Bit() && !hdr.Is64Bit())
439 return nullptr;
440 // Figure out where the program headers end and read enough bytes to get the
441 // program headers in their entirety.
442 lldb::offset_t end_phdrs = hdr.e_phoff + (hdr.e_phentsize * hdr.e_phnum);
443 if (end_phdrs > data_sp->GetByteSize())
444 data_sp = ReadMemory(process_sp, header_addr, end_phdrs);
445
446 std::unique_ptr<ObjectFileELF> objfile_up(
447 new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
448 ArchSpec spec = objfile_up->GetArchitecture();
449 if (spec && objfile_up->SetModulesArchitecture(spec))
450 return objfile_up.release();
451
452 return nullptr;
453}
454
456 lldb::addr_t data_offset,
457 lldb::addr_t data_length) {
458 if (data_sp &&
459 data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) {
460 const uint8_t *magic = data_sp->GetBytes() + data_offset;
461 return ELFHeader::MagicBytesMatch(magic);
462 }
463 return false;
464}
465
466static uint32_t calc_crc32(uint32_t init, const DataExtractor &data) {
467 return llvm::crc32(init,
468 llvm::ArrayRef(data.GetDataStart(), data.GetByteSize()));
469}
470
472 const ProgramHeaderColl &program_headers, DataExtractor &object_data) {
473
474 uint32_t core_notes_crc = 0;
475
476 for (const ELFProgramHeader &H : program_headers) {
477 if (H.p_type == llvm::ELF::PT_NOTE) {
478 const elf_off ph_offset = H.p_offset;
479 const size_t ph_size = H.p_filesz;
480
481 DataExtractor segment_data;
482 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) {
483 // The ELF program header contained incorrect data, probably corefile
484 // is incomplete or corrupted.
485 break;
486 }
487
488 core_notes_crc = calc_crc32(core_notes_crc, segment_data);
489 }
490 }
491
492 return core_notes_crc;
493}
494
495static const char *OSABIAsCString(unsigned char osabi_byte) {
496#define _MAKE_OSABI_CASE(x) \
497 case x: \
498 return #x
499 switch (osabi_byte) {
500 _MAKE_OSABI_CASE(ELFOSABI_NONE);
501 _MAKE_OSABI_CASE(ELFOSABI_HPUX);
502 _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
503 _MAKE_OSABI_CASE(ELFOSABI_GNU);
504 _MAKE_OSABI_CASE(ELFOSABI_HURD);
505 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
506 _MAKE_OSABI_CASE(ELFOSABI_AIX);
507 _MAKE_OSABI_CASE(ELFOSABI_IRIX);
508 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
509 _MAKE_OSABI_CASE(ELFOSABI_TRU64);
510 _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
511 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
512 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
513 _MAKE_OSABI_CASE(ELFOSABI_NSK);
514 _MAKE_OSABI_CASE(ELFOSABI_AROS);
515 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
516 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
517 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
518 _MAKE_OSABI_CASE(ELFOSABI_ARM);
519 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
520 default:
521 return "<unknown-osabi>";
522 }
523#undef _MAKE_OSABI_CASE
524}
525
526//
527// WARNING : This function is being deprecated
528// It's functionality has moved to ArchSpec::SetArchitecture This function is
529// only being kept to validate the move.
530//
531// TODO : Remove this function
532static bool GetOsFromOSABI(unsigned char osabi_byte,
533 llvm::Triple::OSType &ostype) {
534 switch (osabi_byte) {
535 case ELFOSABI_AIX:
536 ostype = llvm::Triple::OSType::AIX;
537 break;
538 case ELFOSABI_FREEBSD:
539 ostype = llvm::Triple::OSType::FreeBSD;
540 break;
541 case ELFOSABI_GNU:
542 ostype = llvm::Triple::OSType::Linux;
543 break;
544 case ELFOSABI_NETBSD:
545 ostype = llvm::Triple::OSType::NetBSD;
546 break;
547 case ELFOSABI_OPENBSD:
548 ostype = llvm::Triple::OSType::OpenBSD;
549 break;
550 case ELFOSABI_SOLARIS:
551 ostype = llvm::Triple::OSType::Solaris;
552 break;
553 default:
554 ostype = llvm::Triple::OSType::UnknownOS;
555 }
556 return ostype != llvm::Triple::OSType::UnknownOS;
557}
558
560 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
561 lldb::offset_t data_offset, lldb::offset_t file_offset,
564
565 const size_t initial_count = specs.GetSize();
566
567 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
568 DataExtractor data;
569 data.SetData(data_sp);
570 elf::ELFHeader header;
571 lldb::offset_t header_offset = data_offset;
572 if (header.Parse(data, &header_offset)) {
573 if (data_sp) {
574 ModuleSpec spec(file);
575 // In Android API level 23 and above, bionic dynamic linker is able to
576 // load .so file directly from zip file. In that case, .so file is
577 // page aligned and uncompressed, and this module spec should retain the
578 // .so file offset and file size to pass through the information from
579 // lldb-server to LLDB. For normal file, file_offset should be 0,
580 // length should be the size of the file.
581 spec.SetObjectOffset(file_offset);
582 spec.SetObjectSize(length);
583
584 const uint32_t sub_type = subTypeFromElfHeader(header);
586 eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
587
588 if (spec.GetArchitecture().IsValid()) {
589 llvm::Triple::OSType ostype;
590 llvm::Triple::VendorType vendor;
591 llvm::Triple::OSType spec_ostype =
592 spec.GetArchitecture().GetTriple().getOS();
593
594 LLDB_LOGF(log, "ObjectFileELF::%s file '%s' module OSABI: %s",
595 __FUNCTION__, file.GetPath().c_str(),
596 OSABIAsCString(header.e_ident[EI_OSABI]));
597
598 // SetArchitecture should have set the vendor to unknown
599 vendor = spec.GetArchitecture().GetTriple().getVendor();
600 assert(vendor == llvm::Triple::UnknownVendor);
602
603 //
604 // Validate it is ok to remove GetOsFromOSABI
605 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
606 assert(spec_ostype == ostype);
607 if (spec_ostype != llvm::Triple::OSType::UnknownOS) {
608 LLDB_LOGF(log,
609 "ObjectFileELF::%s file '%s' set ELF module OS type "
610 "from ELF header OSABI.",
611 __FUNCTION__, file.GetPath().c_str());
612 }
613
614 // When ELF file does not contain GNU build ID, the later code will
615 // calculate CRC32 with this data_sp file_offset and length. It is
616 // important for Android zip .so file, which is a slice of a file,
617 // to not access the outside of the file slice range.
618 if (data_sp->GetByteSize() < length)
619 data_sp = MapFileData(file, length, file_offset);
620 if (data_sp)
621 data.SetData(data_sp);
622 // In case there is header extension in the section #0, the header we
623 // parsed above could have sentinel values for e_phnum, e_shnum, and
624 // e_shstrndx. In this case we need to reparse the header with a
625 // bigger data source to get the actual values.
626 if (header.HasHeaderExtension()) {
627 lldb::offset_t header_offset = data_offset;
628 header.Parse(data, &header_offset);
629 }
630
631 uint32_t gnu_debuglink_crc = 0;
632 std::string gnu_debuglink_file;
633 SectionHeaderColl section_headers;
634 lldb_private::UUID &uuid = spec.GetUUID();
635
636 GetSectionHeaderInfo(section_headers, data, header, uuid,
637 gnu_debuglink_file, gnu_debuglink_crc,
638 spec.GetArchitecture());
639
640 llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple();
641
642 LLDB_LOGF(log,
643 "ObjectFileELF::%s file '%s' module set to triple: %s "
644 "(architecture %s)",
645 __FUNCTION__, file.GetPath().c_str(),
646 spec_triple.getTriple().c_str(),
648
649 if (!uuid.IsValid()) {
650 uint32_t core_notes_crc = 0;
651
652 if (!gnu_debuglink_crc) {
654 "Calculating module crc32 %s with size %" PRIu64 " KiB",
655 file.GetFilename().AsCString(),
656 (length - file_offset) / 1024);
657
658 // For core files - which usually don't happen to have a
659 // gnu_debuglink, and are pretty bulky - calculating whole
660 // contents crc32 would be too much of luxury. Thus we will need
661 // to fallback to something simpler.
662 if (header.e_type == llvm::ELF::ET_CORE) {
663 ProgramHeaderColl program_headers;
664 GetProgramHeaderInfo(program_headers, data, header);
665
666 core_notes_crc =
667 CalculateELFNotesSegmentsCRC32(program_headers, data);
668 } else {
669 gnu_debuglink_crc = calc_crc32(0, data);
670 }
671 }
672 using u32le = llvm::support::ulittle32_t;
673 if (gnu_debuglink_crc) {
674 // Use 4 bytes of crc from the .gnu_debuglink section.
675 u32le data(gnu_debuglink_crc);
676 uuid = UUID(&data, sizeof(data));
677 } else if (core_notes_crc) {
678 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make
679 // it look different form .gnu_debuglink crc followed by 4 bytes
680 // of note segments crc.
681 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
682 uuid = UUID(data, sizeof(data));
683 }
684 }
685
686 specs.Append(spec);
687 }
688 }
689 }
690 }
691
692 return specs.GetSize() - initial_count;
693}
694
695// ObjectFile protocol
696
698 DataBufferSP data_sp, lldb::offset_t data_offset,
699 const FileSpec *file, lldb::offset_t file_offset,
700 lldb::offset_t length)
701 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset) {
702 if (file)
703 m_file = *file;
704}
705
707 DataBufferSP header_data_sp,
708 const lldb::ProcessSP &process_sp,
709 addr_t header_addr)
710 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp) {}
711
713 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
714}
715
717 bool value_is_offset) {
718 ModuleSP module_sp = GetModule();
719 if (module_sp) {
720 size_t num_loaded_sections = 0;
721 SectionList *section_list = GetSectionList();
722 if (section_list) {
723 if (!value_is_offset) {
725 if (base == LLDB_INVALID_ADDRESS)
726 return false;
727 value -= base;
728 }
729
730 const size_t num_sections = section_list->GetSize();
731 size_t sect_idx = 0;
732
733 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
734 // Iterate through the object file sections to find all of the sections
735 // that have SHF_ALLOC in their flag bits.
736 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
737
738 // PT_TLS segments can have the same p_vaddr and p_paddr as other
739 // PT_LOAD segments so we shouldn't load them. If we do load them, then
740 // the SectionLoadList will incorrectly fill in the instance variable
741 // SectionLoadList::m_addr_to_sect with the same address as a PT_LOAD
742 // segment and we won't be able to resolve addresses in the PT_LOAD
743 // segment whose p_vaddr entry matches that of the PT_TLS. Any variables
744 // that appear in the PT_TLS segments get resolved by the DWARF
745 // expressions. If this ever changes we will need to fix all object
746 // file plug-ins, but until then, we don't want PT_TLS segments to
747 // remove the entry from SectionLoadList::m_addr_to_sect when we call
748 // SetSectionLoadAddress() below.
749 if (section_sp->IsThreadSpecific())
750 continue;
751 if (section_sp->Test(SHF_ALLOC) ||
752 section_sp->GetType() == eSectionTypeContainer) {
753 lldb::addr_t load_addr = section_sp->GetFileAddress();
754 // We don't want to update the load address of a section with type
755 // eSectionTypeAbsoluteAddress as they already have the absolute load
756 // address already specified
757 if (section_sp->GetType() != eSectionTypeAbsoluteAddress)
758 load_addr += value;
759
760 // On 32-bit systems the load address have to fit into 4 bytes. The
761 // rest of the bytes are the overflow from the addition.
762 if (GetAddressByteSize() == 4)
763 load_addr &= 0xFFFFFFFF;
764
765 if (target.SetSectionLoadAddress(section_sp, load_addr))
766 ++num_loaded_sections;
767 }
768 }
769 return num_loaded_sections > 0;
770 }
771 }
772 return false;
773}
774
776 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
777 return eByteOrderBig;
778 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
779 return eByteOrderLittle;
780 return eByteOrderInvalid;
781}
782
784 return m_data.GetAddressByteSize();
785}
786
788 Symtab *symtab = GetSymtab();
789 if (!symtab)
791
792 // The address class is determined based on the symtab. Ask it from the
793 // object file what contains the symtab information.
794 ObjectFile *symtab_objfile = symtab->GetObjectFile();
795 if (symtab_objfile != nullptr && symtab_objfile != this)
796 return symtab_objfile->GetAddressClass(file_addr);
797
798 auto res = ObjectFile::GetAddressClass(file_addr);
799 if (res != AddressClass::eCode)
800 return res;
801
802 auto ub = m_address_class_map.upper_bound(file_addr);
803 if (ub == m_address_class_map.begin()) {
804 // No entry in the address class map before the address. Return default
805 // address class for an address in a code section.
806 return AddressClass::eCode;
807 }
808
809 // Move iterator to the address class entry preceding address
810 --ub;
811
812 return ub->second;
813}
814
816 return std::distance(m_section_headers.begin(), I);
817}
818
820 return std::distance(m_section_headers.begin(), I);
821}
822
824 lldb::offset_t offset = 0;
825 return m_header.Parse(m_data, &offset);
826}
827
829 // Need to parse the section list to get the UUIDs, so make sure that's been
830 // done.
832 return UUID();
833
834 if (!m_uuid) {
835 using u32le = llvm::support::ulittle32_t;
837 uint32_t core_notes_crc = 0;
838
839 if (!ParseProgramHeaders())
840 return UUID();
841
842 core_notes_crc =
844
845 if (core_notes_crc) {
846 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
847 // look different form .gnu_debuglink crc - followed by 4 bytes of note
848 // segments crc.
849 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
850 m_uuid = UUID(data, sizeof(data));
851 }
852 } else {
856 // Use 4 bytes of crc from the .gnu_debuglink section.
857 u32le data(m_gnu_debuglink_crc);
858 m_uuid = UUID(&data, sizeof(data));
859 }
860 }
861 }
862
863 return m_uuid;
864}
865
866std::optional<FileSpec> ObjectFileELF::GetDebugLink() {
867 if (m_gnu_debuglink_file.empty())
868 return std::nullopt;
870}
871
873 size_t num_modules = ParseDependentModules();
874 uint32_t num_specs = 0;
875
876 for (unsigned i = 0; i < num_modules; ++i) {
877 if (files.AppendIfUnique(m_filespec_up->GetFileSpecAtIndex(i)))
878 num_specs++;
879 }
880
881 return num_specs;
882}
883
885 if (!ParseDynamicSymbols())
886 return Address();
887
888 SectionList *section_list = GetSectionList();
889 if (!section_list)
890 return Address();
891
892 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) {
893 const ELFDynamic &symbol = m_dynamic_symbols[i].symbol;
894
895 if (symbol.d_tag != DT_DEBUG && symbol.d_tag != DT_MIPS_RLD_MAP &&
896 symbol.d_tag != DT_MIPS_RLD_MAP_REL)
897 continue;
898
899 // Compute the offset as the number of previous entries plus the size of
900 // d_tag.
901 const addr_t offset = (i * 2 + 1) * GetAddressByteSize();
902 const addr_t d_file_addr = m_dynamic_base_addr + offset;
903 Address d_addr;
904 if (!d_addr.ResolveAddressUsingFileSections(d_file_addr, GetSectionList()))
905 return Address();
906 if (symbol.d_tag == DT_DEBUG)
907 return d_addr;
908
909 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP
910 // exists in non-PIE.
911 if ((symbol.d_tag == DT_MIPS_RLD_MAP ||
912 symbol.d_tag == DT_MIPS_RLD_MAP_REL) &&
913 target) {
914 const addr_t d_load_addr = d_addr.GetLoadAddress(target);
915 if (d_load_addr == LLDB_INVALID_ADDRESS)
916 return Address();
917
919 if (symbol.d_tag == DT_MIPS_RLD_MAP) {
920 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer.
921 Address addr;
922 if (target->ReadPointerFromMemory(d_load_addr, error, addr, true))
923 return addr;
924 }
925 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) {
926 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
927 // relative to the address of the tag.
928 uint64_t rel_offset;
929 rel_offset = target->ReadUnsignedIntegerFromMemory(
930 d_load_addr, GetAddressByteSize(), UINT64_MAX, error, true);
931 if (error.Success() && rel_offset != UINT64_MAX) {
932 Address addr;
933 addr_t debug_ptr_address =
934 d_load_addr - GetAddressByteSize() + rel_offset;
935 addr.SetOffset(debug_ptr_address);
936 return addr;
937 }
938 }
939 }
940 }
941 return Address();
942}
943
945 if (m_entry_point_address.IsValid())
947
948 if (!ParseHeader() || !IsExecutable())
950
951 SectionList *section_list = GetSectionList();
952 addr_t offset = m_header.e_entry;
953
954 if (!section_list)
955 m_entry_point_address.SetOffset(offset);
956 else
957 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
959}
960
963 for (SectionHeaderCollIter I = std::next(m_section_headers.begin());
964 I != m_section_headers.end(); ++I) {
965 const ELFSectionHeaderInfo &header = *I;
966 if (header.sh_flags & SHF_ALLOC)
967 return Address(GetSectionList()->FindSectionByID(SectionIndex(I)), 0);
968 }
970 }
971
972 for (const auto &EnumPHdr : llvm::enumerate(ProgramHeaders())) {
973 const ELFProgramHeader &H = EnumPHdr.value();
974 if (H.p_type != PT_LOAD)
975 continue;
976
977 return Address(
978 GetSectionList()->FindSectionByID(SegmentID(EnumPHdr.index())), 0);
979 }
981}
982
984 if (m_filespec_up)
985 return m_filespec_up->GetSize();
986
987 m_filespec_up = std::make_unique<FileSpecList>();
988
989 if (ParseDynamicSymbols()) {
990 for (const auto &entry : m_dynamic_symbols) {
991 if (entry.symbol.d_tag != DT_NEEDED)
992 continue;
993 if (!entry.name.empty()) {
994 FileSpec file_spec(entry.name);
995 FileSystem::Instance().Resolve(file_spec);
996 m_filespec_up->Append(file_spec);
997 }
998 }
999 }
1000 return m_filespec_up->GetSize();
1001}
1002
1003// GetProgramHeaderInfo
1005 DataExtractor &object_data,
1006 const ELFHeader &header) {
1007 // We have already parsed the program headers
1008 if (!program_headers.empty())
1009 return program_headers.size();
1010
1011 // If there are no program headers to read we are done.
1012 if (header.e_phnum == 0)
1013 return 0;
1014
1015 program_headers.resize(header.e_phnum);
1016 if (program_headers.size() != header.e_phnum)
1017 return 0;
1018
1019 const size_t ph_size = header.e_phnum * header.e_phentsize;
1020 const elf_off ph_offset = header.e_phoff;
1021 DataExtractor data;
1022 if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1023 return 0;
1024
1025 uint32_t idx;
1026 lldb::offset_t offset;
1027 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) {
1028 if (!program_headers[idx].Parse(data, &offset))
1029 break;
1030 }
1031
1032 if (idx < program_headers.size())
1033 program_headers.resize(idx);
1034
1035 return program_headers.size();
1036}
1037
1038// ParseProgramHeaders
1042
1045 lldb_private::ArchSpec &arch_spec,
1046 lldb_private::UUID &uuid) {
1047 Log *log = GetLog(LLDBLog::Modules);
1048 Status error;
1049
1050 lldb::offset_t offset = 0;
1051
1052 while (true) {
1053 // Parse the note header. If this fails, bail out.
1054 const lldb::offset_t note_offset = offset;
1055 ELFNote note = ELFNote();
1056 if (!note.Parse(data, &offset)) {
1057 // We're done.
1058 return error;
1059 }
1060
1061 LLDB_LOGF(log, "ObjectFileELF::%s parsing note name='%s', type=%" PRIu32,
1062 __FUNCTION__, note.n_name.c_str(), note.n_type);
1063
1064 // Process FreeBSD ELF notes.
1065 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1066 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1067 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) {
1068 // Pull out the min version info.
1069 uint32_t version_info;
1070 if (data.GetU32(&offset, &version_info, 1) == nullptr) {
1071 error =
1072 Status::FromErrorString("failed to read FreeBSD ABI note payload");
1073 return error;
1074 }
1075
1076 // Convert the version info into a major/minor number.
1077 const uint32_t version_major = version_info / 100000;
1078 const uint32_t version_minor = (version_info / 1000) % 100;
1079
1080 char os_name[32];
1081 snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32,
1082 version_major, version_minor);
1083
1084 // Set the elf OS version to FreeBSD. Also clear the vendor.
1085 arch_spec.GetTriple().setOSName(os_name);
1086 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1087
1088 LLDB_LOGF(log,
1089 "ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32
1090 ".%" PRIu32,
1091 __FUNCTION__, version_major, version_minor,
1092 static_cast<uint32_t>(version_info % 1000));
1093 }
1094 // Process GNU ELF notes.
1095 else if (note.n_name == LLDB_NT_OWNER_GNU) {
1096 switch (note.n_type) {
1098 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) {
1099 // Pull out the min OS version supporting the ABI.
1100 uint32_t version_info[4];
1101 if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) ==
1102 nullptr) {
1103 error =
1104 Status::FromErrorString("failed to read GNU ABI note payload");
1105 return error;
1106 }
1107
1108 // Set the OS per the OS field.
1109 switch (version_info[0]) {
1111 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1112 arch_spec.GetTriple().setVendor(
1113 llvm::Triple::VendorType::UnknownVendor);
1114 LLDB_LOGF(log,
1115 "ObjectFileELF::%s detected Linux, min version %" PRIu32
1116 ".%" PRIu32 ".%" PRIu32,
1117 __FUNCTION__, version_info[1], version_info[2],
1118 version_info[3]);
1119 // FIXME we have the minimal version number, we could be propagating
1120 // that. version_info[1] = OS Major, version_info[2] = OS Minor,
1121 // version_info[3] = Revision.
1122 break;
1124 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1125 arch_spec.GetTriple().setVendor(
1126 llvm::Triple::VendorType::UnknownVendor);
1127 LLDB_LOGF(log,
1128 "ObjectFileELF::%s detected Hurd (unsupported), min "
1129 "version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1130 __FUNCTION__, version_info[1], version_info[2],
1131 version_info[3]);
1132 break;
1134 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris);
1135 arch_spec.GetTriple().setVendor(
1136 llvm::Triple::VendorType::UnknownVendor);
1137 LLDB_LOGF(log,
1138 "ObjectFileELF::%s detected Solaris, min version %" PRIu32
1139 ".%" PRIu32 ".%" PRIu32,
1140 __FUNCTION__, version_info[1], version_info[2],
1141 version_info[3]);
1142 break;
1143 default:
1144 LLDB_LOGF(log,
1145 "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32
1146 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1147 __FUNCTION__, version_info[0], version_info[1],
1148 version_info[2], version_info[3]);
1149 break;
1150 }
1151 }
1152 break;
1153
1155 // Only bother processing this if we don't already have the uuid set.
1156 if (!uuid.IsValid()) {
1157 // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a
1158 // build-id of a different length. Accept it as long as it's at least
1159 // 4 bytes as it will be better than our own crc32.
1160 if (note.n_descsz >= 4) {
1161 if (const uint8_t *buf = data.PeekData(offset, note.n_descsz)) {
1162 // Save the build id as the UUID for the module.
1163 uuid = UUID(buf, note.n_descsz);
1164 } else {
1166 "failed to read GNU_BUILD_ID note payload");
1167 return error;
1168 }
1169 }
1170 }
1171 break;
1172 }
1173 if (arch_spec.IsMIPS() &&
1174 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1175 // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform
1176 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1177 }
1178 // Process NetBSD ELF executables and shared libraries
1179 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1180 (note.n_type == LLDB_NT_NETBSD_IDENT_TAG) &&
1181 (note.n_descsz == LLDB_NT_NETBSD_IDENT_DESCSZ) &&
1182 (note.n_namesz == LLDB_NT_NETBSD_IDENT_NAMESZ)) {
1183 // Pull out the version info.
1184 uint32_t version_info;
1185 if (data.GetU32(&offset, &version_info, 1) == nullptr) {
1186 error =
1187 Status::FromErrorString("failed to read NetBSD ABI note payload");
1188 return error;
1189 }
1190 // Convert the version info into a major/minor/patch number.
1191 // #define __NetBSD_Version__ MMmmrrpp00
1192 //
1193 // M = major version
1194 // m = minor version; a minor number of 99 indicates current.
1195 // r = 0 (since NetBSD 3.0 not used)
1196 // p = patchlevel
1197 const uint32_t version_major = version_info / 100000000;
1198 const uint32_t version_minor = (version_info % 100000000) / 1000000;
1199 const uint32_t version_patch = (version_info % 10000) / 100;
1200 // Set the elf OS version to NetBSD. Also clear the vendor.
1201 arch_spec.GetTriple().setOSName(
1202 llvm::formatv("netbsd{0}.{1}.{2}", version_major, version_minor,
1203 version_patch).str());
1204 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1205 }
1206 // Process NetBSD ELF core(5) notes
1207 else if ((note.n_name == LLDB_NT_OWNER_NETBSDCORE) &&
1208 (note.n_type == LLDB_NT_NETBSD_PROCINFO)) {
1209 // Set the elf OS version to NetBSD. Also clear the vendor.
1210 arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD);
1211 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1212 }
1213 // Process OpenBSD ELF notes.
1214 else if (note.n_name == LLDB_NT_OWNER_OPENBSD) {
1215 // Set the elf OS version to OpenBSD. Also clear the vendor.
1216 arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD);
1217 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1218 } else if (note.n_name == LLDB_NT_OWNER_ANDROID) {
1219 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1220 arch_spec.GetTriple().setEnvironment(
1221 llvm::Triple::EnvironmentType::Android);
1222 } else if (note.n_name == LLDB_NT_OWNER_LINUX) {
1223 // This is sometimes found in core files and usually contains extended
1224 // register info
1225 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1226 } else if (note.n_name == LLDB_NT_OWNER_CORE) {
1227 // Parse the NT_FILE to look for stuff in paths to shared libraries
1228 // The contents look like this in a 64 bit ELF core file:
1229 //
1230 // count = 0x000000000000000a (10)
1231 // page_size = 0x0000000000001000 (4096)
1232 // Index start end file_ofs path
1233 // ===== ------------------ ------------------ ------------------ -------------------------------------
1234 // [ 0] 0x0000000000401000 0x0000000000000000 /tmp/a.out
1235 // [ 1] 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out
1236 // [ 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out
1237 // [ 3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 /lib/x86_64-linux-gnu/libc-2.19.so
1238 // [ 4] 0x00007fa79cba8000 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-gnu/libc-2.19.so
1239 // [ 5] 0x00007fa79cda7000 0x00007fa79cdab000 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so
1240 // [ 6] 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64-linux-gnu/libc-2.19.so
1241 // [ 7] 0x00007fa79cdb2000 0x00007fa79cdd5000 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so
1242 // [ 8] 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64-linux-gnu/ld-2.19.so
1243 // [ 9] 0x00007fa79cfd5000 0x00007fa79cfd6000 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so
1244 //
1245 // In the 32 bit ELFs the count, page_size, start, end, file_ofs are
1246 // uint32_t.
1247 //
1248 // For reference: see readelf source code (in binutils).
1249 if (note.n_type == NT_FILE) {
1250 uint64_t count = data.GetAddress(&offset);
1251 const char *cstr;
1252 data.GetAddress(&offset); // Skip page size
1253 offset += count * 3 *
1254 data.GetAddressByteSize(); // Skip all start/end/file_ofs
1255 for (size_t i = 0; i < count; ++i) {
1256 cstr = data.GetCStr(&offset);
1257 if (cstr == nullptr) {
1259 "ObjectFileELF::%s trying to read "
1260 "at an offset after the end "
1261 "(GetCStr returned nullptr)",
1262 __FUNCTION__);
1263 return error;
1264 }
1265 llvm::StringRef path(cstr);
1266 if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) {
1267 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1268 break;
1269 }
1270 }
1271 if (arch_spec.IsMIPS() &&
1272 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1273 // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some
1274 // cases (e.g. compile with -nostdlib) Hence set OS to Linux
1275 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1276 }
1277 }
1278
1279 // Calculate the offset of the next note just in case "offset" has been
1280 // used to poke at the contents of the note data
1281 offset = note_offset + note.GetByteSize();
1282 }
1283
1284 return error;
1285}
1286
1288 ArchSpec &arch_spec) {
1289 lldb::offset_t Offset = 0;
1290
1291 uint8_t FormatVersion = data.GetU8(&Offset);
1292 if (FormatVersion != llvm::ELFAttrs::Format_Version)
1293 return;
1294
1295 Offset = Offset + sizeof(uint32_t); // Section Length
1296 llvm::StringRef VendorName = data.GetCStr(&Offset);
1297
1298 if (VendorName != "aeabi")
1299 return;
1300
1301 if (arch_spec.GetTriple().getEnvironment() ==
1302 llvm::Triple::UnknownEnvironment)
1303 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1304
1305 while (Offset < length) {
1306 uint8_t Tag = data.GetU8(&Offset);
1307 uint32_t Size = data.GetU32(&Offset);
1308
1309 if (Tag != llvm::ARMBuildAttrs::File || Size == 0)
1310 continue;
1311
1312 while (Offset < length) {
1313 uint64_t Tag = data.GetULEB128(&Offset);
1314 switch (Tag) {
1315 default:
1316 if (Tag < 32)
1317 data.GetULEB128(&Offset);
1318 else if (Tag % 2 == 0)
1319 data.GetULEB128(&Offset);
1320 else
1321 data.GetCStr(&Offset);
1322
1323 break;
1324
1325 case llvm::ARMBuildAttrs::CPU_raw_name:
1326 case llvm::ARMBuildAttrs::CPU_name:
1327 data.GetCStr(&Offset);
1328
1329 break;
1330
1331 case llvm::ARMBuildAttrs::ABI_VFP_args: {
1332 uint64_t VFPArgs = data.GetULEB128(&Offset);
1333
1334 if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) {
1335 if (arch_spec.GetTriple().getEnvironment() ==
1336 llvm::Triple::UnknownEnvironment ||
1337 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF)
1338 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1339
1341 } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) {
1342 if (arch_spec.GetTriple().getEnvironment() ==
1343 llvm::Triple::UnknownEnvironment ||
1344 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI)
1345 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF);
1346
1348 }
1349
1350 break;
1351 }
1352 }
1353 }
1354 }
1355}
1356
1357// GetSectionHeaderInfo
1359 DataExtractor &object_data,
1360 const elf::ELFHeader &header,
1361 lldb_private::UUID &uuid,
1362 std::string &gnu_debuglink_file,
1363 uint32_t &gnu_debuglink_crc,
1364 ArchSpec &arch_spec) {
1365 // Don't reparse the section headers if we already did that.
1366 if (!section_headers.empty())
1367 return section_headers.size();
1368
1369 // Only initialize the arch_spec to okay defaults if they're not already set.
1370 // We'll refine this with note data as we parse the notes.
1371 if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) {
1372 llvm::Triple::OSType ostype;
1373 llvm::Triple::OSType spec_ostype;
1374 const uint32_t sub_type = subTypeFromElfHeader(header);
1375 arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type,
1376 header.e_ident[EI_OSABI]);
1377
1378 // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is
1379 // determined based on EI_OSABI flag and the info extracted from ELF notes
1380 // (see RefineModuleDetailsFromNote). However in some cases that still
1381 // might be not enough: for example a shared library might not have any
1382 // notes at all and have EI_OSABI flag set to System V, as result the OS
1383 // will be set to UnknownOS.
1384 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
1385 spec_ostype = arch_spec.GetTriple().getOS();
1386 assert(spec_ostype == ostype);
1387 UNUSED_IF_ASSERT_DISABLED(spec_ostype);
1388 }
1389
1390 if (arch_spec.GetMachine() == llvm::Triple::mips ||
1391 arch_spec.GetMachine() == llvm::Triple::mipsel ||
1392 arch_spec.GetMachine() == llvm::Triple::mips64 ||
1393 arch_spec.GetMachine() == llvm::Triple::mips64el) {
1394 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) {
1395 case llvm::ELF::EF_MIPS_MICROMIPS:
1397 break;
1398 case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1400 break;
1401 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1403 break;
1404 default:
1405 break;
1406 }
1407 }
1408
1409 if (arch_spec.GetMachine() == llvm::Triple::arm ||
1410 arch_spec.GetMachine() == llvm::Triple::thumb) {
1411 if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT)
1413 else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT)
1415 }
1416
1417 if (arch_spec.GetMachine() == llvm::Triple::riscv32 ||
1418 arch_spec.GetMachine() == llvm::Triple::riscv64) {
1419 uint32_t flags = arch_spec.GetFlags();
1420
1421 if (header.e_flags & llvm::ELF::EF_RISCV_RVC)
1422 flags |= ArchSpec::eRISCV_rvc;
1423 if (header.e_flags & llvm::ELF::EF_RISCV_RVE)
1424 flags |= ArchSpec::eRISCV_rve;
1425
1426 if ((header.e_flags & llvm::ELF::EF_RISCV_FLOAT_ABI_SINGLE) ==
1427 llvm::ELF::EF_RISCV_FLOAT_ABI_SINGLE)
1429 else if ((header.e_flags & llvm::ELF::EF_RISCV_FLOAT_ABI_DOUBLE) ==
1430 llvm::ELF::EF_RISCV_FLOAT_ABI_DOUBLE)
1432 else if ((header.e_flags & llvm::ELF::EF_RISCV_FLOAT_ABI_QUAD) ==
1433 llvm::ELF::EF_RISCV_FLOAT_ABI_QUAD)
1435
1436 arch_spec.SetFlags(flags);
1437 }
1438
1439 if (arch_spec.GetMachine() == llvm::Triple::loongarch32 ||
1440 arch_spec.GetMachine() == llvm::Triple::loongarch64) {
1441 uint32_t flags = arch_spec.GetFlags();
1442 switch (header.e_flags & llvm::ELF::EF_LOONGARCH_ABI_MODIFIER_MASK) {
1443 case llvm::ELF::EF_LOONGARCH_ABI_SINGLE_FLOAT:
1445 break;
1446 case llvm::ELF::EF_LOONGARCH_ABI_DOUBLE_FLOAT:
1448 break;
1449 case llvm::ELF::EF_LOONGARCH_ABI_SOFT_FLOAT:
1450 break;
1451 }
1452
1453 arch_spec.SetFlags(flags);
1454 }
1455
1456 // If there are no section headers we are done.
1457 if (header.e_shnum == 0)
1458 return 0;
1459
1460 Log *log = GetLog(LLDBLog::Modules);
1461
1462 section_headers.resize(header.e_shnum);
1463 if (section_headers.size() != header.e_shnum)
1464 return 0;
1465
1466 const size_t sh_size = header.e_shnum * header.e_shentsize;
1467 const elf_off sh_offset = header.e_shoff;
1468 DataExtractor sh_data;
1469 if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size)
1470 return 0;
1471
1472 uint32_t idx;
1473 lldb::offset_t offset;
1474 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) {
1475 if (!section_headers[idx].Parse(sh_data, &offset))
1476 break;
1477 }
1478 if (idx < section_headers.size())
1479 section_headers.resize(idx);
1480
1481 const unsigned strtab_idx = header.e_shstrndx;
1482 if (strtab_idx && strtab_idx < section_headers.size()) {
1483 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1484 const size_t byte_size = sheader.sh_size;
1485 const Elf64_Off offset = sheader.sh_offset;
1486 lldb_private::DataExtractor shstr_data;
1487
1488 if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) {
1489 for (SectionHeaderCollIter I = section_headers.begin();
1490 I != section_headers.end(); ++I) {
1491 static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink");
1492 const ELFSectionHeaderInfo &sheader = *I;
1493 const uint64_t section_size =
1494 sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size;
1495 ConstString name(shstr_data.PeekCStr(I->sh_name));
1496
1497 I->section_name = name;
1498
1499 if (arch_spec.IsMIPS()) {
1500 uint32_t arch_flags = arch_spec.GetFlags();
1501 DataExtractor data;
1502 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) {
1503
1504 if (section_size && (data.SetData(object_data, sheader.sh_offset,
1505 section_size) == section_size)) {
1506 // MIPS ASE Mask is at offset 12 in MIPS.abiflags section
1507 lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0
1508 arch_flags |= data.GetU32(&offset);
1509
1510 // The floating point ABI is at offset 7
1511 offset = 7;
1512 switch (data.GetU8(&offset)) {
1513 case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY:
1515 break;
1516 case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE:
1518 break;
1519 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE:
1521 break;
1522 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT:
1524 break;
1525 case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64:
1527 break;
1528 case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX:
1530 break;
1531 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64:
1533 break;
1534 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A:
1536 break;
1537 }
1538 }
1539 }
1540 // Settings appropriate ArchSpec ABI Flags
1541 switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) {
1542 case llvm::ELF::EF_MIPS_ABI_O32:
1544 break;
1545 case EF_MIPS_ABI_O64:
1547 break;
1548 case EF_MIPS_ABI_EABI32:
1550 break;
1551 case EF_MIPS_ABI_EABI64:
1553 break;
1554 default:
1555 // ABI Mask doesn't cover N32 and N64 ABI.
1556 if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64)
1558 else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2)
1560 break;
1561 }
1562 arch_spec.SetFlags(arch_flags);
1563 }
1564
1565 if (arch_spec.GetMachine() == llvm::Triple::arm ||
1566 arch_spec.GetMachine() == llvm::Triple::thumb) {
1567 DataExtractor data;
1568
1569 if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 &&
1570 data.SetData(object_data, sheader.sh_offset, section_size) == section_size)
1571 ParseARMAttributes(data, section_size, arch_spec);
1572 }
1573
1574 if (name == g_sect_name_gnu_debuglink) {
1575 DataExtractor data;
1576 if (section_size && (data.SetData(object_data, sheader.sh_offset,
1577 section_size) == section_size)) {
1578 lldb::offset_t gnu_debuglink_offset = 0;
1579 gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset);
1580 gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4);
1581 data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1582 }
1583 }
1584
1585 // Process ELF note section entries.
1586 bool is_note_header = (sheader.sh_type == SHT_NOTE);
1587
1588 // The section header ".note.android.ident" is stored as a
1589 // PROGBITS type header but it is actually a note header.
1590 static ConstString g_sect_name_android_ident(".note.android.ident");
1591 if (!is_note_header && name == g_sect_name_android_ident)
1592 is_note_header = true;
1593
1594 if (is_note_header) {
1595 // Allow notes to refine module info.
1596 DataExtractor data;
1597 if (section_size && (data.SetData(object_data, sheader.sh_offset,
1598 section_size) == section_size)) {
1599 Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid);
1600 if (error.Fail()) {
1601 LLDB_LOGF(log, "ObjectFileELF::%s ELF note processing failed: %s",
1602 __FUNCTION__, error.AsCString());
1603 }
1604 }
1605 }
1606 }
1607
1608 // Make any unknown triple components to be unspecified unknowns.
1609 if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor)
1610 arch_spec.GetTriple().setVendorName(llvm::StringRef());
1611 if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS)
1612 arch_spec.GetTriple().setOSName(llvm::StringRef());
1613
1614 return section_headers.size();
1615 }
1616 }
1617
1618 section_headers.clear();
1619 return 0;
1620}
1621
1622llvm::StringRef
1623ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const {
1624 size_t pos = symbol_name.find('@');
1625 return symbol_name.substr(0, pos);
1626}
1627
1628// ParseSectionHeaders
1634
1637 if (!ParseSectionHeaders())
1638 return nullptr;
1639
1640 if (id < m_section_headers.size())
1641 return &m_section_headers[id];
1642
1643 return nullptr;
1644}
1645
1647 if (!name || !name[0] || !ParseSectionHeaders())
1648 return 0;
1649 for (size_t i = 1; i < m_section_headers.size(); ++i)
1650 if (m_section_headers[i].section_name == ConstString(name))
1651 return i;
1652 return 0;
1653}
1654
1655static SectionType GetSectionTypeFromName(llvm::StringRef Name) {
1656 if (Name.consume_front(".debug_"))
1658
1659 return llvm::StringSwitch<SectionType>(Name)
1660 .Case(".ARM.exidx", eSectionTypeARMexidx)
1661 .Case(".ARM.extab", eSectionTypeARMextab)
1662 .Case(".ctf", eSectionTypeDebug)
1663 .Cases(".data", ".tdata", eSectionTypeData)
1664 .Case(".eh_frame", eSectionTypeEHFrame)
1665 .Case(".gnu_debugaltlink", eSectionTypeDWARFGNUDebugAltLink)
1666 .Case(".gosymtab", eSectionTypeGoSymtab)
1667 .Case(".text", eSectionTypeCode)
1668 .Case(".lldbsummaries", lldb::eSectionTypeLLDBTypeSummaries)
1669 .Case(".lldbformatters", lldb::eSectionTypeLLDBFormatters)
1670 .Case(".swift_ast", eSectionTypeSwiftModules)
1671 .Default(eSectionTypeOther);
1672}
1673
1675 switch (H.sh_type) {
1676 case SHT_PROGBITS:
1677 if (H.sh_flags & SHF_EXECINSTR)
1678 return eSectionTypeCode;
1679 break;
1680 case SHT_NOBITS:
1681 if (H.sh_flags & SHF_ALLOC)
1682 return eSectionTypeZeroFill;
1683 break;
1684 case SHT_SYMTAB:
1686 case SHT_DYNSYM:
1688 case SHT_RELA:
1689 case SHT_REL:
1691 case SHT_DYNAMIC:
1693 }
1695}
1696
1697static uint32_t GetTargetByteSize(SectionType Type, const ArchSpec &arch) {
1698 switch (Type) {
1699 case eSectionTypeData:
1701 return arch.GetDataByteSize();
1702 case eSectionTypeCode:
1703 return arch.GetCodeByteSize();
1704 default:
1705 return 1;
1706 }
1707}
1708
1709static Permissions GetPermissions(const ELFSectionHeader &H) {
1710 Permissions Perm = Permissions(0);
1711 if (H.sh_flags & SHF_ALLOC)
1712 Perm |= ePermissionsReadable;
1713 if (H.sh_flags & SHF_WRITE)
1714 Perm |= ePermissionsWritable;
1715 if (H.sh_flags & SHF_EXECINSTR)
1716 Perm |= ePermissionsExecutable;
1717 return Perm;
1718}
1719
1720static Permissions GetPermissions(const ELFProgramHeader &H) {
1721 Permissions Perm = Permissions(0);
1722 if (H.p_flags & PF_R)
1723 Perm |= ePermissionsReadable;
1724 if (H.p_flags & PF_W)
1725 Perm |= ePermissionsWritable;
1726 if (H.p_flags & PF_X)
1727 Perm |= ePermissionsExecutable;
1728 return Perm;
1729}
1730
1731namespace {
1732
1734
1735struct SectionAddressInfo {
1736 SectionSP Segment;
1737 VMRange Range;
1738};
1739
1740// (Unlinked) ELF object files usually have 0 for every section address, meaning
1741// we need to compute synthetic addresses in order for "file addresses" from
1742// different sections to not overlap. This class handles that logic.
1743class VMAddressProvider {
1744 using VMMap = llvm::IntervalMap<addr_t, SectionSP, 4,
1745 llvm::IntervalMapHalfOpenInfo<addr_t>>;
1746
1747 ObjectFile::Type ObjectType;
1748 addr_t NextVMAddress = 0;
1749 VMMap::Allocator Alloc;
1750 VMMap Segments{Alloc};
1751 VMMap Sections{Alloc};
1752 lldb_private::Log *Log = GetLog(LLDBLog::Modules);
1753 size_t SegmentCount = 0;
1754 std::string SegmentName;
1755
1756 VMRange GetVMRange(const ELFSectionHeader &H) {
1757 addr_t Address = H.sh_addr;
1758 addr_t Size = H.sh_flags & SHF_ALLOC ? H.sh_size : 0;
1759
1760 // When this is a debug file for relocatable file, the address is all zero
1761 // and thus needs to use accumulate method
1762 if ((ObjectType == ObjectFile::Type::eTypeObjectFile ||
1763 (ObjectType == ObjectFile::Type::eTypeDebugInfo && H.sh_addr == 0)) &&
1764 Segments.empty() && (H.sh_flags & SHF_ALLOC)) {
1765 NextVMAddress =
1766 llvm::alignTo(NextVMAddress, std::max<addr_t>(H.sh_addralign, 1));
1767 Address = NextVMAddress;
1768 NextVMAddress += Size;
1769 }
1770 return VMRange(Address, Size);
1771 }
1772
1773public:
1774 VMAddressProvider(ObjectFile::Type Type, llvm::StringRef SegmentName)
1775 : ObjectType(Type), SegmentName(std::string(SegmentName)) {}
1776
1777 std::string GetNextSegmentName() const {
1778 return llvm::formatv("{0}[{1}]", SegmentName, SegmentCount).str();
1779 }
1780
1781 std::optional<VMRange> GetAddressInfo(const ELFProgramHeader &H) {
1782 if (H.p_memsz == 0) {
1783 LLDB_LOG(Log, "Ignoring zero-sized {0} segment. Corrupt object file?",
1784 SegmentName);
1785 return std::nullopt;
1786 }
1787
1788 if (Segments.overlaps(H.p_vaddr, H.p_vaddr + H.p_memsz)) {
1789 LLDB_LOG(Log, "Ignoring overlapping {0} segment. Corrupt object file?",
1790 SegmentName);
1791 return std::nullopt;
1792 }
1793 return VMRange(H.p_vaddr, H.p_memsz);
1794 }
1795
1796 std::optional<SectionAddressInfo> GetAddressInfo(const ELFSectionHeader &H) {
1797 VMRange Range = GetVMRange(H);
1798 SectionSP Segment;
1799 auto It = Segments.find(Range.GetRangeBase());
1800 if ((H.sh_flags & SHF_ALLOC) && It.valid()) {
1801 addr_t MaxSize;
1802 if (It.start() <= Range.GetRangeBase()) {
1803 MaxSize = It.stop() - Range.GetRangeBase();
1804 Segment = *It;
1805 } else
1806 MaxSize = It.start() - Range.GetRangeBase();
1807 if (Range.GetByteSize() > MaxSize) {
1808 LLDB_LOG(Log, "Shortening section crossing segment boundaries. "
1809 "Corrupt object file?");
1810 Range.SetByteSize(MaxSize);
1811 }
1812 }
1813 if (Range.GetByteSize() > 0 &&
1814 Sections.overlaps(Range.GetRangeBase(), Range.GetRangeEnd())) {
1815 LLDB_LOG(Log, "Ignoring overlapping section. Corrupt object file?");
1816 return std::nullopt;
1817 }
1818 if (Segment)
1819 Range.Slide(-Segment->GetFileAddress());
1820 return SectionAddressInfo{Segment, Range};
1821 }
1822
1823 void AddSegment(const VMRange &Range, SectionSP Seg) {
1824 Segments.insert(Range.GetRangeBase(), Range.GetRangeEnd(), std::move(Seg));
1825 ++SegmentCount;
1826 }
1827
1828 void AddSection(SectionAddressInfo Info, SectionSP Sect) {
1829 if (Info.Range.GetByteSize() == 0)
1830 return;
1831 if (Info.Segment)
1832 Info.Range.Slide(Info.Segment->GetFileAddress());
1833 Sections.insert(Info.Range.GetRangeBase(), Info.Range.GetRangeEnd(),
1834 std::move(Sect));
1835 }
1836};
1837}
1838
1839// We have to do this because ELF doesn't have section IDs, and also
1840// doesn't require section names to be unique. (We use the section index
1841// for section IDs, but that isn't guaranteed to be the same in separate
1842// debug images.)
1843static SectionSP FindMatchingSection(const SectionList &section_list,
1844 SectionSP section) {
1845 SectionSP sect_sp;
1846
1847 addr_t vm_addr = section->GetFileAddress();
1848 ConstString name = section->GetName();
1849 offset_t byte_size = section->GetByteSize();
1850 bool thread_specific = section->IsThreadSpecific();
1851 uint32_t permissions = section->GetPermissions();
1852 uint32_t alignment = section->GetLog2Align();
1853
1854 for (auto sect : section_list) {
1855 if (sect->GetName() == name &&
1856 sect->IsThreadSpecific() == thread_specific &&
1857 sect->GetPermissions() == permissions &&
1858 sect->GetByteSize() == byte_size && sect->GetFileAddress() == vm_addr &&
1859 sect->GetLog2Align() == alignment) {
1860 sect_sp = sect;
1861 break;
1862 } else {
1863 sect_sp = FindMatchingSection(sect->GetChildren(), section);
1864 if (sect_sp)
1865 break;
1866 }
1867 }
1868
1869 return sect_sp;
1870}
1871
1872void ObjectFileELF::CreateSections(SectionList &unified_section_list) {
1873 if (m_sections_up)
1874 return;
1875
1876 m_sections_up = std::make_unique<SectionList>();
1877 VMAddressProvider regular_provider(GetType(), "PT_LOAD");
1878 VMAddressProvider tls_provider(GetType(), "PT_TLS");
1879
1880 for (const auto &EnumPHdr : llvm::enumerate(ProgramHeaders())) {
1881 const ELFProgramHeader &PHdr = EnumPHdr.value();
1882 if (PHdr.p_type != PT_LOAD && PHdr.p_type != PT_TLS)
1883 continue;
1884
1885 VMAddressProvider &provider =
1886 PHdr.p_type == PT_TLS ? tls_provider : regular_provider;
1887 auto InfoOr = provider.GetAddressInfo(PHdr);
1888 if (!InfoOr)
1889 continue;
1890
1891 uint32_t Log2Align = llvm::Log2_64(std::max<elf_xword>(PHdr.p_align, 1));
1892 SectionSP Segment = std::make_shared<Section>(
1893 GetModule(), this, SegmentID(EnumPHdr.index()),
1894 ConstString(provider.GetNextSegmentName()), eSectionTypeContainer,
1895 InfoOr->GetRangeBase(), InfoOr->GetByteSize(), PHdr.p_offset,
1896 PHdr.p_filesz, Log2Align, /*flags*/ 0);
1897 Segment->SetPermissions(GetPermissions(PHdr));
1898 Segment->SetIsThreadSpecific(PHdr.p_type == PT_TLS);
1899 m_sections_up->AddSection(Segment);
1900
1901 provider.AddSegment(*InfoOr, std::move(Segment));
1902 }
1903
1905 if (m_section_headers.empty())
1906 return;
1907
1908 for (SectionHeaderCollIter I = std::next(m_section_headers.begin());
1909 I != m_section_headers.end(); ++I) {
1910 const ELFSectionHeaderInfo &header = *I;
1911
1912 ConstString &name = I->section_name;
1913 const uint64_t file_size =
1914 header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1915
1916 VMAddressProvider &provider =
1917 header.sh_flags & SHF_TLS ? tls_provider : regular_provider;
1918 auto InfoOr = provider.GetAddressInfo(header);
1919 if (!InfoOr)
1920 continue;
1921
1922 SectionType sect_type = GetSectionType(header);
1923
1924 const uint32_t target_bytes_size =
1925 GetTargetByteSize(sect_type, m_arch_spec);
1926
1927 elf::elf_xword log2align =
1928 (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign);
1929
1930 SectionSP section_sp(new Section(
1931 InfoOr->Segment, GetModule(), // Module to which this section belongs.
1932 this, // ObjectFile to which this section belongs and should
1933 // read section data from.
1934 SectionIndex(I), // Section ID.
1935 name, // Section name.
1936 sect_type, // Section type.
1937 InfoOr->Range.GetRangeBase(), // VM address.
1938 InfoOr->Range.GetByteSize(), // VM size in bytes of this section.
1939 header.sh_offset, // Offset of this section in the file.
1940 file_size, // Size of the section as found in the file.
1941 log2align, // Alignment of the section
1942 header.sh_flags, // Flags for this section.
1943 target_bytes_size)); // Number of host bytes per target byte
1944
1945 section_sp->SetPermissions(GetPermissions(header));
1946 section_sp->SetIsThreadSpecific(header.sh_flags & SHF_TLS);
1947 (InfoOr->Segment ? InfoOr->Segment->GetChildren() : *m_sections_up)
1948 .AddSection(section_sp);
1949 provider.AddSection(std::move(*InfoOr), std::move(section_sp));
1950 }
1951
1952 // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the
1953 // unified section list.
1954 if (GetType() != eTypeDebugInfo)
1955 unified_section_list = *m_sections_up;
1956
1957 // If there's a .gnu_debugdata section, we'll try to read the .symtab that's
1958 // embedded in there and replace the one in the original object file (if any).
1959 // If there's none in the orignal object file, we add it to it.
1960 if (auto gdd_obj_file = GetGnuDebugDataObjectFile()) {
1961 if (auto gdd_objfile_section_list = gdd_obj_file->GetSectionList()) {
1962 if (SectionSP symtab_section_sp =
1963 gdd_objfile_section_list->FindSectionByType(
1965 SectionSP module_section_sp = unified_section_list.FindSectionByType(
1967 if (module_section_sp)
1968 unified_section_list.ReplaceSection(module_section_sp->GetID(),
1969 symtab_section_sp);
1970 else
1971 unified_section_list.AddSection(symtab_section_sp);
1972 }
1973 }
1974 }
1975}
1976
1977std::shared_ptr<ObjectFileELF> ObjectFileELF::GetGnuDebugDataObjectFile() {
1978 if (m_gnu_debug_data_object_file != nullptr)
1980
1981 SectionSP section =
1982 GetSectionList()->FindSectionByName(ConstString(".gnu_debugdata"));
1983 if (!section)
1984 return nullptr;
1985
1987 GetModule()->ReportWarning(
1988 "No LZMA support found for reading .gnu_debugdata section");
1989 return nullptr;
1990 }
1991
1992 // Uncompress the data
1993 DataExtractor data;
1994 section->GetSectionData(data);
1995 llvm::SmallVector<uint8_t, 0> uncompressedData;
1996 auto err = lldb_private::lzma::uncompress(data.GetData(), uncompressedData);
1997 if (err) {
1998 GetModule()->ReportWarning(
1999 "An error occurred while decompression the section {0}: {1}",
2000 section->GetName().AsCString(), llvm::toString(std::move(err)).c_str());
2001 return nullptr;
2002 }
2003
2004 // Construct ObjectFileELF object from decompressed buffer
2005 DataBufferSP gdd_data_buf(
2006 new DataBufferHeap(uncompressedData.data(), uncompressedData.size()));
2008 llvm::StringRef("gnu_debugdata"));
2010 GetModule(), gdd_data_buf, 0, &fspec, 0, gdd_data_buf->GetByteSize()));
2011
2012 // This line is essential; otherwise a breakpoint can be set but not hit.
2014
2015 ArchSpec spec = m_gnu_debug_data_object_file->GetArchitecture();
2016 if (spec && m_gnu_debug_data_object_file->SetModulesArchitecture(spec))
2018
2019 return nullptr;
2020}
2021
2022// Find the arm/aarch64 mapping symbol character in the given symbol name.
2023// Mapping symbols have the form of "$<char>[.<any>]*". Additionally we
2024// recognize cases when the mapping symbol prefixed by an arbitrary string
2025// because if a symbol prefix added to each symbol in the object file with
2026// objcopy then the mapping symbols are also prefixed.
2027static char FindArmAarch64MappingSymbol(const char *symbol_name) {
2028 if (!symbol_name)
2029 return '\0';
2030
2031 const char *dollar_pos = ::strchr(symbol_name, '$');
2032 if (!dollar_pos || dollar_pos[1] == '\0')
2033 return '\0';
2034
2035 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.')
2036 return dollar_pos[1];
2037 return '\0';
2038}
2039
2040static char FindRISCVMappingSymbol(const char *symbol_name) {
2041 if (!symbol_name)
2042 return '\0';
2043
2044 if (strcmp(symbol_name, "$d") == 0) {
2045 return 'd';
2046 }
2047 if (strcmp(symbol_name, "$x") == 0) {
2048 return 'x';
2049 }
2050 return '\0';
2051}
2052
2053#define STO_MIPS_ISA (3 << 6)
2054#define STO_MICROMIPS (2 << 6)
2055#define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS)
2056
2057// private
2058std::pair<unsigned, ObjectFileELF::FileAddressToAddressClassMap>
2060 SectionList *section_list, const size_t num_symbols,
2061 const DataExtractor &symtab_data,
2062 const DataExtractor &strtab_data) {
2063 ELFSymbol symbol;
2064 lldb::offset_t offset = 0;
2065 // The changes these symbols would make to the class map. We will also update
2066 // m_address_class_map but need to tell the caller what changed because the
2067 // caller may be another object file.
2068 FileAddressToAddressClassMap address_class_map;
2069
2070 static ConstString text_section_name(".text");
2071 static ConstString init_section_name(".init");
2072 static ConstString fini_section_name(".fini");
2073 static ConstString ctors_section_name(".ctors");
2074 static ConstString dtors_section_name(".dtors");
2075
2076 static ConstString data_section_name(".data");
2077 static ConstString rodata_section_name(".rodata");
2078 static ConstString rodata1_section_name(".rodata1");
2079 static ConstString data2_section_name(".data1");
2080 static ConstString bss_section_name(".bss");
2081 static ConstString opd_section_name(".opd"); // For ppc64
2082
2083 // On Android the oatdata and the oatexec symbols in the oat and odex files
2084 // covers the full .text section what causes issues with displaying unusable
2085 // symbol name to the user and very slow unwinding speed because the
2086 // instruction emulation based unwind plans try to emulate all instructions
2087 // in these symbols. Don't add these symbols to the symbol list as they have
2088 // no use for the debugger and they are causing a lot of trouble. Filtering
2089 // can't be restricted to Android because this special object file don't
2090 // contain the note section specifying the environment to Android but the
2091 // custom extension and file name makes it highly unlikely that this will
2092 // collide with anything else.
2093 llvm::StringRef file_extension = m_file.GetFileNameExtension();
2094 bool skip_oatdata_oatexec =
2095 file_extension == ".oat" || file_extension == ".odex";
2096
2097 ArchSpec arch = GetArchitecture();
2098 ModuleSP module_sp(GetModule());
2099 SectionList *module_section_list =
2100 module_sp ? module_sp->GetSectionList() : nullptr;
2101
2102 // We might have debug information in a separate object, in which case
2103 // we need to map the sections from that object to the sections in the
2104 // main object during symbol lookup. If we had to compare the sections
2105 // for every single symbol, that would be expensive, so this map is
2106 // used to accelerate the process.
2107 std::unordered_map<lldb::SectionSP, lldb::SectionSP> section_map;
2108
2109 unsigned i;
2110 for (i = 0; i < num_symbols; ++i) {
2111 if (!symbol.Parse(symtab_data, &offset))
2112 break;
2113
2114 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2115 if (!symbol_name)
2116 symbol_name = "";
2117
2118 // Skip local symbols starting with ".L" because these are compiler
2119 // generated local labels used for internal purposes (e.g. debugging,
2120 // optimization) and are not relevant for symbol resolution or external
2121 // linkage.
2122 if (llvm::StringRef(symbol_name).starts_with(".L"))
2123 continue;
2124 // No need to add non-section symbols that have no names
2125 if (symbol.getType() != STT_SECTION &&
2126 (symbol_name == nullptr || symbol_name[0] == '\0'))
2127 continue;
2128
2129 // Skipping oatdata and oatexec sections if it is requested. See details
2130 // above the definition of skip_oatdata_oatexec for the reasons.
2131 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 ||
2132 ::strcmp(symbol_name, "oatexec") == 0))
2133 continue;
2134
2135 SectionSP symbol_section_sp;
2136 SymbolType symbol_type = eSymbolTypeInvalid;
2137 Elf64_Half shndx = symbol.st_shndx;
2138
2139 switch (shndx) {
2140 case SHN_ABS:
2141 symbol_type = eSymbolTypeAbsolute;
2142 break;
2143 case SHN_UNDEF:
2144 symbol_type = eSymbolTypeUndefined;
2145 break;
2146 default:
2147 symbol_section_sp = section_list->FindSectionByID(shndx);
2148 break;
2149 }
2150
2151 // If a symbol is undefined do not process it further even if it has a STT
2152 // type
2153 if (symbol_type != eSymbolTypeUndefined) {
2154 switch (symbol.getType()) {
2155 default:
2156 case STT_NOTYPE:
2157 // The symbol's type is not specified.
2158 break;
2159
2160 case STT_OBJECT:
2161 // The symbol is associated with a data object, such as a variable, an
2162 // array, etc.
2163 symbol_type = eSymbolTypeData;
2164 break;
2165
2166 case STT_FUNC:
2167 // The symbol is associated with a function or other executable code.
2168 symbol_type = eSymbolTypeCode;
2169 break;
2170
2171 case STT_SECTION:
2172 // The symbol is associated with a section. Symbol table entries of
2173 // this type exist primarily for relocation and normally have STB_LOCAL
2174 // binding.
2175 break;
2176
2177 case STT_FILE:
2178 // Conventionally, the symbol's name gives the name of the source file
2179 // associated with the object file. A file symbol has STB_LOCAL
2180 // binding, its section index is SHN_ABS, and it precedes the other
2181 // STB_LOCAL symbols for the file, if it is present.
2182 symbol_type = eSymbolTypeSourceFile;
2183 break;
2184
2185 case STT_GNU_IFUNC:
2186 // The symbol is associated with an indirect function. The actual
2187 // function will be resolved if it is referenced.
2188 symbol_type = eSymbolTypeResolver;
2189 break;
2190 }
2191 }
2192
2193 if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) {
2194 if (symbol_section_sp) {
2195 ConstString sect_name = symbol_section_sp->GetName();
2196 if (sect_name == text_section_name || sect_name == init_section_name ||
2197 sect_name == fini_section_name || sect_name == ctors_section_name ||
2198 sect_name == dtors_section_name) {
2199 symbol_type = eSymbolTypeCode;
2200 } else if (sect_name == data_section_name ||
2201 sect_name == data2_section_name ||
2202 sect_name == rodata_section_name ||
2203 sect_name == rodata1_section_name ||
2204 sect_name == bss_section_name) {
2205 symbol_type = eSymbolTypeData;
2206 }
2207 }
2208 }
2209
2210 int64_t symbol_value_offset = 0;
2211 uint32_t additional_flags = 0;
2212 if (arch.IsValid()) {
2213 if (arch.GetMachine() == llvm::Triple::arm) {
2214 if (symbol.getBinding() == STB_LOCAL) {
2215 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2216 if (symbol_type == eSymbolTypeCode) {
2217 switch (mapping_symbol) {
2218 case 'a':
2219 // $a[.<any>]* - marks an ARM instruction sequence
2220 address_class_map[symbol.st_value] = AddressClass::eCode;
2221 break;
2222 case 'b':
2223 case 't':
2224 // $b[.<any>]* - marks a THUMB BL instruction sequence
2225 // $t[.<any>]* - marks a THUMB instruction sequence
2226 address_class_map[symbol.st_value] =
2228 break;
2229 case 'd':
2230 // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2231 address_class_map[symbol.st_value] = AddressClass::eData;
2232 break;
2233 }
2234 }
2235 if (mapping_symbol)
2236 continue;
2237 }
2238 } else if (arch.GetMachine() == llvm::Triple::aarch64) {
2239 if (symbol.getBinding() == STB_LOCAL) {
2240 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2241 if (symbol_type == eSymbolTypeCode) {
2242 switch (mapping_symbol) {
2243 case 'x':
2244 // $x[.<any>]* - marks an A64 instruction sequence
2245 address_class_map[symbol.st_value] = AddressClass::eCode;
2246 break;
2247 case 'd':
2248 // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2249 address_class_map[symbol.st_value] = AddressClass::eData;
2250 break;
2251 }
2252 }
2253 if (mapping_symbol)
2254 continue;
2255 }
2256 } else if (arch.GetTriple().isRISCV()) {
2257 if (symbol.getBinding() == STB_LOCAL) {
2258 char mapping_symbol = FindRISCVMappingSymbol(symbol_name);
2259 if (symbol_type == eSymbolTypeCode) {
2260 // Only handle $d and $x mapping symbols.
2261 // Other mapping symbols are ignored as they don't affect address
2262 // classification.
2263 switch (mapping_symbol) {
2264 case 'x':
2265 // $x - marks a RISCV instruction sequence
2266 address_class_map[symbol.st_value] = AddressClass::eCode;
2267 break;
2268 case 'd':
2269 // $d - marks a RISCV data item sequence
2270 address_class_map[symbol.st_value] = AddressClass::eData;
2271 break;
2272 }
2273 }
2274 if (mapping_symbol)
2275 continue;
2276 }
2277 }
2278
2279 if (arch.GetMachine() == llvm::Triple::arm) {
2280 if (symbol_type == eSymbolTypeCode) {
2281 if (symbol.st_value & 1) {
2282 // Subtracting 1 from the address effectively unsets the low order
2283 // bit, which results in the address actually pointing to the
2284 // beginning of the symbol. This delta will be used below in
2285 // conjunction with symbol.st_value to produce the final
2286 // symbol_value that we store in the symtab.
2287 symbol_value_offset = -1;
2288 address_class_map[symbol.st_value ^ 1] =
2290 } else {
2291 // This address is ARM
2292 address_class_map[symbol.st_value] = AddressClass::eCode;
2293 }
2294 }
2295 }
2296
2297 /*
2298 * MIPS:
2299 * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for
2300 * MIPS).
2301 * This allows processor to switch between microMIPS and MIPS without any
2302 * need
2303 * for special mode-control register. However, apart from .debug_line,
2304 * none of
2305 * the ELF/DWARF sections set the ISA bit (for symbol or section). Use
2306 * st_other
2307 * flag to check whether the symbol is microMIPS and then set the address
2308 * class
2309 * accordingly.
2310 */
2311 if (arch.IsMIPS()) {
2312 if (IS_MICROMIPS(symbol.st_other))
2313 address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2314 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) {
2315 symbol.st_value = symbol.st_value & (~1ull);
2316 address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2317 } else {
2318 if (symbol_type == eSymbolTypeCode)
2319 address_class_map[symbol.st_value] = AddressClass::eCode;
2320 else if (symbol_type == eSymbolTypeData)
2321 address_class_map[symbol.st_value] = AddressClass::eData;
2322 else
2323 address_class_map[symbol.st_value] = AddressClass::eUnknown;
2324 }
2325 }
2326 }
2327
2328 // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB
2329 // symbols. See above for more details.
2330 uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2331
2332 if (symbol_section_sp &&
2334 symbol_value -= symbol_section_sp->GetFileAddress();
2335
2336 if (symbol_section_sp && module_section_list &&
2337 module_section_list != section_list) {
2338 auto section_it = section_map.find(symbol_section_sp);
2339 if (section_it == section_map.end()) {
2340 section_it = section_map
2341 .emplace(symbol_section_sp,
2342 FindMatchingSection(*module_section_list,
2343 symbol_section_sp))
2344 .first;
2345 }
2346 if (section_it->second)
2347 symbol_section_sp = section_it->second;
2348 }
2349
2350 bool is_global = symbol.getBinding() == STB_GLOBAL;
2351 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2352 llvm::StringRef symbol_ref(symbol_name);
2353
2354 // Symbol names may contain @VERSION suffixes. Find those and strip them
2355 // temporarily.
2356 size_t version_pos = symbol_ref.find('@');
2357 bool has_suffix = version_pos != llvm::StringRef::npos;
2358 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2359 Mangled mangled(symbol_bare);
2360
2361 // Now append the suffix back to mangled and unmangled names. Only do it if
2362 // the demangling was successful (string is not empty).
2363 if (has_suffix) {
2364 llvm::StringRef suffix = symbol_ref.substr(version_pos);
2365
2366 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2367 if (!mangled_name.empty())
2368 mangled.SetMangledName(ConstString((mangled_name + suffix).str()));
2369
2370 ConstString demangled = mangled.GetDemangledName();
2371 llvm::StringRef demangled_name = demangled.GetStringRef();
2372 if (!demangled_name.empty())
2373 mangled.SetDemangledName(ConstString((demangled_name + suffix).str()));
2374 }
2375
2376 // In ELF all symbol should have a valid size but it is not true for some
2377 // function symbols coming from hand written assembly. As none of the
2378 // function symbol should have 0 size we try to calculate the size for
2379 // these symbols in the symtab with saying that their original size is not
2380 // valid.
2381 bool symbol_size_valid =
2382 symbol.st_size != 0 || symbol.getType() != STT_FUNC;
2383
2384 bool is_trampoline = false;
2385 if (arch.IsValid() && (arch.GetMachine() == llvm::Triple::aarch64)) {
2386 // On AArch64, trampolines are registered as code.
2387 // If we detect a trampoline (which starts with __AArch64ADRPThunk_ or
2388 // __AArch64AbsLongThunk_) we register the symbol as a trampoline. This
2389 // way we will be able to detect the trampoline when we step in a function
2390 // and step through the trampoline.
2391 if (symbol_type == eSymbolTypeCode) {
2392 llvm::StringRef trampoline_name = mangled.GetName().GetStringRef();
2393 if (trampoline_name.starts_with("__AArch64ADRPThunk_") ||
2394 trampoline_name.starts_with("__AArch64AbsLongThunk_")) {
2395 symbol_type = eSymbolTypeTrampoline;
2396 is_trampoline = true;
2397 }
2398 }
2399 }
2400
2401 Symbol dc_symbol(
2402 i + start_id, // ID is the original symbol table index.
2403 mangled,
2404 symbol_type, // Type of this symbol
2405 is_global, // Is this globally visible?
2406 false, // Is this symbol debug info?
2407 is_trampoline, // Is this symbol a trampoline?
2408 false, // Is this symbol artificial?
2409 AddressRange(symbol_section_sp, // Section in which this symbol is
2410 // defined or null.
2411 symbol_value, // Offset in section or symbol value.
2412 symbol.st_size), // Size in bytes of this symbol.
2413 symbol_size_valid, // Symbol size is valid
2414 has_suffix, // Contains linker annotations?
2415 flags); // Symbol flags.
2416 if (symbol.getBinding() == STB_WEAK)
2417 dc_symbol.SetIsWeak(true);
2418 symtab->AddSymbol(dc_symbol);
2419 }
2420
2421 m_address_class_map.merge(address_class_map);
2422 return {i, address_class_map};
2423}
2424
2425std::pair<unsigned, ObjectFileELF::FileAddressToAddressClassMap>
2427 lldb_private::Section *symtab) {
2428 if (symtab->GetObjectFile() != this) {
2429 // If the symbol table section is owned by a different object file, have it
2430 // do the parsing.
2431 ObjectFileELF *obj_file_elf =
2432 static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2433 auto [num_symbols, address_class_map] =
2434 obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab);
2435
2436 // The other object file returned the changes it made to its address
2437 // class map, make the same changes to ours.
2438 m_address_class_map.merge(address_class_map);
2439
2440 return {num_symbols, address_class_map};
2441 }
2442
2443 // Get section list for this object file.
2444 SectionList *section_list = m_sections_up.get();
2445 if (!section_list)
2446 return {};
2447
2448 user_id_t symtab_id = symtab->GetID();
2449 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2450 assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2451 symtab_hdr->sh_type == SHT_DYNSYM);
2452
2453 // sh_link: section header index of associated string table.
2454 user_id_t strtab_id = symtab_hdr->sh_link;
2455 Section *strtab = section_list->FindSectionByID(strtab_id).get();
2456
2457 if (symtab && strtab) {
2458 assert(symtab->GetObjectFile() == this);
2459 assert(strtab->GetObjectFile() == this);
2460
2461 DataExtractor symtab_data;
2462 DataExtractor strtab_data;
2463 if (ReadSectionData(symtab, symtab_data) &&
2464 ReadSectionData(strtab, strtab_data)) {
2465 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2466
2467 return ParseSymbols(symbol_table, start_id, section_list, num_symbols,
2468 symtab_data, strtab_data);
2469 }
2470 }
2471
2472 return {0, {}};
2473}
2474
2476 if (m_dynamic_symbols.size())
2477 return m_dynamic_symbols.size();
2478
2479 std::optional<DataExtractor> dynamic_data = GetDynamicData();
2480 if (!dynamic_data)
2481 return 0;
2482
2484 lldb::offset_t cursor = 0;
2485 while (e.symbol.Parse(*dynamic_data, &cursor)) {
2486 m_dynamic_symbols.push_back(e);
2487 if (e.symbol.d_tag == DT_NULL)
2488 break;
2489 }
2490 if (std::optional<DataExtractor> dynstr_data = GetDynstrData()) {
2491 for (ELFDynamicWithName &entry : m_dynamic_symbols) {
2492 switch (entry.symbol.d_tag) {
2493 case DT_NEEDED:
2494 case DT_SONAME:
2495 case DT_RPATH:
2496 case DT_RUNPATH:
2497 case DT_AUXILIARY:
2498 case DT_FILTER: {
2499 lldb::offset_t cursor = entry.symbol.d_val;
2500 const char *name = dynstr_data->GetCStr(&cursor);
2501 if (name)
2502 entry.name = std::string(name);
2503 break;
2504 }
2505 default:
2506 break;
2507 }
2508 }
2509 }
2510 return m_dynamic_symbols.size();
2511}
2512
2514 if (!ParseDynamicSymbols())
2515 return nullptr;
2516 for (const auto &entry : m_dynamic_symbols) {
2517 if (entry.symbol.d_tag == tag)
2518 return &entry.symbol;
2519 }
2520 return nullptr;
2521}
2522
2524 // DT_PLTREL
2525 // This member specifies the type of relocation entry to which the
2526 // procedure linkage table refers. The d_val member holds DT_REL or
2527 // DT_RELA, as appropriate. All relocations in a procedure linkage table
2528 // must use the same relocation.
2529 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2530
2531 if (symbol)
2532 return symbol->d_val;
2533
2534 return 0;
2535}
2536
2537// Returns the size of the normal plt entries and the offset of the first
2538// normal plt entry. The 0th entry in the plt table is usually a resolution
2539// entry which have different size in some architectures then the rest of the
2540// plt entries.
2541static std::pair<uint64_t, uint64_t>
2543 const ELFSectionHeader *plt_hdr) {
2544 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2545
2546 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are
2547 // 16 bytes. So round the entsize up by the alignment if addralign is set.
2548 elf_xword plt_entsize =
2549 plt_hdr->sh_addralign
2550 ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign)
2551 : plt_hdr->sh_entsize;
2552
2553 // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly.
2554 // PLT entries relocation code in general requires multiple instruction and
2555 // should be greater than 4 bytes in most cases. Try to guess correct size
2556 // just in case.
2557 if (plt_entsize <= 4) {
2558 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the
2559 // size of the plt entries based on the number of entries and the size of
2560 // the plt section with the assumption that the size of the 0th entry is at
2561 // least as big as the size of the normal entries and it isn't much bigger
2562 // then that.
2563 if (plt_hdr->sh_addralign)
2564 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign /
2565 (num_relocations + 1) * plt_hdr->sh_addralign;
2566 else
2567 plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2568 }
2569
2570 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2571
2572 return std::make_pair(plt_entsize, plt_offset);
2573}
2574
2575static unsigned ParsePLTRelocations(
2576 Symtab *symbol_table, user_id_t start_id, unsigned rel_type,
2577 const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2578 const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr,
2579 const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data,
2580 DataExtractor &symtab_data, DataExtractor &strtab_data) {
2581 ELFRelocation rel(rel_type);
2582 ELFSymbol symbol;
2583 lldb::offset_t offset = 0;
2584
2585 uint64_t plt_offset, plt_entsize;
2586 std::tie(plt_entsize, plt_offset) =
2587 GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2588 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2589
2590 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2591 reloc_info_fn reloc_type;
2592 reloc_info_fn reloc_symbol;
2593
2594 if (hdr->Is32Bit()) {
2595 reloc_type = ELFRelocation::RelocType32;
2596 reloc_symbol = ELFRelocation::RelocSymbol32;
2597 } else {
2598 reloc_type = ELFRelocation::RelocType64;
2599 reloc_symbol = ELFRelocation::RelocSymbol64;
2600 }
2601
2602 unsigned slot_type = hdr->GetRelocationJumpSlotType();
2603 unsigned i;
2604 for (i = 0; i < num_relocations; ++i) {
2605 if (!rel.Parse(rel_data, &offset))
2606 break;
2607
2608 if (reloc_type(rel) != slot_type)
2609 continue;
2610
2611 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2612 if (!symbol.Parse(symtab_data, &symbol_offset))
2613 break;
2614
2615 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2616 uint64_t plt_index = plt_offset + i * plt_entsize;
2617
2618 Symbol jump_symbol(
2619 i + start_id, // Symbol table index
2620 symbol_name, // symbol name.
2621 eSymbolTypeTrampoline, // Type of this symbol
2622 false, // Is this globally visible?
2623 false, // Is this symbol debug info?
2624 true, // Is this symbol a trampoline?
2625 true, // Is this symbol artificial?
2626 plt_section_sp, // Section in which this symbol is defined or null.
2627 plt_index, // Offset in section or symbol value.
2628 plt_entsize, // Size in bytes of this symbol.
2629 true, // Size is valid
2630 false, // Contains linker annotations?
2631 0); // Symbol flags.
2632
2633 symbol_table->AddSymbol(jump_symbol);
2634 }
2635
2636 return i;
2637}
2638
2639unsigned
2641 const ELFSectionHeaderInfo *rel_hdr,
2642 user_id_t rel_id) {
2643 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2644
2645 // The link field points to the associated symbol table.
2646 user_id_t symtab_id = rel_hdr->sh_link;
2647
2648 // If the link field doesn't point to the appropriate symbol name table then
2649 // try to find it by name as some compiler don't fill in the link fields.
2650 if (!symtab_id)
2651 symtab_id = GetSectionIndexByName(".dynsym");
2652
2653 // Get PLT section. We cannot use rel_hdr->sh_info, since current linkers
2654 // point that to the .got.plt or .got section instead of .plt.
2655 user_id_t plt_id = GetSectionIndexByName(".plt");
2656
2657 if (!symtab_id || !plt_id)
2658 return 0;
2659
2660 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2661 if (!plt_hdr)
2662 return 0;
2663
2664 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2665 if (!sym_hdr)
2666 return 0;
2667
2668 SectionList *section_list = m_sections_up.get();
2669 if (!section_list)
2670 return 0;
2671
2672 Section *rel_section = section_list->FindSectionByID(rel_id).get();
2673 if (!rel_section)
2674 return 0;
2675
2676 SectionSP plt_section_sp(section_list->FindSectionByID(plt_id));
2677 if (!plt_section_sp)
2678 return 0;
2679
2680 Section *symtab = section_list->FindSectionByID(symtab_id).get();
2681 if (!symtab)
2682 return 0;
2683
2684 // sh_link points to associated string table.
2685 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link).get();
2686 if (!strtab)
2687 return 0;
2688
2689 DataExtractor rel_data;
2690 if (!ReadSectionData(rel_section, rel_data))
2691 return 0;
2692
2693 DataExtractor symtab_data;
2694 if (!ReadSectionData(symtab, symtab_data))
2695 return 0;
2696
2697 DataExtractor strtab_data;
2698 if (!ReadSectionData(strtab, strtab_data))
2699 return 0;
2700
2701 unsigned rel_type = PLTRelocationType();
2702 if (!rel_type)
2703 return 0;
2704
2705 return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header,
2706 rel_hdr, plt_hdr, sym_hdr, plt_section_sp,
2707 rel_data, symtab_data, strtab_data);
2708}
2709
2710static void ApplyELF64ABS64Relocation(Symtab *symtab, ELFRelocation &rel,
2711 DataExtractor &debug_data,
2712 Section *rel_section) {
2713 Symbol *symbol = symtab->FindSymbolByID(ELFRelocation::RelocSymbol64(rel));
2714 if (symbol) {
2715 addr_t value = symbol->GetAddressRef().GetFileAddress();
2716 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2717 // ObjectFileELF creates a WritableDataBuffer in CreateInstance.
2718 WritableDataBuffer *data_buffer =
2719 llvm::cast<WritableDataBuffer>(data_buffer_sp.get());
2720 uint64_t *dst = reinterpret_cast<uint64_t *>(
2721 data_buffer->GetBytes() + rel_section->GetFileOffset() +
2722 ELFRelocation::RelocOffset64(rel));
2723 uint64_t val_offset = value + ELFRelocation::RelocAddend64(rel);
2724 memcpy(dst, &val_offset, sizeof(uint64_t));
2725 }
2726}
2727
2728static void ApplyELF64ABS32Relocation(Symtab *symtab, ELFRelocation &rel,
2729 DataExtractor &debug_data,
2730 Section *rel_section, bool is_signed) {
2731 Symbol *symbol = symtab->FindSymbolByID(ELFRelocation::RelocSymbol64(rel));
2732 if (symbol) {
2733 addr_t value = symbol->GetAddressRef().GetFileAddress();
2734 value += ELFRelocation::RelocAddend32(rel);
2735 if ((!is_signed && (value > UINT32_MAX)) ||
2736 (is_signed &&
2737 ((int64_t)value > INT32_MAX || (int64_t)value < INT32_MIN))) {
2738 Log *log = GetLog(LLDBLog::Modules);
2739 LLDB_LOGF(log, "Failed to apply debug info relocations");
2740 return;
2741 }
2742 uint32_t truncated_addr = (value & 0xFFFFFFFF);
2743 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2744 // ObjectFileELF creates a WritableDataBuffer in CreateInstance.
2745 WritableDataBuffer *data_buffer =
2746 llvm::cast<WritableDataBuffer>(data_buffer_sp.get());
2747 uint32_t *dst = reinterpret_cast<uint32_t *>(
2748 data_buffer->GetBytes() + rel_section->GetFileOffset() +
2749 ELFRelocation::RelocOffset32(rel));
2750 memcpy(dst, &truncated_addr, sizeof(uint32_t));
2751 }
2752}
2753
2754static void ApplyELF32ABS32RelRelocation(Symtab *symtab, ELFRelocation &rel,
2755 DataExtractor &debug_data,
2756 Section *rel_section) {
2757 Log *log = GetLog(LLDBLog::Modules);
2758 Symbol *symbol = symtab->FindSymbolByID(ELFRelocation::RelocSymbol32(rel));
2759 if (symbol) {
2760 addr_t value = symbol->GetAddressRef().GetFileAddress();
2761 if (value == LLDB_INVALID_ADDRESS) {
2762 const char *name = symbol->GetName().GetCString();
2763 LLDB_LOGF(log, "Debug info symbol invalid: %s", name);
2764 return;
2765 }
2766 assert(llvm::isUInt<32>(value) && "Valid addresses are 32-bit");
2767 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2768 // ObjectFileELF creates a WritableDataBuffer in CreateInstance.
2769 WritableDataBuffer *data_buffer =
2770 llvm::cast<WritableDataBuffer>(data_buffer_sp.get());
2771 uint8_t *dst = data_buffer->GetBytes() + rel_section->GetFileOffset() +
2772 ELFRelocation::RelocOffset32(rel);
2773 // Implicit addend is stored inline as a signed value.
2774 int32_t addend;
2775 memcpy(&addend, dst, sizeof(int32_t));
2776 // The sum must be positive. This extra check prevents UB from overflow in
2777 // the actual range check below.
2778 if (addend < 0 && static_cast<uint32_t>(-addend) > value) {
2779 LLDB_LOGF(log, "Debug info relocation overflow: 0x%" PRIx64,
2780 static_cast<int64_t>(value) + addend);
2781 return;
2782 }
2783 if (!llvm::isUInt<32>(value + addend)) {
2784 LLDB_LOGF(log, "Debug info relocation out of range: 0x%" PRIx64, value);
2785 return;
2786 }
2787 uint32_t addr = value + addend;
2788 memcpy(dst, &addr, sizeof(uint32_t));
2789 }
2790}
2791
2793 Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2794 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2795 DataExtractor &rel_data, DataExtractor &symtab_data,
2796 DataExtractor &debug_data, Section *rel_section) {
2797 ELFRelocation rel(rel_hdr->sh_type);
2798 lldb::addr_t offset = 0;
2799 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2800 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2801 reloc_info_fn reloc_type;
2802 reloc_info_fn reloc_symbol;
2803
2804 if (hdr->Is32Bit()) {
2805 reloc_type = ELFRelocation::RelocType32;
2806 reloc_symbol = ELFRelocation::RelocSymbol32;
2807 } else {
2808 reloc_type = ELFRelocation::RelocType64;
2809 reloc_symbol = ELFRelocation::RelocSymbol64;
2810 }
2811
2812 for (unsigned i = 0; i < num_relocations; ++i) {
2813 if (!rel.Parse(rel_data, &offset)) {
2814 GetModule()->ReportError(".rel{0}[{1:d}] failed to parse relocation",
2815 rel_section->GetName().AsCString(), i);
2816 break;
2817 }
2818 Symbol *symbol = nullptr;
2819
2820 if (hdr->Is32Bit()) {
2821 switch (hdr->e_machine) {
2822 case llvm::ELF::EM_ARM:
2823 switch (reloc_type(rel)) {
2824 case R_ARM_ABS32:
2825 ApplyELF32ABS32RelRelocation(symtab, rel, debug_data, rel_section);
2826 break;
2827 case R_ARM_REL32:
2828 GetModule()->ReportError("unsupported AArch32 relocation:"
2829 " .rel{0}[{1}], type {2}",
2830 rel_section->GetName().AsCString(), i,
2831 reloc_type(rel));
2832 break;
2833 default:
2834 assert(false && "unexpected relocation type");
2835 }
2836 break;
2837 case llvm::ELF::EM_386:
2838 switch (reloc_type(rel)) {
2839 case R_386_32:
2840 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2841 if (symbol) {
2842 addr_t f_offset =
2843 rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel);
2844 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2845 // ObjectFileELF creates a WritableDataBuffer in CreateInstance.
2846 WritableDataBuffer *data_buffer =
2847 llvm::cast<WritableDataBuffer>(data_buffer_sp.get());
2848 uint32_t *dst = reinterpret_cast<uint32_t *>(
2849 data_buffer->GetBytes() + f_offset);
2850
2851 addr_t value = symbol->GetAddressRef().GetFileAddress();
2852 if (rel.IsRela()) {
2853 value += ELFRelocation::RelocAddend32(rel);
2854 } else {
2855 value += *dst;
2856 }
2857 *dst = value;
2858 } else {
2859 GetModule()->ReportError(".rel{0}[{1}] unknown symbol id: {2:d}",
2860 rel_section->GetName().AsCString(), i,
2861 reloc_symbol(rel));
2862 }
2863 break;
2864 case R_386_NONE:
2865 case R_386_PC32:
2866 GetModule()->ReportError("unsupported i386 relocation:"
2867 " .rel{0}[{1}], type {2}",
2868 rel_section->GetName().AsCString(), i,
2869 reloc_type(rel));
2870 break;
2871 default:
2872 assert(false && "unexpected relocation type");
2873 break;
2874 }
2875 break;
2876 default:
2877 GetModule()->ReportError("unsupported 32-bit ELF machine arch: {0}", hdr->e_machine);
2878 break;
2879 }
2880 } else {
2881 switch (hdr->e_machine) {
2882 case llvm::ELF::EM_AARCH64:
2883 switch (reloc_type(rel)) {
2884 case R_AARCH64_ABS64:
2885 ApplyELF64ABS64Relocation(symtab, rel, debug_data, rel_section);
2886 break;
2887 case R_AARCH64_ABS32:
2888 ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section, true);
2889 break;
2890 default:
2891 assert(false && "unexpected relocation type");
2892 }
2893 break;
2894 case llvm::ELF::EM_LOONGARCH:
2895 switch (reloc_type(rel)) {
2896 case R_LARCH_64:
2897 ApplyELF64ABS64Relocation(symtab, rel, debug_data, rel_section);
2898 break;
2899 case R_LARCH_32:
2900 ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section, true);
2901 break;
2902 default:
2903 assert(false && "unexpected relocation type");
2904 }
2905 break;
2906 case llvm::ELF::EM_X86_64:
2907 switch (reloc_type(rel)) {
2908 case R_X86_64_64:
2909 ApplyELF64ABS64Relocation(symtab, rel, debug_data, rel_section);
2910 break;
2911 case R_X86_64_32:
2912 ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section,
2913 false);
2914 break;
2915 case R_X86_64_32S:
2916 ApplyELF64ABS32Relocation(symtab, rel, debug_data, rel_section, true);
2917 break;
2918 case R_X86_64_PC32:
2919 default:
2920 assert(false && "unexpected relocation type");
2921 }
2922 break;
2923 default:
2924 GetModule()->ReportError("unsupported 64-bit ELF machine arch: {0}", hdr->e_machine);
2925 break;
2926 }
2927 }
2928 }
2929
2930 return 0;
2931}
2932
2934 user_id_t rel_id,
2935 lldb_private::Symtab *thetab) {
2936 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2937
2938 // Parse in the section list if needed.
2939 SectionList *section_list = GetSectionList();
2940 if (!section_list)
2941 return 0;
2942
2943 user_id_t symtab_id = rel_hdr->sh_link;
2944 user_id_t debug_id = rel_hdr->sh_info;
2945
2946 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2947 if (!symtab_hdr)
2948 return 0;
2949
2950 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2951 if (!debug_hdr)
2952 return 0;
2953
2954 Section *rel = section_list->FindSectionByID(rel_id).get();
2955 if (!rel)
2956 return 0;
2957
2958 Section *symtab = section_list->FindSectionByID(symtab_id).get();
2959 if (!symtab)
2960 return 0;
2961
2962 Section *debug = section_list->FindSectionByID(debug_id).get();
2963 if (!debug)
2964 return 0;
2965
2966 DataExtractor rel_data;
2967 DataExtractor symtab_data;
2968 DataExtractor debug_data;
2969
2970 if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) &&
2971 GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) &&
2972 GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) {
2973 ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr,
2974 rel_data, symtab_data, debug_data, debug);
2975 }
2976
2977 return 0;
2978}
2979
2981 ModuleSP module_sp(GetModule());
2982 if (!module_sp)
2983 return;
2984
2985 Progress progress("Parsing symbol table",
2986 m_file.GetFilename().AsCString("<Unknown>"));
2987 ElapsedTime elapsed(module_sp->GetSymtabParseTime());
2988
2989 // We always want to use the main object file so we (hopefully) only have one
2990 // cached copy of our symtab, dynamic sections, etc.
2991 ObjectFile *module_obj_file = module_sp->GetObjectFile();
2992 if (module_obj_file && module_obj_file != this)
2993 return module_obj_file->ParseSymtab(lldb_symtab);
2994
2995 SectionList *section_list = module_sp->GetSectionList();
2996 if (!section_list)
2997 return;
2998
2999 uint64_t symbol_id = 0;
3000
3001 // Sharable objects and dynamic executables usually have 2 distinct symbol
3002 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a
3003 // smaller version of the symtab that only contains global symbols. The
3004 // information found in the dynsym is therefore also found in the symtab,
3005 // while the reverse is not necessarily true.
3006 Section *symtab =
3007 section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get();
3008 if (symtab) {
3009 auto [num_symbols, address_class_map] =
3010 ParseSymbolTable(&lldb_symtab, symbol_id, symtab);
3011 m_address_class_map.merge(address_class_map);
3012 symbol_id += num_symbols;
3013 }
3014
3015 // The symtab section is non-allocable and can be stripped, while the
3016 // .dynsym section which should always be always be there. To support the
3017 // minidebuginfo case we parse .dynsym when there's a .gnu_debuginfo
3018 // section, nomatter if .symtab was already parsed or not. This is because
3019 // minidebuginfo normally removes the .symtab symbols which have their
3020 // matching .dynsym counterparts.
3021 if (!symtab ||
3022 GetSectionList()->FindSectionByName(ConstString(".gnu_debugdata"))) {
3023 Section *dynsym =
3025 .get();
3026 if (dynsym) {
3027 auto [num_symbols, address_class_map] =
3028 ParseSymbolTable(&lldb_symtab, symbol_id, dynsym);
3029 symbol_id += num_symbols;
3030 m_address_class_map.merge(address_class_map);
3031 } else {
3032 // Try and read the dynamic symbol table from the .dynamic section.
3033 uint32_t dynamic_num_symbols = 0;
3034 std::optional<DataExtractor> symtab_data =
3035 GetDynsymDataFromDynamic(dynamic_num_symbols);
3036 std::optional<DataExtractor> strtab_data = GetDynstrData();
3037 if (symtab_data && strtab_data) {
3038 auto [num_symbols_parsed, address_class_map] = ParseSymbols(
3039 &lldb_symtab, symbol_id, section_list, dynamic_num_symbols,
3040 symtab_data.value(), strtab_data.value());
3041 symbol_id += num_symbols_parsed;
3042 m_address_class_map.merge(address_class_map);
3043 }
3044 }
3045 }
3046
3047 // DT_JMPREL
3048 // If present, this entry's d_ptr member holds the address of
3049 // relocation
3050 // entries associated solely with the procedure linkage table.
3051 // Separating
3052 // these relocation entries lets the dynamic linker ignore them during
3053 // process initialization, if lazy binding is enabled. If this entry is
3054 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
3055 // also be present.
3056 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
3057 if (symbol) {
3058 // Synthesize trampoline symbols to help navigate the PLT.
3059 addr_t addr = symbol->d_ptr;
3060 Section *reloc_section =
3061 section_list->FindSectionContainingFileAddress(addr).get();
3062 if (reloc_section) {
3063 user_id_t reloc_id = reloc_section->GetID();
3064 const ELFSectionHeaderInfo *reloc_header =
3065 GetSectionHeaderByIndex(reloc_id);
3066 if (reloc_header)
3067 ParseTrampolineSymbols(&lldb_symtab, symbol_id, reloc_header, reloc_id);
3068 }
3069 }
3070
3071 if (DWARFCallFrameInfo *eh_frame =
3072 GetModule()->GetUnwindTable().GetEHFrameInfo()) {
3073 ParseUnwindSymbols(&lldb_symtab, eh_frame);
3074 }
3075
3076 // In the event that there's no symbol entry for the entry point we'll
3077 // artificially create one. We delegate to the symtab object the figuring
3078 // out of the proper size, this will usually make it span til the next
3079 // symbol it finds in the section. This means that if there are missing
3080 // symbols the entry point might span beyond its function definition.
3081 // We're fine with this as it doesn't make it worse than not having a
3082 // symbol entry at all.
3083 if (CalculateType() == eTypeExecutable) {
3084 ArchSpec arch = GetArchitecture();
3085 auto entry_point_addr = GetEntryPointAddress();
3086 bool is_valid_entry_point =
3087 entry_point_addr.IsValid() && entry_point_addr.IsSectionOffset();
3088 addr_t entry_point_file_addr = entry_point_addr.GetFileAddress();
3089 if (is_valid_entry_point && !lldb_symtab.FindSymbolContainingFileAddress(
3090 entry_point_file_addr)) {
3091 uint64_t symbol_id = lldb_symtab.GetNumSymbols();
3092 // Don't set the name for any synthetic symbols, the Symbol
3093 // object will generate one if needed when the name is accessed
3094 // via accessors.
3095 SectionSP section_sp = entry_point_addr.GetSection();
3096 Symbol symbol(
3097 /*symID=*/symbol_id,
3098 /*name=*/llvm::StringRef(), // Name will be auto generated.
3099 /*type=*/eSymbolTypeCode,
3100 /*external=*/true,
3101 /*is_debug=*/false,
3102 /*is_trampoline=*/false,
3103 /*is_artificial=*/true,
3104 /*section_sp=*/section_sp,
3105 /*offset=*/0,
3106 /*size=*/0, // FDE can span multiple symbols so don't use its size.
3107 /*size_is_valid=*/false,
3108 /*contains_linker_annotations=*/false,
3109 /*flags=*/0);
3110 // When the entry point is arm thumb we need to explicitly set its
3111 // class address to reflect that. This is important because expression
3112 // evaluation relies on correctly setting a breakpoint at this
3113 // address.
3114 if (arch.GetMachine() == llvm::Triple::arm &&
3115 (entry_point_file_addr & 1)) {
3116 symbol.GetAddressRef().SetOffset(entry_point_addr.GetOffset() ^ 1);
3117 m_address_class_map[entry_point_file_addr ^ 1] =
3119 } else {
3120 m_address_class_map[entry_point_file_addr] = AddressClass::eCode;
3121 }
3122 lldb_symtab.AddSymbol(symbol);
3123 }
3124 }
3125}
3126
3128{
3129 static const char *debug_prefix = ".debug";
3130
3131 // Set relocated bit so we stop getting called, regardless of whether we
3132 // actually relocate.
3133 section->SetIsRelocated(true);
3134
3135 // We only relocate in ELF relocatable files
3137 return;
3138
3139 const char *section_name = section->GetName().GetCString();
3140 // Can't relocate that which can't be named
3141 if (section_name == nullptr)
3142 return;
3143
3144 // We don't relocate non-debug sections at the moment
3145 if (strncmp(section_name, debug_prefix, strlen(debug_prefix)))
3146 return;
3147
3148 // Relocation section names to look for
3149 std::string needle = std::string(".rel") + section_name;
3150 std::string needlea = std::string(".rela") + section_name;
3151
3153 I != m_section_headers.end(); ++I) {
3154 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) {
3155 const char *hay_name = I->section_name.GetCString();
3156 if (hay_name == nullptr)
3157 continue;
3158 if (needle == hay_name || needlea == hay_name) {
3159 const ELFSectionHeader &reloc_header = *I;
3160 user_id_t reloc_id = SectionIndex(I);
3161 RelocateDebugSections(&reloc_header, reloc_id, GetSymtab());
3162 break;
3163 }
3164 }
3165 }
3166}
3167
3169 DWARFCallFrameInfo *eh_frame) {
3170 SectionList *section_list = GetSectionList();
3171 if (!section_list)
3172 return;
3173
3174 // First we save the new symbols into a separate list and add them to the
3175 // symbol table after we collected all symbols we want to add. This is
3176 // neccessary because adding a new symbol invalidates the internal index of
3177 // the symtab what causing the next lookup to be slow because it have to
3178 // recalculate the index first.
3179 std::vector<Symbol> new_symbols;
3180
3181 size_t num_symbols = symbol_table->GetNumSymbols();
3182 uint64_t last_symbol_id =
3183 num_symbols ? symbol_table->SymbolAtIndex(num_symbols - 1)->GetID() : 0;
3184 eh_frame->ForEachFDEEntries([&](lldb::addr_t file_addr, uint32_t size,
3185 dw_offset_t) {
3186 Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr);
3187 if (symbol) {
3188 if (!symbol->GetByteSizeIsValid()) {
3189 symbol->SetByteSize(size);
3190 symbol->SetSizeIsSynthesized(true);
3191 }
3192 } else {
3193 SectionSP section_sp =
3194 section_list->FindSectionContainingFileAddress(file_addr);
3195 if (section_sp) {
3196 addr_t offset = file_addr - section_sp->GetFileAddress();
3197 uint64_t symbol_id = ++last_symbol_id;
3198 // Don't set the name for any synthetic symbols, the Symbol
3199 // object will generate one if needed when the name is accessed
3200 // via accessors.
3201 Symbol eh_symbol(
3202 /*symID=*/symbol_id,
3203 /*name=*/llvm::StringRef(), // Name will be auto generated.
3204 /*type=*/eSymbolTypeCode,
3205 /*external=*/true,
3206 /*is_debug=*/false,
3207 /*is_trampoline=*/false,
3208 /*is_artificial=*/true,
3209 /*section_sp=*/section_sp,
3210 /*offset=*/offset,
3211 /*size=*/0, // FDE can span multiple symbols so don't use its size.
3212 /*size_is_valid=*/false,
3213 /*contains_linker_annotations=*/false,
3214 /*flags=*/0);
3215 new_symbols.push_back(eh_symbol);
3216 }
3217 }
3218 return true;
3219 });
3220
3221 for (const Symbol &s : new_symbols)
3222 symbol_table->AddSymbol(s);
3223}
3224
3226 // TODO: determine this for ELF
3227 return false;
3228}
3229
3230//===----------------------------------------------------------------------===//
3231// Dump
3232//
3233// Dump the specifics of the runtime file container (such as any headers
3234// segments, sections, etc).
3236 ModuleSP module_sp(GetModule());
3237 if (!module_sp) {
3238 return;
3239 }
3240
3241 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
3242 s->Printf("%p: ", static_cast<void *>(this));
3243 s->Indent();
3244 s->PutCString("ObjectFileELF");
3245
3246 ArchSpec header_arch = GetArchitecture();
3247
3248 *s << ", file = '" << m_file
3249 << "', arch = " << header_arch.GetArchitectureName();
3251 s->Printf(", addr = %#16.16" PRIx64, m_memory_addr);
3252 s->EOL();
3253
3255 s->EOL();
3257 s->EOL();
3259 s->EOL();
3260 SectionList *section_list = GetSectionList();
3261 if (section_list)
3262 section_list->Dump(s->AsRawOstream(), s->GetIndentLevel(), nullptr, true,
3263 UINT32_MAX);
3264 Symtab *symtab = GetSymtab();
3265 if (symtab)
3266 symtab->Dump(s, nullptr, eSortOrderNone);
3267 s->EOL();
3269 s->EOL();
3270 DumpELFDynamic(s);
3271 s->EOL();
3272 Address image_info_addr = GetImageInfoAddress(nullptr);
3273 if (image_info_addr.IsValid())
3274 s->Printf("image_info_address = %#16.16" PRIx64 "\n",
3275 image_info_addr.GetFileAddress());
3276}
3277
3278// DumpELFHeader
3279//
3280// Dump the ELF header to the specified output stream
3282 s->PutCString("ELF Header\n");
3283 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
3284 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1],
3285 header.e_ident[EI_MAG1]);
3286 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2],
3287 header.e_ident[EI_MAG2]);
3288 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3],
3289 header.e_ident[EI_MAG3]);
3290
3291 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
3292 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]);
3293 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
3294 s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
3295 s->Printf("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
3296
3297 s->Printf("e_type = 0x%4.4x ", header.e_type);
3298 DumpELFHeader_e_type(s, header.e_type);
3299 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine);
3300 s->Printf("e_version = 0x%8.8x\n", header.e_version);
3301 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry);
3302 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff);
3303 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff);
3304 s->Printf("e_flags = 0x%8.8x\n", header.e_flags);
3305 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize);
3306 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
3307 s->Printf("e_phnum = 0x%8.8x\n", header.e_phnum);
3308 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
3309 s->Printf("e_shnum = 0x%8.8x\n", header.e_shnum);
3310 s->Printf("e_shstrndx = 0x%8.8x\n", header.e_shstrndx);
3311}
3312
3313// DumpELFHeader_e_type
3314//
3315// Dump an token value for the ELF header member e_type
3317 switch (e_type) {
3318 case ET_NONE:
3319 *s << "ET_NONE";
3320 break;
3321 case ET_REL:
3322 *s << "ET_REL";
3323 break;
3324 case ET_EXEC:
3325 *s << "ET_EXEC";
3326 break;
3327 case ET_DYN:
3328 *s << "ET_DYN";
3329 break;
3330 case ET_CORE:
3331 *s << "ET_CORE";
3332 break;
3333 default:
3334 break;
3335 }
3336}
3337
3338// DumpELFHeader_e_ident_EI_DATA
3339//
3340// Dump an token value for the ELF header member e_ident[EI_DATA]
3342 unsigned char ei_data) {
3343 switch (ei_data) {
3344 case ELFDATANONE:
3345 *s << "ELFDATANONE";
3346 break;
3347 case ELFDATA2LSB:
3348 *s << "ELFDATA2LSB - Little Endian";
3349 break;
3350 case ELFDATA2MSB:
3351 *s << "ELFDATA2MSB - Big Endian";
3352 break;
3353 default:
3354 break;
3355 }
3356}
3357
3358// DumpELFProgramHeader
3359//
3360// Dump a single ELF program header to the specified output stream
3362 const ELFProgramHeader &ph) {
3364 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset,
3365 ph.p_vaddr, ph.p_paddr);
3366 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz,
3367 ph.p_flags);
3368
3370 s->Printf(") %8.8" PRIx64, ph.p_align);
3371}
3372
3373// DumpELFProgramHeader_p_type
3374//
3375// Dump an token value for the ELF program header member p_type which describes
3376// the type of the program header
3378 const int kStrWidth = 15;
3379 switch (p_type) {
3380 CASE_AND_STREAM(s, PT_NULL, kStrWidth);
3381 CASE_AND_STREAM(s, PT_LOAD, kStrWidth);
3382 CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth);
3383 CASE_AND_STREAM(s, PT_INTERP, kStrWidth);
3384 CASE_AND_STREAM(s, PT_NOTE, kStrWidth);
3385 CASE_AND_STREAM(s, PT_SHLIB, kStrWidth);
3386 CASE_AND_STREAM(s, PT_PHDR, kStrWidth);
3387 CASE_AND_STREAM(s, PT_TLS, kStrWidth);
3388 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
3389 default:
3390 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
3391 break;
3392 }
3393}
3394
3395// DumpELFProgramHeader_p_flags
3396//
3397// Dump an token value for the ELF program header member p_flags
3399 *s << ((p_flags & PF_X) ? "PF_X" : " ")
3400 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
3401 << ((p_flags & PF_W) ? "PF_W" : " ")
3402 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
3403 << ((p_flags & PF_R) ? "PF_R" : " ");
3404}
3405
3406// DumpELFProgramHeaders
3407//
3408// Dump all of the ELF program header to the specified output stream
3410 if (!ParseProgramHeaders())
3411 return;
3412
3413 s->PutCString("Program Headers\n");
3414 s->PutCString("IDX p_type p_offset p_vaddr p_paddr "
3415 "p_filesz p_memsz p_flags p_align\n");
3416 s->PutCString("==== --------------- -------- -------- -------- "
3417 "-------- -------- ------------------------- --------\n");
3418
3419 for (const auto &H : llvm::enumerate(m_program_headers)) {
3420 s->Format("[{0,2}] ", H.index());
3422 s->EOL();
3423 }
3424}
3425
3426// DumpELFSectionHeader
3427//
3428// Dump a single ELF section header to the specified output stream
3430 const ELFSectionHeaderInfo &sh) {
3431 s->Printf("%8.8x ", sh.sh_name);
3433 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
3435 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr,
3436 sh.sh_offset, sh.sh_size);
3437 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
3438 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
3439}
3440
3441// DumpELFSectionHeader_sh_type
3442//
3443// Dump an token value for the ELF section header member sh_type which
3444// describes the type of the section
3446 const int kStrWidth = 12;
3447 switch (sh_type) {
3448 CASE_AND_STREAM(s, SHT_NULL, kStrWidth);
3449 CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth);
3450 CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth);
3451 CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth);
3452 CASE_AND_STREAM(s, SHT_RELA, kStrWidth);
3453 CASE_AND_STREAM(s, SHT_HASH, kStrWidth);
3454 CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth);
3455 CASE_AND_STREAM(s, SHT_NOTE, kStrWidth);
3456 CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth);
3457 CASE_AND_STREAM(s, SHT_REL, kStrWidth);
3458 CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth);
3459 CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth);
3460 CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth);
3461 CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth);
3462 CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth);
3463 CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth);
3464 default:
3465 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
3466 break;
3467 }
3468}
3469
3470// DumpELFSectionHeader_sh_flags
3471//
3472// Dump an token value for the ELF section header member sh_flags
3474 elf_xword sh_flags) {
3475 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ")
3476 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
3477 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ")
3478 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
3479 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " ");
3480}
3481
3482// DumpELFSectionHeaders
3483//
3484// Dump all of the ELF section header to the specified output stream
3486 if (!ParseSectionHeaders())
3487 return;
3488
3489 s->PutCString("Section Headers\n");
3490 s->PutCString("IDX name type flags "
3491 "addr offset size link info addralgn "
3492 "entsize Name\n");
3493 s->PutCString("==== -------- ------------ -------------------------------- "
3494 "-------- -------- -------- -------- -------- -------- "
3495 "-------- ====================\n");
3496
3497 uint32_t idx = 0;
3499 I != m_section_headers.end(); ++I, ++idx) {
3500 s->Printf("[%2u] ", idx);
3502 const char *section_name = I->section_name.AsCString("");
3503 if (section_name)
3504 *s << ' ' << section_name << "\n";
3505 }
3506}
3507
3509 size_t num_modules = ParseDependentModules();
3510
3511 if (num_modules > 0) {
3512 s->PutCString("Dependent Modules:\n");
3513 for (unsigned i = 0; i < num_modules; ++i) {
3514 const FileSpec &spec = m_filespec_up->GetFileSpecAtIndex(i);
3515 s->Printf(" %s\n", spec.GetFilename().GetCString());
3516 }
3517 }
3518}
3519
3520std::string static getDynamicTagAsString(uint16_t Arch, uint64_t Type) {
3521#define DYNAMIC_STRINGIFY_ENUM(tag, value) \
3522 case value: \
3523 return #tag;
3524
3525#define DYNAMIC_TAG(n, v)
3526 switch (Arch) {
3527 case llvm::ELF::EM_AARCH64:
3528 switch (Type) {
3529#define AARCH64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
3530#include "llvm/BinaryFormat/DynamicTags.def"
3531#undef AARCH64_DYNAMIC_TAG
3532 }
3533 break;
3534
3535 case llvm::ELF::EM_HEXAGON:
3536 switch (Type) {
3537#define HEXAGON_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
3538#include "llvm/BinaryFormat/DynamicTags.def"
3539#undef HEXAGON_DYNAMIC_TAG
3540 }
3541 break;
3542
3543 case llvm::ELF::EM_MIPS:
3544 switch (Type) {
3545#define MIPS_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
3546#include "llvm/BinaryFormat/DynamicTags.def"
3547#undef MIPS_DYNAMIC_TAG
3548 }
3549 break;
3550
3551 case llvm::ELF::EM_PPC:
3552 switch (Type) {
3553#define PPC_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
3554#include "llvm/BinaryFormat/DynamicTags.def"
3555#undef PPC_DYNAMIC_TAG
3556 }
3557 break;
3558
3559 case llvm::ELF::EM_PPC64:
3560 switch (Type) {
3561#define PPC64_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
3562#include "llvm/BinaryFormat/DynamicTags.def"
3563#undef PPC64_DYNAMIC_TAG
3564 }
3565 break;
3566
3567 case llvm::ELF::EM_RISCV:
3568 switch (Type) {
3569#define RISCV_DYNAMIC_TAG(name, value) DYNAMIC_STRINGIFY_ENUM(name, value)
3570#include "llvm/BinaryFormat/DynamicTags.def"
3571#undef RISCV_DYNAMIC_TAG
3572 }
3573 break;
3574 }
3575#undef DYNAMIC_TAG
3576 switch (Type) {
3577// Now handle all dynamic tags except the architecture specific ones
3578#define AARCH64_DYNAMIC_TAG(name, value)
3579#define MIPS_DYNAMIC_TAG(name, value)
3580#define HEXAGON_DYNAMIC_TAG(name, value)
3581#define PPC_DYNAMIC_TAG(name, value)
3582#define PPC64_DYNAMIC_TAG(name, value)
3583#define RISCV_DYNAMIC_TAG(name, value)
3584// Also ignore marker tags such as DT_HIOS (maps to DT_VERNEEDNUM), etc.
3585#define DYNAMIC_TAG_MARKER(name, value)
3586#define DYNAMIC_TAG(name, value) \
3587 case value: \
3588 return #name;
3589#include "llvm/BinaryFormat/DynamicTags.def"
3590#undef DYNAMIC_TAG
3591#undef AARCH64_DYNAMIC_TAG
3592#undef MIPS_DYNAMIC_TAG
3593#undef HEXAGON_DYNAMIC_TAG
3594#undef PPC_DYNAMIC_TAG
3595#undef PPC64_DYNAMIC_TAG
3596#undef RISCV_DYNAMIC_TAG
3597#undef DYNAMIC_TAG_MARKER
3598#undef DYNAMIC_STRINGIFY_ENUM
3599 default:
3600 return "<unknown:>0x" + llvm::utohexstr(Type, true);
3601 }
3602}
3603
3606 if (m_dynamic_symbols.empty())
3607 return;
3608
3609 s->PutCString(".dynamic:\n");
3610 s->PutCString("IDX d_tag d_val/d_ptr\n");
3611 s->PutCString("==== ---------------- ------------------\n");
3612 uint32_t idx = 0;
3613 for (const auto &entry : m_dynamic_symbols) {
3614 s->Printf("[%2u] ", idx++);
3615 s->Printf(
3616 "%-16s 0x%16.16" PRIx64,
3617 getDynamicTagAsString(m_header.e_machine, entry.symbol.d_tag).c_str(),
3618 entry.symbol.d_ptr);
3619 if (!entry.name.empty())
3620 s->Printf(" \"%s\"", entry.name.c_str());
3621 s->EOL();
3622 }
3623}
3624
3626 if (!ParseHeader())
3627 return ArchSpec();
3628
3629 if (m_section_headers.empty()) {
3630 // Allow elf notes to be parsed which may affect the detected architecture.
3632 }
3633
3634 if (CalculateType() == eTypeCoreFile &&
3635 !m_arch_spec.TripleOSWasSpecified()) {
3636 // Core files don't have section headers yet they have PT_NOTE program
3637 // headers that might shed more light on the architecture
3638 for (const elf::ELFProgramHeader &H : ProgramHeaders()) {
3639 if (H.p_type != PT_NOTE || H.p_offset == 0 || H.p_filesz == 0)
3640 continue;
3641 DataExtractor data;
3642 if (data.SetData(m_data, H.p_offset, H.p_filesz) == H.p_filesz) {
3643 UUID uuid;
3645 }
3646 }
3647 }
3648 return m_arch_spec;
3649}
3650
3652 switch (m_header.e_type) {
3653 case llvm::ELF::ET_NONE:
3654 // 0 - No file type
3655 return eTypeUnknown;
3656
3657 case llvm::ELF::ET_REL:
3658 // 1 - Relocatable file
3659 return eTypeObjectFile;
3660
3661 case llvm::ELF::ET_EXEC:
3662 // 2 - Executable file
3663 return eTypeExecutable;
3664
3665 case llvm::ELF::ET_DYN:
3666 // 3 - Shared object file
3667 return eTypeSharedLibrary;
3668
3669 case ET_CORE:
3670 // 4 - Core file
3671 return eTypeCoreFile;
3672
3673 default:
3674 break;
3675 }
3676 return eTypeUnknown;
3677}
3678
3680 switch (m_header.e_type) {
3681 case llvm::ELF::ET_NONE:
3682 // 0 - No file type
3683 return eStrataUnknown;
3684
3685 case llvm::ELF::ET_REL:
3686 // 1 - Relocatable file
3687 return eStrataUnknown;
3688
3689 case llvm::ELF::ET_EXEC:
3690 // 2 - Executable file
3691 {
3692 SectionList *section_list = GetSectionList();
3693 if (section_list) {
3694 static ConstString loader_section_name(".interp");
3695 SectionSP loader_section =
3696 section_list->FindSectionByName(loader_section_name);
3697 if (loader_section) {
3698 char buffer[256];
3699 size_t read_size =
3700 ReadSectionData(loader_section.get(), 0, buffer, sizeof(buffer));
3701
3702 // We compare the content of .interp section
3703 // It will contains \0 when counting read_size, so the size needs to
3704 // decrease by one
3705 llvm::StringRef loader_name(buffer, read_size - 1);
3706 llvm::StringRef freebsd_kernel_loader_name("/red/herring");
3707 if (loader_name == freebsd_kernel_loader_name)
3708 return eStrataKernel;
3709 }
3710 }
3711 return eStrataUser;
3712 }
3713
3714 case llvm::ELF::ET_DYN:
3715 // 3 - Shared object file
3716 // TODO: is there any way to detect that an shared library is a kernel
3717 // related executable by inspecting the program headers, section headers,
3718 // symbols, or any other flag bits???
3719 return eStrataUnknown;
3720
3721 case ET_CORE:
3722 // 4 - Core file
3723 // TODO: is there any way to detect that an core file is a kernel
3724 // related executable by inspecting the program headers, section headers,
3725 // symbols, or any other flag bits???
3726 return eStrataUnknown;
3727
3728 default:
3729 break;
3730 }
3731 return eStrataUnknown;
3732}
3733
3735 lldb::offset_t section_offset, void *dst,
3736 size_t dst_len) {
3737 // If some other objectfile owns this data, pass this to them.
3738 if (section->GetObjectFile() != this)
3739 return section->GetObjectFile()->ReadSectionData(section, section_offset,
3740 dst, dst_len);
3741
3742 if (!section->Test(SHF_COMPRESSED))
3743 return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len);
3744
3745 // For compressed sections we need to read to full data to be able to
3746 // decompress.
3747 DataExtractor data;
3748 ReadSectionData(section, data);
3749 return data.CopyData(section_offset, dst_len, dst);
3750}
3751
3753 DataExtractor &section_data) {
3754 // If some other objectfile owns this data, pass this to them.
3755 if (section->GetObjectFile() != this)
3756 return section->GetObjectFile()->ReadSectionData(section, section_data);
3757
3758 size_t result = ObjectFile::ReadSectionData(section, section_data);
3759 if (result == 0 || !(section->Get() & llvm::ELF::SHF_COMPRESSED))
3760 return result;
3761
3762 auto Decompressor = llvm::object::Decompressor::create(
3763 section->GetName().GetStringRef(),
3764 {reinterpret_cast<const char *>(section_data.GetDataStart()),
3765 size_t(section_data.GetByteSize())},
3767 if (!Decompressor) {
3768 GetModule()->ReportWarning(
3769 "Unable to initialize decompressor for section '{0}': {1}",
3770 section->GetName().GetCString(),
3771 llvm::toString(Decompressor.takeError()).c_str());
3772 section_data.Clear();
3773 return 0;
3774 }
3775
3776 auto buffer_sp =
3777 std::make_shared<DataBufferHeap>(Decompressor->getDecompressedSize(), 0);
3778 if (auto error = Decompressor->decompress(
3779 {buffer_sp->GetBytes(), size_t(buffer_sp->GetByteSize())})) {
3780 GetModule()->ReportWarning("Decompression of section '{0}' failed: {1}",
3781 section->GetName().GetCString(),
3782 llvm::toString(std::move(error)).c_str());
3783 section_data.Clear();
3784 return 0;
3785 }
3786
3787 section_data.SetData(buffer_sp);
3788 return buffer_sp->GetByteSize();
3789}
3790
3791llvm::ArrayRef<ELFProgramHeader> ObjectFileELF::ProgramHeaders() {
3793 return m_program_headers;
3794}
3795
3797 // Try and read the program header from our cached m_data which can come from
3798 // the file on disk being mmap'ed or from the initial part of the ELF file we
3799 // read from memory and cached.
3801 if (data.GetByteSize() == H.p_filesz)
3802 return data;
3803 if (IsInMemory()) {
3804 // We have a ELF file in process memory, read the program header data from
3805 // the process.
3806 if (ProcessSP process_sp = m_process_wp.lock()) {
3807 const lldb::offset_t base_file_addr = GetBaseAddress().GetFileAddress();
3808 const addr_t load_bias = m_memory_addr - base_file_addr;
3809 const addr_t data_addr = H.p_vaddr + load_bias;
3810 if (DataBufferSP data_sp = ReadMemory(process_sp, data_addr, H.p_memsz))
3811 return DataExtractor(data_sp, GetByteOrder(), GetAddressByteSize());
3812 }
3813 }
3814 return DataExtractor();
3815}
3816
3818 for (const ELFProgramHeader &H : ProgramHeaders()) {
3819 if (H.p_paddr != 0)
3820 return true;
3821 }
3822 return false;
3823}
3824
3825std::vector<ObjectFile::LoadableData>
3827 // Create a list of loadable data from loadable segments, using physical
3828 // addresses if they aren't all null
3829 std::vector<LoadableData> loadables;
3830 bool should_use_paddr = AnySegmentHasPhysicalAddress();
3831 for (const ELFProgramHeader &H : ProgramHeaders()) {
3832 LoadableData loadable;
3833 if (H.p_type != llvm::ELF::PT_LOAD)
3834 continue;
3835 loadable.Dest = should_use_paddr ? H.p_paddr : H.p_vaddr;
3836 if (loadable.Dest == LLDB_INVALID_ADDRESS)
3837 continue;
3838 if (H.p_filesz == 0)
3839 continue;
3840 auto segment_data = GetSegmentData(H);
3841 loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(),
3842 segment_data.GetByteSize());
3843 loadables.push_back(loadable);
3844 }
3845 return loadables;
3846}
3847
3850 uint64_t Offset) {
3852 Offset);
3853}
3854
3855std::optional<DataExtractor>
3857 uint64_t offset) {
3858 // ELFDynamic values contain a "d_ptr" member that will be a load address if
3859 // we have an ELF file read from memory, or it will be a file address if it
3860 // was read from a ELF file. This function will correctly fetch data pointed
3861 // to by the ELFDynamic::d_ptr, or return std::nullopt if the data isn't
3862 // available.
3863 const lldb::addr_t d_ptr_addr = dyn->d_ptr + offset;
3864 if (ProcessSP process_sp = m_process_wp.lock()) {
3865 if (DataBufferSP data_sp = ReadMemory(process_sp, d_ptr_addr, length))
3866 return DataExtractor(data_sp, GetByteOrder(), GetAddressByteSize());
3867 } else {
3868 // We have an ELF file with no section headers or we didn't find the
3869 // .dynamic section. Try and find the .dynstr section.
3870 Address addr;
3871 if (!addr.ResolveAddressUsingFileSections(d_ptr_addr, GetSectionList()))
3872 return std::nullopt;
3873 DataExtractor data;
3874 addr.GetSection()->GetSectionData(data);
3875 return DataExtractor(data, d_ptr_addr - addr.GetSection()->GetFileAddress(),
3876 length);
3877 }
3878 return std::nullopt;
3879}
3880
3881std::optional<DataExtractor> ObjectFileELF::GetDynstrData() {
3882 if (SectionList *section_list = GetSectionList()) {
3883 // Find the SHT_DYNAMIC section.
3884 if (Section *dynamic =
3885 section_list
3886 ->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
3887 .get()) {
3888 assert(dynamic->GetObjectFile() == this);
3889 if (const ELFSectionHeaderInfo *header =
3890 GetSectionHeaderByIndex(dynamic->GetID())) {
3891 // sh_link: section header index of string table used by entries in
3892 // the section.
3893 if (Section *dynstr =
3894 section_list->FindSectionByID(header->sh_link).get()) {
3895 DataExtractor data;
3896 if (ReadSectionData(dynstr, data))
3897 return data;
3898 }
3899 }
3900 }
3901 }
3902
3903 // Every ELF file which represents an executable or shared library has
3904 // mandatory .dynamic entries. Two of these values are DT_STRTAB and DT_STRSZ
3905 // and represent the dynamic symbol tables's string table. These are needed
3906 // by the dynamic loader and we can read them from a process' address space.
3907 //
3908 // When loading and ELF file from memory, only the program headers are
3909 // guaranteed end up being mapped into memory, and we can find these values in
3910 // the PT_DYNAMIC segment.
3911 const ELFDynamic *strtab = FindDynamicSymbol(DT_STRTAB);
3912 const ELFDynamic *strsz = FindDynamicSymbol(DT_STRSZ);
3913 if (strtab == nullptr || strsz == nullptr)
3914 return std::nullopt;
3915
3916 return ReadDataFromDynamic(strtab, strsz->d_val, /*offset=*/0);
3917}
3918
3919std::optional<lldb_private::DataExtractor> ObjectFileELF::GetDynamicData() {
3920 DataExtractor data;
3921 // The PT_DYNAMIC program header describes where the .dynamic section is and
3922 // doesn't require parsing section headers. The PT_DYNAMIC is required by
3923 // executables and shared libraries so it will always be available.
3924 for (const ELFProgramHeader &H : ProgramHeaders()) {
3925 if (H.p_type == llvm::ELF::PT_DYNAMIC) {
3926 data = GetSegmentData(H);
3927 if (data.GetByteSize() > 0) {
3928 m_dynamic_base_addr = H.p_vaddr;
3929 return data;
3930 }
3931 }
3932 }
3933 // Fall back to using section headers.
3934 if (SectionList *section_list = GetSectionList()) {
3935 // Find the SHT_DYNAMIC section.
3936 if (Section *dynamic =
3937 section_list
3938 ->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
3939 .get()) {
3940 assert(dynamic->GetObjectFile() == this);
3941 if (ReadSectionData(dynamic, data)) {
3942 m_dynamic_base_addr = dynamic->GetFileAddress();
3943 return data;
3944 }
3945 }
3946 }
3947 return std::nullopt;
3948}
3949
3951 const ELFDynamic *hash = FindDynamicSymbol(DT_HASH);
3952 if (hash == nullptr)
3953 return std::nullopt;
3954
3955 // The DT_HASH header looks like this:
3956 struct DtHashHeader {
3957 uint32_t nbucket;
3958 uint32_t nchain;
3959 };
3960 if (auto data = ReadDataFromDynamic(hash, 8)) {
3961 // We don't need the number of buckets value "nbucket", we just need the
3962 // "nchain" value which contains the number of symbols.
3963 offset_t offset = offsetof(DtHashHeader, nchain);
3964 return data->GetU32(&offset);
3965 }
3966
3967 return std::nullopt;
3968}
3969
3971 const ELFDynamic *gnu_hash = FindDynamicSymbol(DT_GNU_HASH);
3972 if (gnu_hash == nullptr)
3973 return std::nullopt;
3974
3975 // Create a DT_GNU_HASH header
3976 // https://flapenguin.me/elf-dt-gnu-hash
3977 struct DtGnuHashHeader {
3978 uint32_t nbuckets = 0;
3979 uint32_t symoffset = 0;
3980 uint32_t bloom_size = 0;
3981 uint32_t bloom_shift = 0;
3982 };
3983 uint32_t num_symbols = 0;
3984 // Read enogh data for the DT_GNU_HASH header so we can extract the values.
3985 if (auto data = ReadDataFromDynamic(gnu_hash, sizeof(DtGnuHashHeader))) {
3986 offset_t offset = 0;
3987 DtGnuHashHeader header;
3988 header.nbuckets = data->GetU32(&offset);
3989 header.symoffset = data->GetU32(&offset);
3990 header.bloom_size = data->GetU32(&offset);
3991 header.bloom_shift = data->GetU32(&offset);
3992 const size_t addr_size = GetAddressByteSize();
3993 const addr_t buckets_offset =
3994 sizeof(DtGnuHashHeader) + addr_size * header.bloom_size;
3995 std::vector<uint32_t> buckets;
3996 if (auto bucket_data = ReadDataFromDynamic(gnu_hash, header.nbuckets * 4,
3997 buckets_offset)) {
3998 offset = 0;
3999 for (uint32_t i = 0; i < header.nbuckets; ++i)
4000 buckets.push_back(bucket_data->GetU32(&offset));
4001 // Locate the chain that handles the largest index bucket.
4002 uint32_t last_symbol = 0;
4003 for (uint32_t bucket_value : buckets)
4004 last_symbol = std::max(bucket_value, last_symbol);
4005 if (last_symbol < header.symoffset) {
4006 num_symbols = header.symoffset;
4007 } else {
4008 // Walk the bucket's chain to add the chain length to the total.
4009 const addr_t chains_base_offset = buckets_offset + header.nbuckets * 4;
4010 for (;;) {
4011 if (auto chain_entry_data = ReadDataFromDynamic(
4012 gnu_hash, 4,
4013 chains_base_offset + (last_symbol - header.symoffset) * 4)) {
4014 offset = 0;
4015 uint32_t chain_entry = chain_entry_data->GetU32(&offset);
4016 ++last_symbol;
4017 // If the low bit is set, this entry is the end of the chain.
4018 if (chain_entry & 1)
4019 break;
4020 } else {
4021 break;
4022 }
4023 }
4024 num_symbols = last_symbol;
4025 }
4026 }
4027 }
4028 if (num_symbols > 0)
4029 return num_symbols;
4030
4031 return std::nullopt;
4032}
4033
4034std::optional<DataExtractor>
4036 // Every ELF file which represents an executable or shared library has
4037 // mandatory .dynamic entries. The DT_SYMTAB value contains a pointer to the
4038 // symbol table, and DT_SYMENT contains the size of a symbol table entry.
4039 // We then can use either the DT_HASH or DT_GNU_HASH to find the number of
4040 // symbols in the symbol table as the symbol count is not stored in the
4041 // .dynamic section as a key/value pair.
4042 //
4043 // When loading and ELF file from memory, only the program headers end up
4044 // being mapped into memory, and we can find these values in the PT_DYNAMIC
4045 // segment.
4046 num_symbols = 0;
4047 // Get the process in case this is an in memory ELF file.
4048 ProcessSP process_sp(m_process_wp.lock());
4049 const ELFDynamic *symtab = FindDynamicSymbol(DT_SYMTAB);
4050 const ELFDynamic *syment = FindDynamicSymbol(DT_SYMENT);
4051 // DT_SYMTAB and DT_SYMENT are mandatory.
4052 if (symtab == nullptr || syment == nullptr)
4053 return std::nullopt;
4054
4055 if (std::optional<uint32_t> syms = GetNumSymbolsFromDynamicHash())
4056 num_symbols = *syms;
4057 else if (std::optional<uint32_t> syms = GetNumSymbolsFromDynamicGnuHash())
4058 num_symbols = *syms;
4059 else
4060 return std::nullopt;
4061 if (num_symbols == 0)
4062 return std::nullopt;
4063 return ReadDataFromDynamic(symtab, syment->d_val * num_symbols);
4064}
static llvm::raw_ostream & error(Stream &strm)
static llvm::raw_ostream & note(Stream &strm)
#define LLDB_LOG(log,...)
The LLDB_LOG* macros defined below are the way to emit log messages.
Definition Log.h:369
#define LLDB_LOGF(log,...)
Definition Log.h:376
static void ApplyELF64ABS32Relocation(Symtab *symtab, ELFRelocation &rel, DataExtractor &debug_data, Section *rel_section, bool is_signed)
static const elf_word LLDB_NT_NETBSD_IDENT_DESCSZ
static const char *const LLDB_NT_OWNER_NETBSDCORE
static const elf_word LLDB_NT_FREEBSD_ABI_TAG
static std::string getDynamicTagAsString(uint16_t Arch, uint64_t Type)
static uint32_t riscvVariantFromElfFlags(const elf::ELFHeader &header)
static const elf_word LLDB_NT_GNU_ABI_OS_LINUX
static uint32_t ppc64VariantFromElfFlags(const elf::ELFHeader &header)
static bool GetOsFromOSABI(unsigned char osabi_byte, llvm::Triple::OSType &ostype)
#define _MAKE_OSABI_CASE(x)
static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header)
static uint32_t calc_crc32(uint32_t init, const DataExtractor &data)
static char FindArmAarch64MappingSymbol(const char *symbol_name)
static const char *const LLDB_NT_OWNER_CORE
static const elf_word LLDB_NT_NETBSD_IDENT_TAG
static const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS
static std::pair< uint64_t, uint64_t > GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr, const ELFSectionHeader *plt_hdr)
static SectionType GetSectionTypeFromName(llvm::StringRef Name)
static const elf_word LLDB_NT_FREEBSD_ABI_SIZE
static const elf_word LLDB_NT_GNU_ABI_TAG
static char FindRISCVMappingSymbol(const char *symbol_name)
static SectionSP FindMatchingSection(const SectionList &section_list, SectionSP section)
static const char *const LLDB_NT_OWNER_GNU
static const elf_word LLDB_NT_NETBSD_PROCINFO
#define CASE_AND_STREAM(s, def, width)
static user_id_t SegmentID(size_t PHdrIndex)
static void ApplyELF32ABS32RelRelocation(Symtab *symtab, ELFRelocation &rel, DataExtractor &debug_data, Section *rel_section)
static const elf_word LLDB_NT_GNU_ABI_SIZE
static uint32_t GetTargetByteSize(SectionType Type, const ArchSpec &arch)
static const char *const LLDB_NT_OWNER_OPENBSD
static const char *const LLDB_NT_OWNER_FREEBSD
static const char *const LLDB_NT_OWNER_LINUX
static const char * OSABIAsCString(unsigned char osabi_byte)
static Permissions GetPermissions(const ELFSectionHeader &H)
static const char *const LLDB_NT_OWNER_ANDROID
#define IS_MICROMIPS(ST_OTHER)
static const elf_word LLDB_NT_NETBSD_IDENT_NAMESZ
static uint32_t loongarchVariantFromElfFlags(const elf::ELFHeader &header)
static const elf_word LLDB_NT_GNU_ABI_OS_HURD
static uint32_t mipsVariantFromElfFlags(const elf::ELFHeader &header)
static const char *const LLDB_NT_OWNER_NETBSD
static unsigned ParsePLTRelocations(Symtab *symbol_table, user_id_t start_id, unsigned rel_type, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr, const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data, DataExtractor &symtab_data, DataExtractor &strtab_data)
static void ApplyELF64ABS64Relocation(Symtab *symtab, ELFRelocation &rel, DataExtractor &debug_data, Section *rel_section)
static const elf_word LLDB_NT_GNU_BUILD_ID_TAG
#define LLDB_PLUGIN_DEFINE(PluginName)
static double elapsed(const StatsTimepoint &start, const StatsTimepoint &end)
#define LLDB_SCOPED_TIMERF(...)
Definition Timer.h:86
Generic COFF object file reader.
static size_t GetSectionHeaderInfo(SectionHeaderColl &section_headers, lldb_private::DataExtractor &object_data, const elf::ELFHeader &header, lldb_private::UUID &uuid, std::string &gnu_debuglink_file, uint32_t &gnu_debuglink_crc, lldb_private::ArchSpec &arch_spec)
Parses the elf section headers and returns the uuid, debug link name, crc, archspec.
std::vector< elf::ELFProgramHeader > ProgramHeaderColl
static void DumpELFHeader(lldb_private::Stream *s, const elf::ELFHeader &header)
unsigned ParseTrampolineSymbols(lldb_private::Symtab *symbol_table, lldb::user_id_t start_id, const ELFSectionHeaderInfo *rela_hdr, lldb::user_id_t section_id)
Scans the relocation entries and adds a set of artificial symbols to the given symbol table for each ...
lldb_private::ArchSpec m_arch_spec
The architecture detected from parsing elf file contents.
static void DumpELFSectionHeader_sh_type(lldb_private::Stream *s, elf::elf_word sh_type)
std::shared_ptr< ObjectFileELF > m_gnu_debug_data_object_file
Object file parsed from .gnu_debugdata section (.
SectionHeaderColl::iterator SectionHeaderCollIter
uint32_t m_gnu_debuglink_crc
unsigned RelocateDebugSections(const elf::ELFSectionHeader *rel_hdr, lldb::user_id_t rel_id, lldb_private::Symtab *thetab)
Relocates debug sections.
bool AnySegmentHasPhysicalAddress()
static void Initialize()
static void DumpELFProgramHeader(lldb_private::Stream *s, const elf::ELFProgramHeader &ph)
lldb_private::Address m_entry_point_address
Cached value of the entry point for this module.
size_t ReadSectionData(lldb_private::Section *section, lldb::offset_t section_offset, void *dst, size_t dst_len) override
llvm::StringRef StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const override
static void ParseARMAttributes(lldb_private::DataExtractor &data, uint64_t length, lldb_private::ArchSpec &arch_spec)
lldb_private::DataExtractor GetSegmentData(const elf::ELFProgramHeader &H)
void RelocateSection(lldb_private::Section *section) override
Perform relocations on the section if necessary.
FileAddressToAddressClassMap m_address_class_map
The address class for each symbol in the elf file.
static llvm::StringRef GetPluginDescriptionStatic()
static const uint32_t g_core_uuid_magic
static size_t GetModuleSpecifications(const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, lldb::offset_t data_offset, lldb::offset_t file_offset, lldb::offset_t length, lldb_private::ModuleSpecList &specs)
bool IsExecutable() const override
Tells whether this object file is capable of being the main executable for a process.
void DumpDependentModules(lldb_private::Stream *s)
ELF dependent module dump routine.
static void DumpELFHeader_e_type(lldb_private::Stream *s, elf::elf_half e_type)
static size_t GetProgramHeaderInfo(ProgramHeaderColl &program_headers, lldb_private::DataExtractor &object_data, const elf::ELFHeader &header)
static bool MagicBytesMatch(lldb::DataBufferSP &data_sp, lldb::addr_t offset, lldb::addr_t length)
std::optional< lldb_private::DataExtractor > GetDynsymDataFromDynamic(uint32_t &num_symbols)
Get the bytes that represent the dynamic symbol table from the .dynamic section from process memory.
DynamicSymbolColl m_dynamic_symbols
Collection of symbols from the dynamic table.
static void DumpELFSectionHeader(lldb_private::Stream *s, const ELFSectionHeaderInfo &sh)
std::vector< ELFSectionHeaderInfo > SectionHeaderColl
static void DumpELFHeader_e_ident_EI_DATA(lldb_private::Stream *s, unsigned char ei_data)
lldb_private::ArchSpec GetArchitecture() override
Get the ArchSpec for this object file.
std::optional< lldb_private::FileSpec > GetDebugLink()
Return the contents of the .gnu_debuglink section, if the object file contains it.
lldb_private::AddressClass GetAddressClass(lldb::addr_t file_addr) override
Get the address type given a file address in an object file.
static void DumpELFSectionHeader_sh_flags(lldb_private::Stream *s, elf::elf_xword sh_flags)
lldb_private::UUID GetUUID() override
Gets the UUID for this object file.
std::optional< uint32_t > GetNumSymbolsFromDynamicGnuHash()
Get the number of symbols from the DT_GNU_HASH dynamic entry.
std::optional< lldb_private::DataExtractor > ReadDataFromDynamic(const elf::ELFDynamic *dyn, uint64_t length, uint64_t offset=0)
Read the bytes pointed to by the dyn dynamic entry.
ObjectFileELF(const lldb::ModuleSP &module_sp, lldb::DataBufferSP data_sp, lldb::offset_t data_offset, const lldb_private::FileSpec *file, lldb::offset_t offset, lldb::offset_t length)
static void DumpELFProgramHeader_p_type(lldb_private::Stream *s, elf::elf_word p_type)
static lldb_private::Status RefineModuleDetailsFromNote(lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
size_t SectionIndex(const SectionHeaderCollIter &I)
Returns the index of the given section header.
static void DumpELFProgramHeader_p_flags(lldb_private::Stream *s, elf::elf_word p_flags)
static llvm::StringRef GetPluginNameStatic()
size_t ParseDependentModules()
Scans the dynamic section and locates all dependent modules (shared libraries) populating m_filespec_...
void DumpELFSectionHeaders(lldb_private::Stream *s)
std::shared_ptr< ObjectFileELF > GetGnuDebugDataObjectFile()
Takes the .gnu_debugdata and returns the decompressed object file that is stored within that section.
static lldb::WritableDataBufferSP MapFileDataWritable(const lldb_private::FileSpec &file, uint64_t Size, uint64_t Offset)
void Dump(lldb_private::Stream *s) override
Dump a description of this object to a Stream.
static uint32_t CalculateELFNotesSegmentsCRC32(const ProgramHeaderColl &program_headers, lldb_private::DataExtractor &data)
lldb_private::UUID m_uuid
ELF build ID.
void DumpELFProgramHeaders(lldb_private::Stream *s)
std::pair< unsigned, FileAddressToAddressClassMap > ParseSymbolTable(lldb_private::Symtab *symbol_table, lldb::user_id_t start_id, lldb_private::Section *symtab)
Populates the symbol table with all non-dynamic linker symbols.
size_t ParseDynamicSymbols()
Parses the dynamic symbol table and populates m_dynamic_symbols.
static lldb_private::ObjectFile * CreateInstance(const lldb::ModuleSP &module_sp, lldb::DataBufferSP data_sp, lldb::offset_t data_offset, const lldb_private::FileSpec *file, lldb::offset_t file_offset, lldb::offset_t length)
std::optional< lldb_private::DataExtractor > GetDynamicData()
Get the bytes that represent the .dynamic section.
ObjectFile::Type CalculateType() override
The object file should be able to calculate its type by looking at its file header and possibly the s...
lldb::SectionType GetSectionType(const ELFSectionHeaderInfo &H) const
bool SetLoadAddress(lldb_private::Target &target, lldb::addr_t value, bool value_is_offset) override
Sets the load address for an entire module, assuming a rigid slide of sections, if possible in the im...
std::unique_ptr< lldb_private::FileSpecList > m_filespec_up
List of file specifications corresponding to the modules (shared libraries) on which this object file...
std::optional< uint32_t > GetNumSymbolsFromDynamicHash()
Get the number of symbols from the DT_HASH dynamic entry.
bool ParseProgramHeaders()
Parses all section headers present in this object file and populates m_program_headers.
std::vector< LoadableData > GetLoadableData(lldb_private::Target &target) override
Loads this objfile to memory.
const ELFSectionHeaderInfo * GetSectionHeaderByIndex(lldb::user_id_t id)
Returns the section header with the given id or NULL.
void CreateSections(lldb_private::SectionList &unified_section_list) override
lldb::user_id_t GetSectionIndexByName(const char *name)
Utility method for looking up a section given its name.
uint32_t GetAddressByteSize() const override
Gets the address size in bytes for the current object file.
SectionHeaderColl::const_iterator SectionHeaderCollConstIter
ProgramHeaderColl m_program_headers
Collection of program headers.
void DumpELFDynamic(lldb_private::Stream *s)
ELF dump the .dynamic section.
unsigned ApplyRelocations(lldb_private::Symtab *symtab, const elf::ELFHeader *hdr, const elf::ELFSectionHeader *rel_hdr, const elf::ELFSectionHeader *symtab_hdr, const elf::ELFSectionHeader *debug_hdr, lldb_private::DataExtractor &rel_data, lldb_private::DataExtractor &symtab_data, lldb_private::DataExtractor &debug_data, lldb_private::Section *rel_section)
lldb::ByteOrder GetByteOrder() const override
Gets whether endian swapping should occur when extracting data from this object file.
bool ParseHeader() override
Attempts to parse the object header.
static void Terminate()
elf::ELFHeader m_header
ELF file header.
std::string m_gnu_debuglink_file
ELF .gnu_debuglink file and crc data if available.
void ParseUnwindSymbols(lldb_private::Symtab *symbol_table, lldb_private::DWARFCallFrameInfo *eh_frame)
std::pair< unsigned, FileAddressToAddressClassMap > ParseSymbols(lldb_private::Symtab *symbol_table, lldb::user_id_t start_id, lldb_private::SectionList *section_list, const size_t num_symbols, const lldb_private::DataExtractor &symtab_data, const lldb_private::DataExtractor &strtab_data)
Helper routine for ParseSymbolTable().
SectionHeaderColl m_section_headers
Collection of section headers.
lldb_private::Address GetEntryPointAddress() override
Returns the address of the Entry Point in this object file - if the object file doesn't have an entry...
static char ID
ObjectFile::Strata CalculateStrata() override
The object file should be able to calculate the strata of the object file.
void ParseSymtab(lldb_private::Symtab &symtab) override
Parse the symbol table into the provides symbol table object.
unsigned PLTRelocationType()
static lldb_private::ObjectFile * CreateMemoryInstance(const lldb::ModuleSP &module_sp, lldb::WritableDataBufferSP data_sp, const lldb::ProcessSP &process_sp, lldb::addr_t header_addr)
lldb::addr_t m_dynamic_base_addr
The file address of the .dynamic section.
uint32_t GetDependentModules(lldb_private::FileSpecList &files) override
Extract the dependent modules from an object file.
size_t ParseSectionHeaders()
Parses all section headers present in this object file and populates m_section_headers.
lldb_private::Address GetBaseAddress() override
Returns base address of this object file.
bool IsStripped() override
Detect if this object file has been stripped of local symbols.
const elf::ELFDynamic * FindDynamicSymbol(unsigned tag)
std::map< lldb::addr_t, lldb_private::AddressClass > FileAddressToAddressClassMap
An ordered map of file address to address class.
llvm::ArrayRef< elf::ELFProgramHeader > ProgramHeaders()
std::optional< lldb_private::DataExtractor > GetDynstrData()
Get the bytes that represent the dynamic string table data.
lldb_private::Address GetImageInfoAddress(lldb_private::Target *target) override
Similar to Process::GetImageInfoAddress().
A section + offset based address range class.
A section + offset based address class.
Definition Address.h:62
lldb::addr_t GetLoadAddress(Target *target) const
Get the load address.
Definition Address.cpp:301
bool ResolveAddressUsingFileSections(lldb::addr_t addr, const SectionList *sections)
Resolve a file virtual address using a section list.
Definition Address.cpp:249
lldb::SectionSP GetSection() const
Get const accessor for the section.
Definition Address.h:432
lldb::addr_t GetFileAddress() const
Get the file address.
Definition Address.cpp:281
bool IsValid() const
Check if the object state is valid.
Definition Address.h:355
bool SetOffset(lldb::addr_t offset)
Set accessor for the offset.
Definition Address.h:441
An architecture specification class.
Definition ArchSpec.h:31
uint32_t GetCodeByteSize() const
Architecture code byte width accessor.
Definition ArchSpec.cpp:675
bool IsValid() const
Tests if this ArchSpec is valid.
Definition ArchSpec.h:366
llvm::Triple & GetTriple()
Architecture triple accessor.
Definition ArchSpec.h:468
void SetFlags(uint32_t flags)
Definition ArchSpec.h:541
bool SetArchitecture(ArchitectureType arch_type, uint32_t cpu, uint32_t sub, uint32_t os=0)
Change the architecture object type, CPU type and OS type.
Definition ArchSpec.cpp:845
@ eLoongArch_abi_single_float
soft float
Definition ArchSpec.h:112
@ eLoongArch_abi_double_float
single precision floating point, +f
Definition ArchSpec.h:114
bool IsMIPS() const
if MIPS architecture return true.
Definition ArchSpec.cpp:555
uint32_t GetDataByteSize() const
Architecture data byte width accessor.
Definition ArchSpec.cpp:673
uint32_t GetFlags() const
Definition ArchSpec.h:539
llvm::Triple::ArchType GetMachine() const
Returns a machine family for the current architecture.
Definition ArchSpec.cpp:677
@ eRISCV_float_abi_double
single precision floating point, +f
Definition ArchSpec.h:97
@ eRISCV_float_abi_quad
double precision floating point, +d
Definition ArchSpec.h:98
@ eRISCV_float_abi_single
soft float
Definition ArchSpec.h:96
const char * GetArchitectureName() const
Returns a static string representing the current architecture.
Definition ArchSpec.cpp:548
A uniqued constant string class.
Definition ConstString.h:40
const char * AsCString(const char *value_if_empty=nullptr) const
Get the string value as a C string.
llvm::StringRef GetStringRef() const
Get the string value as a llvm::StringRef.
const char * GetCString() const
Get the string value as a C string.
void ForEachFDEEntries(const std::function< bool(lldb::addr_t, uint32_t, dw_offset_t)> &callback)
A subclass of DataBuffer that stores a data buffer on the heap.
An data extractor class.
uint64_t GetULEB128(lldb::offset_t *offset_ptr) const
Extract a unsigned LEB128 value from *offset_ptr.
const char * GetCStr(lldb::offset_t *offset_ptr) const
Extract a C string from *offset_ptr.
const uint8_t * PeekData(lldb::offset_t offset, lldb::offset_t length) const
Peek at a bytes at offset.
const void * GetData(lldb::offset_t *offset_ptr, lldb::offset_t length) const
Extract length bytes from *offset_ptr.
void Clear()
Clears the object state.
lldb::offset_t CopyData(lldb::offset_t offset, lldb::offset_t length, void *dst) const
Copy length bytes from *offset, without swapping bytes.
lldb::DataBufferSP & GetSharedDataBuffer()
uint32_t GetU32(lldb::offset_t *offset_ptr) const
Extract a uint32_t value from *offset_ptr.
uint64_t GetByteSize() const
Get the number of bytes contained in this object.
uint64_t GetAddress(lldb::offset_t *offset_ptr) const
Extract an address from *offset_ptr.
const uint8_t * GetDataStart() const
Get the data start pointer.
lldb::offset_t SetData(const void *bytes, lldb::offset_t length, lldb::ByteOrder byte_order)
Set data with a buffer that is caller owned.
uint32_t GetAddressByteSize() const
Get the current address size.
lldb::ByteOrder GetByteOrder() const
Get the current byte order value.
uint8_t GetU8(lldb::offset_t *offset_ptr) const
Extract a uint8_t value from *offset_ptr.
const char * PeekCStr(lldb::offset_t offset) const
Peek at a C string at offset.
size_t ExtractBytes(lldb::offset_t offset, lldb::offset_t length, lldb::ByteOrder dst_byte_order, void *dst) const
Extract an arbitrary number of bytes in the specified byte order.
A class that measures elapsed time in an exception safe way.
Definition Statistics.h:76
A file collection class.
bool AppendIfUnique(const FileSpec &file)
Append a FileSpec object if unique.
A file utility class.
Definition FileSpec.h:57
FileSpec CopyByAppendingPathComponent(llvm::StringRef component) const
Definition FileSpec.cpp:425
const ConstString & GetFilename() const
Filename string const get accessor.
Definition FileSpec.h:251
size_t GetPath(char *path, size_t max_path_length, bool denormalize=true) const
Extract the full path to the file.
Definition FileSpec.cpp:374
void Resolve(llvm::SmallVectorImpl< char > &path)
Resolve path to make it canonical.
std::shared_ptr< WritableDataBuffer > CreateWritableDataBuffer(const llvm::Twine &path, uint64_t size=0, uint64_t offset=0)
static FileSystem & Instance()
ValueType Get() const
Get accessor for all flags.
Definition Flags.h:40
bool Test(ValueType bit) const
Test a single flag bit.
Definition Flags.h:96
A class that handles mangled names.
Definition Mangled.h:34
void SetDemangledName(ConstString name)
Definition Mangled.h:138
ConstString GetDemangledName() const
Demangled name get accessor.
Definition Mangled.cpp:284
void SetMangledName(ConstString name)
Definition Mangled.h:143
ConstString & GetMangledName()
Mangled name get accessor.
Definition Mangled.h:152
ConstString GetName(NamePreference preference=ePreferDemangled) const
Best name get accessor.
Definition Mangled.cpp:369
lldb::ModuleSP GetModule() const
Get const accessor for the module pointer.
void Append(const ModuleSpec &spec)
Definition ModuleSpec.h:308
void SetObjectSize(uint64_t object_size)
Definition ModuleSpec.h:115
ArchSpec & GetArchitecture()
Definition ModuleSpec.h:89
void SetObjectOffset(uint64_t object_offset)
Definition ModuleSpec.h:109
DataExtractor m_data
The data for this object file so things can be parsed lazily.
Definition ObjectFile.h:784
std::unique_ptr< lldb_private::SectionList > m_sections_up
Definition ObjectFile.h:788
static lldb::DataBufferSP MapFileData(const FileSpec &file, uint64_t Size, uint64_t Offset)
ObjectFile(const lldb::ModuleSP &module_sp, const FileSpec *file_spec_ptr, lldb::offset_t file_offset, lldb::offset_t length, lldb::DataBufferSP data_sp, lldb::offset_t data_offset)
Construct with a parent module, offset, and header data.
const lldb::addr_t m_memory_addr
Set if the object file only exists in memory.
Definition ObjectFile.h:787
static lldb::SectionType GetDWARFSectionTypeFromName(llvm::StringRef name)
Parses the section type from a section name for DWARF sections.
virtual void ParseSymtab(Symtab &symtab)=0
Parse the symbol table into the provides symbol table object.
virtual AddressClass GetAddressClass(lldb::addr_t file_addr)
Get the address type given a file address in an object file.
Symtab * GetSymtab(bool can_create=true)
Gets the symbol table for the currently selected architecture (and object for archives).
static lldb::WritableDataBufferSP ReadMemory(const lldb::ProcessSP &process_sp, lldb::addr_t addr, size_t byte_size)
size_t GetData(lldb::offset_t offset, size_t length, DataExtractor &data) const
@ eTypeExecutable
A normal executable.
Definition ObjectFile.h:54
@ eTypeDebugInfo
An object file that contains only debug information.
Definition ObjectFile.h:56
@ eTypeObjectFile
An intermediate object file.
Definition ObjectFile.h:60
@ eTypeCoreFile
A core file that has a checkpoint of a program's execution state.
Definition ObjectFile.h:52
@ eTypeSharedLibrary
A shared library that can be used during execution.
Definition ObjectFile.h:62
virtual FileSpec & GetFileSpec()
Get accessor to the object file specification.
Definition ObjectFile.h:281
virtual SectionList * GetSectionList(bool update_module_section_list=true)
Gets the section list for the currently selected architecture (and object for archives).
bool IsInMemory() const
Returns true if the object file exists only in memory.
Definition ObjectFile.h:709
lldb::ProcessWP m_process_wp
Definition ObjectFile.h:785
virtual size_t ReadSectionData(Section *section, lldb::offset_t section_offset, void *dst, size_t dst_len)
static bool RegisterPlugin(llvm::StringRef name, llvm::StringRef description, ABICreateInstance create_callback)
static bool UnregisterPlugin(ABICreateInstance create_callback)
A Progress indicator helper class.
Definition Progress.h:60
lldb::SectionSP FindSectionByName(ConstString section_dstr) const
Definition Section.cpp:558
lldb::SectionSP FindSectionByID(lldb::user_id_t sect_id) const
Definition Section.cpp:580
lldb::SectionSP FindSectionContainingFileAddress(lldb::addr_t addr, uint32_t depth=UINT32_MAX) const
Definition Section.cpp:617
size_t GetSize() const
Definition Section.h:75
size_t AddSection(const lldb::SectionSP &section_sp)
Definition Section.cpp:482
bool ReplaceSection(lldb::user_id_t sect_id, const lldb::SectionSP &section_sp, uint32_t depth=UINT32_MAX)
Definition Section.cpp:522
lldb::SectionSP FindSectionByType(lldb::SectionType sect_type, bool check_children, size_t start_idx=0) const
Definition Section.cpp:598
void Dump(llvm::raw_ostream &s, unsigned indent, Target *target, bool show_header, uint32_t depth) const
Definition Section.cpp:644
lldb::SectionSP GetSectionAtIndex(size_t idx) const
Definition Section.cpp:551
ConstString GetName() const
Definition Section.h:200
void SetIsRelocated(bool b)
Definition Section.h:267
lldb::offset_t GetFileOffset() const
Definition Section.h:170
ObjectFile * GetObjectFile()
Definition Section.h:220
lldb::offset_t GetFileSize() const
Definition Section.h:176
An error handling class.
Definition Status.h:118
static Status FromErrorStringWithFormat(const char *format,...) __attribute__((format(printf
Definition Status.cpp:106
static Status FromErrorString(const char *str)
Definition Status.h:141
A stream class that can stream formatted output to a file.
Definition Stream.h:28
void Format(const char *format, Args &&... args)
Definition Stream.h:352
llvm::raw_ostream & AsRawOstream()
Returns a raw_ostream that forwards the data to this Stream object.
Definition Stream.h:400
size_t Indent(llvm::StringRef s="")
Indent the current line in the stream.
Definition Stream.cpp:157
size_t Printf(const char *format,...) __attribute__((format(printf
Output printf formatted output to the stream.
Definition Stream.cpp:134
size_t PutCString(llvm::StringRef cstr)
Output a C string to the stream.
Definition Stream.cpp:65
size_t EOL()
Output and End of Line character to the stream.
Definition Stream.cpp:155
unsigned GetIndentLevel() const
Get the current indentation level.
Definition Stream.cpp:187
uint32_t GetID() const
Definition Symbol.h:137
void SetSizeIsSynthesized(bool b)
Definition Symbol.h:191
bool GetByteSizeIsValid() const
Definition Symbol.h:209
Address & GetAddressRef()
Definition Symbol.h:73
void SetIsWeak(bool b)
Definition Symbol.h:207
ConstString GetName() const
Definition Symbol.cpp:511
void SetByteSize(lldb::addr_t size)
Definition Symbol.h:213
Symbol * FindSymbolByID(lldb::user_id_t uid) const
Definition Symtab.cpp:219
Symbol * SymbolAtIndex(size_t idx)
Definition Symtab.cpp:228
Symbol * FindSymbolAtFileAddress(lldb::addr_t file_addr)
Definition Symtab.cpp:1030
Symbol * FindSymbolContainingFileAddress(lldb::addr_t file_addr)
Definition Symtab.cpp:1045
uint32_t AddSymbol(const Symbol &symbol)
Definition Symtab.cpp:64
void Dump(Stream *s, Target *target, SortOrder sort_type, Mangled::NamePreference name_preference=Mangled::ePreferDemangled)
Definition Symtab.cpp:87
ObjectFile * GetObjectFile() const
Definition Symtab.h:137
size_t GetNumSymbols() const
Definition Symtab.cpp:77
bool ReadPointerFromMemory(const Address &addr, Status &error, Address &pointer_addr, bool force_live_memory=false)
Definition Target.cpp:2309
uint64_t ReadUnsignedIntegerFromMemory(const Address &addr, size_t integer_byte_size, uint64_t fail_value, Status &error, bool force_live_memory=false)
Definition Target.cpp:2298
bool SetSectionLoadAddress(const lldb::SectionSP &section, lldb::addr_t load_addr, bool warn_multiple=false)
Definition Target.cpp:3296
Represents UUID's of various sizes.
Definition UUID.h:27
bool IsValid() const
Definition UUID.h:69
lldb::addr_t GetByteSize() const
Definition VMRange.h:59
void SetByteSize(lldb::addr_t byte_size)
Definition VMRange.h:61
uint8_t * GetBytes()
Get a pointer to the data.
Definition DataBuffer.h:108
uint64_t dw_offset_t
Definition dwarf.h:24
#define INT32_MAX
#define UINT64_MAX
#define LLDB_INVALID_CPUTYPE
#define UNUSED_IF_ASSERT_DISABLED(x)
#define LLDB_INVALID_ADDRESS
#define UINT32_MAX
uint64_t elf_addr
Definition ELFHeader.h:41
uint64_t elf_off
Definition ELFHeader.h:42
uint32_t elf_word
Definition ELFHeader.h:44
uint64_t elf_xword
Definition ELFHeader.h:47
uint16_t elf_half
Definition ELFHeader.h:43
int64_t elf_sxword
Definition ELFHeader.h:48
bool isAvailable()
Definition LZMA.cpp:22
llvm::Error uncompress(llvm::ArrayRef< uint8_t > InputBuffer, llvm::SmallVectorImpl< uint8_t > &Uncompressed)
Definition LZMA.cpp:28
A class that represents a running process on the host machine.
Log * GetLog(Cat mask)
Retrieve the Log object for the channel associated with the given log enum.
Definition Log.h:332
uint64_t offset_t
Definition lldb-types.h:85
std::shared_ptr< lldb_private::Process > ProcessSP
SymbolType
Symbol types.
@ eSymbolTypeUndefined
@ eSymbolTypeTrampoline
@ eSymbolTypeResolver
@ eSymbolTypeSourceFile
@ eSymbolTypeAbsolute
ByteOrder
Byte ordering definitions.
uint64_t user_id_t
Definition lldb-types.h:82
std::shared_ptr< lldb_private::DataBuffer > DataBufferSP
std::shared_ptr< lldb_private::Section > SectionSP
std::shared_ptr< lldb_private::WritableDataBuffer > WritableDataBufferSP
uint64_t addr_t
Definition lldb-types.h:80
@ eSectionTypeELFDynamicSymbols
Elf SHT_DYNSYM section.
@ eSectionTypeZeroFill
@ eSectionTypeARMextab
@ eSectionTypeContainer
The section contains child sections.
@ eSectionTypeELFDynamicLinkInfo
Elf SHT_DYNAMIC section.
@ eSectionTypeAbsoluteAddress
Dummy section for symbols with absolute address.
@ eSectionTypeELFRelocationEntries
Elf SHT_REL or SHT_REL section.
@ eSectionTypeLLDBFormatters
@ eSectionTypeEHFrame
@ eSectionTypeLLDBTypeSummaries
@ eSectionTypeGoSymtab
@ eSectionTypeARMexidx
@ eSectionTypeSwiftModules
@ eSectionTypeDWARFGNUDebugAltLink
@ eSectionTypeELFSymbolTable
Elf SHT_SYMTAB section.
std::shared_ptr< lldb_private::Module > ModuleSP
bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
Parse an ELFNote entry from the given DataExtractor starting at position offset.
std::string n_name
elf::elf_word n_namesz
lldb_private::ConstString section_name
Represents an entry in an ELF dynamic table.
Definition ELFHeader.h:276
elf_addr d_ptr
Pointer value of the table entry.
Definition ELFHeader.h:280
elf_xword d_val
Integer value of the table entry.
Definition ELFHeader.h:279
bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
Parse an ELFDynamic entry from the given DataExtractor starting at position offset.
elf_sxword d_tag
Type of dynamic table entry.
Definition ELFHeader.h:277
Generic representation of an ELF file header.
Definition ELFHeader.h:56
elf_word e_shnum
Number of section header entries.
Definition ELFHeader.h:76
bool HasHeaderExtension() const
Check if there should be header extension in section header #0.
Definition ELFHeader.cpp:81
elf_off e_phoff
File offset of program header table.
Definition ELFHeader.h:59
bool Is64Bit() const
Returns true if this is a 64 bit ELF file header.
Definition ELFHeader.h:93
static unsigned AddressSizeInBytes(const uint8_t *magic)
Examines at most EI_NIDENT bytes starting from the given address and determines the address size of t...
elf_half e_phentsize
Size of a program header table entry.
Definition ELFHeader.h:66
bool Is32Bit() const
Returns true if this is a 32 bit ELF file header.
Definition ELFHeader.h:85
static bool MagicBytesMatch(const uint8_t *magic)
Examines at most EI_NIDENT bytes starting from the given pointer and determines if the magic ELF iden...
elf_off e_shoff
File offset of section header table.
Definition ELFHeader.h:60
elf_half e_ehsize
Byte size of the ELF header.
Definition ELFHeader.h:65
bool Parse(lldb_private::DataExtractor &data, lldb::offset_t *offset)
Parse an ELFHeader entry starting at position offset and update the data extractor with the address s...
unsigned GetRelocationJumpSlotType() const
The jump slot relocation type of this ELF.
elf_word e_phnum
Number of program header entries.
Definition ELFHeader.h:75
elf_word e_version
Version of object file (always 1).
Definition ELFHeader.h:62
unsigned char e_ident[llvm::ELF::EI_NIDENT]
ELF file identification.
Definition ELFHeader.h:57
elf_half e_machine
Target architecture.
Definition ELFHeader.h:64
elf_addr e_entry
Virtual address program entry point.
Definition ELFHeader.h:58
elf_word e_shstrndx
String table section index.
Definition ELFHeader.h:77
elf_half e_shentsize
Size of a section header table entry.
Definition ELFHeader.h:68
elf_half e_type
Object file type.
Definition ELFHeader.h:63
elf_word e_flags
Processor specific flags.
Definition ELFHeader.h:61
Generic representation of an ELF program header.
Definition ELFHeader.h:192
elf_xword p_align
Segment alignment constraint.
Definition ELFHeader.h:200
elf_addr p_paddr
Physical address (for non-VM systems).
Definition ELFHeader.h:197
elf_word p_flags
Segment attributes.
Definition ELFHeader.h:194
elf_xword p_filesz
Byte size of the segment in file.
Definition ELFHeader.h:198
elf_off p_offset
Start of segment from beginning of file.
Definition ELFHeader.h:195
elf_addr p_vaddr
Virtual address of segment in memory.
Definition ELFHeader.h:196
elf_xword p_memsz
Byte size of the segment in memory.
Definition ELFHeader.h:199
elf_word p_type
Type of program segment.
Definition ELFHeader.h:193
static unsigned RelocSymbol64(const ELFRel &rel)
Returns the symbol index when the given entry represents a 64-bit relocation.
Definition ELFHeader.h:341
static unsigned RelocType64(const ELFRel &rel)
Returns the type when the given entry represents a 64-bit relocation.
Definition ELFHeader.h:331
static unsigned RelocType32(const ELFRel &rel)
Returns the type when the given entry represents a 32-bit relocation.
Definition ELFHeader.h:328
static unsigned RelocSymbol32(const ELFRel &rel)
Returns the symbol index when the given entry represents a 32-bit relocation.
Definition ELFHeader.h:337
static unsigned RelocSymbol64(const ELFRela &rela)
Returns the symbol index when the given entry represents a 64-bit relocation.
Definition ELFHeader.h:387
static unsigned RelocType64(const ELFRela &rela)
Returns the type when the given entry represents a 64-bit relocation.
Definition ELFHeader.h:375
static unsigned RelocType32(const ELFRela &rela)
Returns the type when the given entry represents a 32-bit relocation.
Definition ELFHeader.h:370
static unsigned RelocSymbol32(const ELFRela &rela)
Returns the symbol index when the given entry represents a 32-bit relocation.
Definition ELFHeader.h:381
Generic representation of an ELF section header.
Definition ELFHeader.h:159
elf_word sh_link
Index of associated section.
Definition ELFHeader.h:166
elf_word sh_info
Extra section info (overloaded).
Definition ELFHeader.h:167
elf_xword sh_size
Number of bytes occupied in the file.
Definition ELFHeader.h:165
elf_xword sh_flags
Section attributes.
Definition ELFHeader.h:162
elf_word sh_name
Section name string index.
Definition ELFHeader.h:160
elf_off sh_offset
Start of section from beginning of file.
Definition ELFHeader.h:164
elf_word sh_type
Section type.
Definition ELFHeader.h:161
elf_xword sh_addralign
Power of two alignment constraint.
Definition ELFHeader.h:168
elf_xword sh_entsize
Byte size of each section entry.
Definition ELFHeader.h:169
elf_addr sh_addr
Virtual address of the section in memory.
Definition ELFHeader.h:163
Represents a symbol within an ELF symbol table.
Definition ELFHeader.h:224
unsigned char getType() const
Returns the type attribute of the st_info member.
Definition ELFHeader.h:238
elf_half st_shndx
Section to which this symbol applies.
Definition ELFHeader.h:230
unsigned char st_info
Symbol type and binding attributes.
Definition ELFHeader.h:228
unsigned char getBinding() const
Returns the binding attribute of the st_info member.
Definition ELFHeader.h:235
bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
Parse an ELFSymbol entry from the given DataExtractor starting at position offset.
elf_addr st_value
Absolute or relocatable address.
Definition ELFHeader.h:225
elf_word st_name
Symbol name string index.
Definition ELFHeader.h:227
elf_xword st_size
Size of the symbol or zero.
Definition ELFHeader.h:226
unsigned char st_other
Reserved for future use.
Definition ELFHeader.h:229
llvm::ArrayRef< uint8_t > Contents
Definition ObjectFile.h:97
lldb::user_id_t GetID() const
Get accessor for the user ID.
Definition UserID.h:47