LLDB mainline
ValueObject.cpp
Go to the documentation of this file.
1//===-- ValueObject.cpp ---------------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
10
11#include "lldb/Core/Address.h"
13#include "lldb/Core/Module.h"
29#include "lldb/Host/Config.h"
33#include "lldb/Symbol/Type.h"
38#include "lldb/Target/Process.h"
40#include "lldb/Target/Target.h"
41#include "lldb/Target/Thread.h"
45#include "lldb/Utility/Flags.h"
47#include "lldb/Utility/Log.h"
48#include "lldb/Utility/Scalar.h"
49#include "lldb/Utility/Stream.h"
52
53#include "llvm/Support/Compiler.h"
54
55#include <algorithm>
56#include <cstdint>
57#include <cstdlib>
58#include <memory>
59#include <optional>
60#include <tuple>
61
62#include <cassert>
63#include <cinttypes>
64#include <cstdio>
65#include <cstring>
66
68
69namespace lldb_private {
71}
72namespace lldb_private {
74}
75
76using namespace lldb;
77using namespace lldb_private;
78
80
81// ValueObject constructor
83 : m_parent(&parent), m_update_point(parent.GetUpdatePoint()),
84 m_manager(parent.GetManager()), m_id(++g_value_obj_uid) {
90}
91
92// ValueObject constructor
94 ValueObjectManager &manager,
95 AddressType child_ptr_or_ref_addr_type)
96 : m_update_point(exe_scope), m_manager(&manager),
97 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type),
98 m_id(++g_value_obj_uid) {
99 if (exe_scope) {
100 TargetSP target_sp(exe_scope->CalculateTarget());
101 if (target_sp) {
102 const ArchSpec &arch = target_sp->GetArchitecture();
105 }
106 }
107 m_manager->ManageObject(this);
108}
109
110// Destructor
111ValueObject::~ValueObject() = default;
112
113bool ValueObject::UpdateValueIfNeeded(bool update_format) {
114
115 bool did_change_formats = false;
116
117 if (update_format)
118 did_change_formats = UpdateFormatsIfNeeded();
119
120 // If this is a constant value, then our success is predicated on whether we
121 // have an error or not
122 if (GetIsConstant()) {
123 // if you are constant, things might still have changed behind your back
124 // (e.g. you are a frozen object and things have changed deeper than you
125 // cared to freeze-dry yourself) in this case, your value has not changed,
126 // but "computed" entries might have, so you might now have a different
127 // summary, or a different object description. clear these so we will
128 // recompute them
129 if (update_format && !did_change_formats)
132 return m_error.Success();
133 }
134
135 bool first_update = IsChecksumEmpty();
136
137 if (NeedsUpdating()) {
139
140 // Save the old value using swap to avoid a string copy which also will
141 // clear our m_value_str
142 if (m_value_str.empty()) {
144 } else {
148 }
149
151
152 if (IsInScope()) {
153 const bool value_was_valid = GetValueIsValid();
154 SetValueDidChange(false);
155
156 m_error.Clear();
157
158 // Call the pure virtual function to update the value
159
160 bool need_compare_checksums = false;
161 llvm::SmallVector<uint8_t, 16> old_checksum;
162
163 if (!first_update && CanProvideValue()) {
164 need_compare_checksums = true;
165 old_checksum.resize(m_value_checksum.size());
166 std::copy(m_value_checksum.begin(), m_value_checksum.end(),
167 old_checksum.begin());
168 }
169
170 bool success = UpdateValue();
171
172 SetValueIsValid(success);
173
174 if (success) {
176 const uint64_t max_checksum_size = 128;
177 m_data.Checksum(m_value_checksum, max_checksum_size);
178 } else {
179 need_compare_checksums = false;
180 m_value_checksum.clear();
181 }
182
183 assert(!need_compare_checksums ||
184 (!old_checksum.empty() && !m_value_checksum.empty()));
185
186 if (first_update)
187 SetValueDidChange(false);
188 else if (!m_flags.m_value_did_change && !success) {
189 // The value wasn't gotten successfully, so we mark this as changed if
190 // the value used to be valid and now isn't
191 SetValueDidChange(value_was_valid);
192 } else if (need_compare_checksums) {
193 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0],
194 m_value_checksum.size()));
195 }
196
197 } else {
198 m_error.SetErrorString("out of scope");
199 }
200 }
201 return m_error.Success();
202}
203
206 LLDB_LOGF(log,
207 "[%s %p] checking for FormatManager revisions. ValueObject "
208 "rev: %d - Global rev: %d",
209 GetName().GetCString(), static_cast<void *>(this),
212
213 bool any_change = false;
214
217 any_change = true;
218
224 }
225
226 return any_change;
227}
228
231 // We have to clear the value string here so ConstResult children will notice
232 // if their values are changed by hand (i.e. with SetValueAsCString).
234}
235
244}
245
247 CompilerType compiler_type(GetCompilerTypeImpl());
248
251 return m_override_type;
252 else
253 return compiler_type;
254 }
255
257
258 ProcessSP process_sp(
260
261 if (!process_sp)
262 return compiler_type;
263
264 if (auto *runtime =
265 process_sp->GetLanguageRuntime(GetObjectRuntimeLanguage())) {
266 if (std::optional<CompilerType> complete_type =
267 runtime->GetRuntimeType(compiler_type)) {
268 m_override_type = *complete_type;
270 return m_override_type;
271 }
272 }
273 return compiler_type;
274}
275
276
277
279 UpdateValueIfNeeded(false);
280 return m_data;
281}
282
284 UpdateValueIfNeeded(false);
285 return m_error;
286}
287
289 const DataExtractor &data) {
290 if (UpdateValueIfNeeded(false)) {
291 if (m_location_str.empty()) {
292 StreamString sstr;
293
294 Value::ValueType value_type = value.GetValueType();
295
296 switch (value_type) {
298 m_location_str = "invalid";
299 break;
302 RegisterInfo *reg_info = value.GetRegisterInfo();
303 if (reg_info) {
304 if (reg_info->name)
305 m_location_str = reg_info->name;
306 else if (reg_info->alt_name)
307 m_location_str = reg_info->alt_name;
308 if (m_location_str.empty())
310 ? "vector"
311 : "scalar";
312 }
313 }
314 if (m_location_str.empty())
315 m_location_str = "scalar";
316 break;
317
321 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2;
322 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size,
324 m_location_str = std::string(sstr.GetString());
325 } break;
326 }
327 }
328 }
329 return m_location_str.c_str();
330}
331
334 false)) // make sure that you are up to date before returning anything
335 {
337 Value tmp_value(m_value);
338 scalar = tmp_value.ResolveValue(&exe_ctx, GetModule().get());
339 if (scalar.IsValid()) {
340 const uint32_t bitfield_bit_size = GetBitfieldBitSize();
341 if (bitfield_bit_size)
342 return scalar.ExtractBitfield(bitfield_bit_size,
344 return true;
345 }
346 }
347 return false;
348}
349
352 LazyBool is_logical_true = language->IsLogicalTrue(*this, error);
353 switch (is_logical_true) {
354 case eLazyBoolYes:
355 case eLazyBoolNo:
356 return (is_logical_true == true);
358 break;
359 }
360 }
361
362 Scalar scalar_value;
363
364 if (!ResolveValue(scalar_value)) {
365 error.SetErrorString("failed to get a scalar result");
366 return false;
367 }
368
369 bool ret;
370 ret = scalar_value.ULongLong(1) != 0;
371 error.Clear();
372 return ret;
373}
374
375ValueObjectSP ValueObject::GetChildAtIndex(uint32_t idx, bool can_create) {
376 ValueObjectSP child_sp;
377 // We may need to update our value if we are dynamic
379 UpdateValueIfNeeded(false);
380 if (idx < GetNumChildrenIgnoringErrors()) {
381 // Check if we have already made the child value object?
382 if (can_create && !m_children.HasChildAtIndex(idx)) {
383 // No we haven't created the child at this index, so lets have our
384 // subclass do it and cache the result for quick future access.
386 }
387
389 if (child != nullptr)
390 return child->GetSP();
391 }
392 return child_sp;
393}
394
396ValueObject::GetChildAtNamePath(llvm::ArrayRef<llvm::StringRef> names) {
397 if (names.size() == 0)
398 return GetSP();
399 ValueObjectSP root(GetSP());
400 for (llvm::StringRef name : names) {
401 root = root->GetChildMemberWithName(name);
402 if (!root) {
403 return root;
404 }
405 }
406 return root;
407}
408
409size_t ValueObject::GetIndexOfChildWithName(llvm::StringRef name) {
410 bool omit_empty_base_classes = true;
412 omit_empty_base_classes);
413}
414
416 bool can_create) {
417 // We may need to update our value if we are dynamic.
419 UpdateValueIfNeeded(false);
420
421 // When getting a child by name, it could be buried inside some base classes
422 // (which really aren't part of the expression path), so we need a vector of
423 // indexes that can get us down to the correct child.
424 std::vector<uint32_t> child_indexes;
425 bool omit_empty_base_classes = true;
426
427 if (!GetCompilerType().IsValid())
428 return ValueObjectSP();
429
430 const size_t num_child_indexes =
432 name, omit_empty_base_classes, child_indexes);
433 if (num_child_indexes == 0)
434 return nullptr;
435
436 ValueObjectSP child_sp = GetSP();
437 for (uint32_t idx : child_indexes)
438 if (child_sp)
439 child_sp = child_sp->GetChildAtIndex(idx, can_create);
440 return child_sp;
441}
442
443llvm::Expected<uint32_t> ValueObject::GetNumChildren(uint32_t max) {
445
446 if (max < UINT32_MAX) {
448 size_t children_count = m_children.GetChildrenCount();
449 return children_count <= max ? children_count : max;
450 } else
451 return CalculateNumChildren(max);
452 }
453
455 auto num_children_or_err = CalculateNumChildren();
456 if (num_children_or_err)
457 SetNumChildren(*num_children_or_err);
458 else
459 return num_children_or_err;
460 }
462}
463
465 auto value_or_err = GetNumChildren(max);
466 if (value_or_err)
467 return *value_or_err;
468 LLDB_LOG_ERRORV(GetLog(LLDBLog::DataFormatters), value_or_err.takeError(),
469 "{0}");
470 return 0;
471}
472
474 bool has_children = false;
475 const uint32_t type_info = GetTypeInfo();
476 if (type_info) {
477 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference))
478 has_children = true;
479 } else {
480 has_children = GetNumChildrenIgnoringErrors() > 0;
481 }
482 return has_children;
483}
484
485// Should only be called by ValueObject::GetNumChildren()
486void ValueObject::SetNumChildren(uint32_t num_children) {
488 m_children.SetChildrenCount(num_children);
489}
490
492 bool omit_empty_base_classes = true;
493 bool ignore_array_bounds = false;
494 std::string child_name;
495 uint32_t child_byte_size = 0;
496 int32_t child_byte_offset = 0;
497 uint32_t child_bitfield_bit_size = 0;
498 uint32_t child_bitfield_bit_offset = 0;
499 bool child_is_base_class = false;
500 bool child_is_deref_of_parent = false;
501 uint64_t language_flags = 0;
502 const bool transparent_pointers = true;
503
505
506 auto child_compiler_type_or_err =
508 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes,
509 ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
510 child_bitfield_bit_size, child_bitfield_bit_offset,
511 child_is_base_class, child_is_deref_of_parent, this, language_flags);
512 if (!child_compiler_type_or_err || !child_compiler_type_or_err->IsValid()) {
514 child_compiler_type_or_err.takeError(),
515 "could not find child: {0}");
516 return nullptr;
517 }
518
519 return new ValueObjectChild(
520 *this, *child_compiler_type_or_err, ConstString(child_name),
521 child_byte_size, child_byte_offset, child_bitfield_bit_size,
522 child_bitfield_bit_offset, child_is_base_class, child_is_deref_of_parent,
523 eAddressTypeInvalid, language_flags);
524}
525
527 bool omit_empty_base_classes = true;
528 bool ignore_array_bounds = true;
529 std::string child_name;
530 uint32_t child_byte_size = 0;
531 int32_t child_byte_offset = 0;
532 uint32_t child_bitfield_bit_size = 0;
533 uint32_t child_bitfield_bit_offset = 0;
534 bool child_is_base_class = false;
535 bool child_is_deref_of_parent = false;
536 uint64_t language_flags = 0;
537 const bool transparent_pointers = false;
538
540
541 auto child_compiler_type_or_err =
543 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes,
544 ignore_array_bounds, child_name, child_byte_size, child_byte_offset,
545 child_bitfield_bit_size, child_bitfield_bit_offset,
546 child_is_base_class, child_is_deref_of_parent, this, language_flags);
547 if (!child_compiler_type_or_err) {
549 child_compiler_type_or_err.takeError(),
550 "could not find child: {0}");
551 return nullptr;
552 }
553
554 if (child_compiler_type_or_err->IsValid()) {
555 child_byte_offset += child_byte_size * idx;
556
557 return new ValueObjectChild(
558 *this, *child_compiler_type_or_err, ConstString(child_name),
559 child_byte_size, child_byte_offset, child_bitfield_bit_size,
560 child_bitfield_bit_offset, child_is_base_class,
561 child_is_deref_of_parent, eAddressTypeInvalid, language_flags);
562 }
563
564 // In case of an incomplete type, try to use the ValueObject's
565 // synthetic value to create the child ValueObject.
566 if (ValueObjectSP synth_valobj_sp = GetSyntheticValue())
567 return synth_valobj_sp->GetChildAtIndex(idx, /*can_create=*/true).get();
568
569 return nullptr;
570}
571
573 std::string &destination,
574 lldb::LanguageType lang) {
575 return GetSummaryAsCString(summary_ptr, destination,
576 TypeSummaryOptions().SetLanguage(lang));
577}
578
580 std::string &destination,
581 const TypeSummaryOptions &options) {
582 destination.clear();
583
584 // If we have a forcefully completed type, don't try and show a summary from
585 // a valid summary string or function because the type is not complete and
586 // no member variables or member functions will be available.
587 if (GetCompilerType().IsForcefullyCompleted()) {
588 destination = "<incomplete type>";
589 return true;
590 }
591
592 // ideally we would like to bail out if passing NULL, but if we do so we end
593 // up not providing the summary for function pointers anymore
594 if (/*summary_ptr == NULL ||*/ m_flags.m_is_getting_summary)
595 return false;
596
598
599 TypeSummaryOptions actual_options(options);
600
601 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown)
603
604 // this is a hot path in code and we prefer to avoid setting this string all
605 // too often also clearing out other information that we might care to see in
606 // a crash log. might be useful in very specific situations though.
607 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s.
608 Summary provider's description is %s",
609 GetTypeName().GetCString(),
610 GetName().GetCString(),
611 summary_ptr->GetDescription().c_str());*/
612
613 if (UpdateValueIfNeeded(false) && summary_ptr) {
614 if (HasSyntheticValue())
615 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on
616 // the synthetic children being
617 // up-to-date (e.g. ${svar%#})
618 summary_ptr->FormatObject(this, destination, actual_options);
619 }
621 return !destination.empty();
622}
623
625 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) {
626 TypeSummaryOptions summary_options;
627 summary_options.SetLanguage(lang);
629 summary_options);
630 }
631 if (m_summary_str.empty())
632 return nullptr;
633 return m_summary_str.c_str();
634}
635
636bool ValueObject::GetSummaryAsCString(std::string &destination,
637 const TypeSummaryOptions &options) {
638 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options);
639}
640
641bool ValueObject::IsCStringContainer(bool check_pointer) {
642 CompilerType pointee_or_element_compiler_type;
643 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type));
644 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
645 pointee_or_element_compiler_type.IsCharType());
646 if (!is_char_arr_ptr)
647 return false;
648 if (!check_pointer)
649 return true;
650 if (type_flags.Test(eTypeIsArray))
651 return true;
652 addr_t cstr_address = LLDB_INVALID_ADDRESS;
653 AddressType cstr_address_type = eAddressTypeInvalid;
654 cstr_address = GetPointerValue(&cstr_address_type);
655 return (cstr_address != LLDB_INVALID_ADDRESS);
656}
657
658size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx,
659 uint32_t item_count) {
660 CompilerType pointee_or_element_compiler_type;
661 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type);
662 const bool is_pointer_type = type_info & eTypeIsPointer;
663 const bool is_array_type = type_info & eTypeIsArray;
664 if (!(is_pointer_type || is_array_type))
665 return 0;
666
667 if (item_count == 0)
668 return 0;
669
671
672 std::optional<uint64_t> item_type_size =
673 pointee_or_element_compiler_type.GetByteSize(
675 if (!item_type_size)
676 return 0;
677 const uint64_t bytes = item_count * *item_type_size;
678 const uint64_t offset = item_idx * *item_type_size;
679
680 if (item_idx == 0 && item_count == 1) // simply a deref
681 {
682 if (is_pointer_type) {
684 ValueObjectSP pointee_sp = Dereference(error);
685 if (error.Fail() || pointee_sp.get() == nullptr)
686 return 0;
687 return pointee_sp->GetData(data, error);
688 } else {
689 ValueObjectSP child_sp = GetChildAtIndex(0);
690 if (child_sp.get() == nullptr)
691 return 0;
693 return child_sp->GetData(data, error);
694 }
695 return true;
696 } else /* (items > 1) */
697 {
699 lldb_private::DataBufferHeap *heap_buf_ptr = nullptr;
700 lldb::DataBufferSP data_sp(heap_buf_ptr =
702
703 AddressType addr_type;
704 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type)
705 : GetAddressOf(true, &addr_type);
706
707 switch (addr_type) {
708 case eAddressTypeFile: {
709 ModuleSP module_sp(GetModule());
710 if (module_sp) {
711 addr = addr + offset;
712 Address so_addr;
713 module_sp->ResolveFileAddress(addr, so_addr);
715 Target *target = exe_ctx.GetTargetPtr();
716 if (target) {
717 heap_buf_ptr->SetByteSize(bytes);
718 size_t bytes_read = target->ReadMemory(
719 so_addr, heap_buf_ptr->GetBytes(), bytes, error, true);
720 if (error.Success()) {
721 data.SetData(data_sp);
722 return bytes_read;
723 }
724 }
725 }
726 } break;
727 case eAddressTypeLoad: {
729 Process *process = exe_ctx.GetProcessPtr();
730 if (process) {
731 heap_buf_ptr->SetByteSize(bytes);
732 size_t bytes_read = process->ReadMemory(
733 addr + offset, heap_buf_ptr->GetBytes(), bytes, error);
734 if (error.Success() || bytes_read > 0) {
735 data.SetData(data_sp);
736 return bytes_read;
737 }
738 }
739 } break;
740 case eAddressTypeHost: {
741 auto max_bytes =
743 if (max_bytes && *max_bytes > offset) {
744 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes);
746 if (addr == 0 || addr == LLDB_INVALID_ADDRESS)
747 break;
748 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read);
749 data.SetData(data_sp);
750 return bytes_read;
751 }
752 } break;
754 break;
755 }
756 }
757 return 0;
758}
759
761 UpdateValueIfNeeded(false);
763 error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get());
764 if (error.Fail()) {
765 if (m_data.GetByteSize()) {
766 data = m_data;
767 error.Clear();
768 return data.GetByteSize();
769 } else {
770 return 0;
771 }
772 }
775 return data.GetByteSize();
776}
777
779 error.Clear();
780 // Make sure our value is up to date first so that our location and location
781 // type is valid.
782 if (!UpdateValueIfNeeded(false)) {
783 error.SetErrorString("unable to read value");
784 return false;
785 }
786
787 uint64_t count = 0;
788 const Encoding encoding = GetCompilerType().GetEncoding(count);
789
790 const size_t byte_size = GetByteSize().value_or(0);
791
793
794 switch (value_type) {
796 error.SetErrorString("invalid location");
797 return false;
799 Status set_error =
800 m_value.GetScalar().SetValueFromData(data, encoding, byte_size);
801
802 if (!set_error.Success()) {
803 error.SetErrorStringWithFormat("unable to set scalar value: %s",
804 set_error.AsCString());
805 return false;
806 }
807 } break;
809 // If it is a load address, then the scalar value is the storage location
810 // of the data, and we have to shove this value down to that load location.
812 Process *process = exe_ctx.GetProcessPtr();
813 if (process) {
815 size_t bytes_written = process->WriteMemory(
816 target_addr, data.GetDataStart(), byte_size, error);
817 if (!error.Success())
818 return false;
819 if (bytes_written != byte_size) {
820 error.SetErrorString("unable to write value to memory");
821 return false;
822 }
823 }
824 } break;
826 // If it is a host address, then we stuff the scalar as a DataBuffer into
827 // the Value's data.
828 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0));
829 m_data.SetData(buffer_sp, 0);
830 data.CopyByteOrderedData(0, byte_size,
831 const_cast<uint8_t *>(m_data.GetDataStart()),
832 byte_size, m_data.GetByteOrder());
833 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart();
834 } break;
836 break;
837 }
838
839 // If we have reached this point, then we have successfully changed the
840 // value.
842 return true;
843}
844
845static bool CopyStringDataToBufferSP(const StreamString &source,
846 lldb::WritableDataBufferSP &destination) {
847 llvm::StringRef src = source.GetString();
848 src = src.rtrim('\0');
849 destination = std::make_shared<DataBufferHeap>(src.size(), 0);
850 memcpy(destination->GetBytes(), src.data(), src.size());
851 return true;
852}
853
854std::pair<size_t, bool>
856 Status &error, bool honor_array) {
857 bool was_capped = false;
858 StreamString s;
860 Target *target = exe_ctx.GetTargetPtr();
861
862 if (!target) {
863 s << "<no target to read from>";
864 error.SetErrorString("no target to read from");
865 CopyStringDataToBufferSP(s, buffer_sp);
866 return {0, was_capped};
867 }
868
869 const auto max_length = target->GetMaximumSizeOfStringSummary();
870
871 size_t bytes_read = 0;
872 size_t total_bytes_read = 0;
873
874 CompilerType compiler_type = GetCompilerType();
875 CompilerType elem_or_pointee_compiler_type;
876 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type));
877 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
878 elem_or_pointee_compiler_type.IsCharType()) {
879 addr_t cstr_address = LLDB_INVALID_ADDRESS;
880 AddressType cstr_address_type = eAddressTypeInvalid;
881
882 size_t cstr_len = 0;
883 bool capped_data = false;
884 const bool is_array = type_flags.Test(eTypeIsArray);
885 if (is_array) {
886 // We have an array
887 uint64_t array_size = 0;
888 if (compiler_type.IsArrayType(nullptr, &array_size)) {
889 cstr_len = array_size;
890 if (cstr_len > max_length) {
891 capped_data = true;
892 cstr_len = max_length;
893 }
894 }
895 cstr_address = GetAddressOf(true, &cstr_address_type);
896 } else {
897 // We have a pointer
898 cstr_address = GetPointerValue(&cstr_address_type);
899 }
900
901 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) {
902 if (cstr_address_type == eAddressTypeHost && is_array) {
903 const char *cstr = GetDataExtractor().PeekCStr(0);
904 if (cstr == nullptr) {
905 s << "<invalid address>";
906 error.SetErrorString("invalid address");
907 CopyStringDataToBufferSP(s, buffer_sp);
908 return {0, was_capped};
909 }
910 s << llvm::StringRef(cstr, cstr_len);
911 CopyStringDataToBufferSP(s, buffer_sp);
912 return {cstr_len, was_capped};
913 } else {
914 s << "<invalid address>";
915 error.SetErrorString("invalid address");
916 CopyStringDataToBufferSP(s, buffer_sp);
917 return {0, was_capped};
918 }
919 }
920
921 Address cstr_so_addr(cstr_address);
922 DataExtractor data;
923 if (cstr_len > 0 && honor_array) {
924 // I am using GetPointeeData() here to abstract the fact that some
925 // ValueObjects are actually frozen pointers in the host but the pointed-
926 // to data lives in the debuggee, and GetPointeeData() automatically
927 // takes care of this
928 GetPointeeData(data, 0, cstr_len);
929
930 if ((bytes_read = data.GetByteSize()) > 0) {
931 total_bytes_read = bytes_read;
932 for (size_t offset = 0; offset < bytes_read; offset++)
933 s.Printf("%c", *data.PeekData(offset, 1));
934 if (capped_data)
935 was_capped = true;
936 }
937 } else {
938 cstr_len = max_length;
939 const size_t k_max_buf_size = 64;
940
941 size_t offset = 0;
942
943 int cstr_len_displayed = -1;
944 bool capped_cstr = false;
945 // I am using GetPointeeData() here to abstract the fact that some
946 // ValueObjects are actually frozen pointers in the host but the pointed-
947 // to data lives in the debuggee, and GetPointeeData() automatically
948 // takes care of this
949 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) {
950 total_bytes_read += bytes_read;
951 const char *cstr = data.PeekCStr(0);
952 size_t len = strnlen(cstr, k_max_buf_size);
953 if (cstr_len_displayed < 0)
954 cstr_len_displayed = len;
955
956 if (len == 0)
957 break;
958 cstr_len_displayed += len;
959 if (len > bytes_read)
960 len = bytes_read;
961 if (len > cstr_len)
962 len = cstr_len;
963
964 for (size_t offset = 0; offset < bytes_read; offset++)
965 s.Printf("%c", *data.PeekData(offset, 1));
966
967 if (len < k_max_buf_size)
968 break;
969
970 if (len >= cstr_len) {
971 capped_cstr = true;
972 break;
973 }
974
975 cstr_len -= len;
976 offset += len;
977 }
978
979 if (cstr_len_displayed >= 0) {
980 if (capped_cstr)
981 was_capped = true;
982 }
983 }
984 } else {
985 error.SetErrorString("not a string object");
986 s << "<not a string object>";
987 }
988 CopyStringDataToBufferSP(s, buffer_sp);
989 return {total_bytes_read, was_capped};
990}
991
992llvm::Expected<std::string> ValueObject::GetObjectDescription() {
993 if (!UpdateValueIfNeeded(true))
994 return llvm::createStringError("could not update value");
995
996 // Return cached value.
997 if (!m_object_desc_str.empty())
998 return m_object_desc_str;
999
1001 Process *process = exe_ctx.GetProcessPtr();
1002 if (!process)
1003 return llvm::createStringError("no process");
1004
1005 // Returns the object description produced by one language runtime.
1006 auto get_object_description =
1007 [&](LanguageType language) -> llvm::Expected<std::string> {
1008 if (LanguageRuntime *runtime = process->GetLanguageRuntime(language)) {
1009 StreamString s;
1010 if (llvm::Error error = runtime->GetObjectDescription(s, *this))
1011 return error;
1013 return m_object_desc_str;
1014 }
1015 return llvm::createStringError("no native language runtime");
1016 };
1017
1018 // Try the native language runtime first.
1019 LanguageType native_language = GetObjectRuntimeLanguage();
1020 llvm::Expected<std::string> desc = get_object_description(native_language);
1021 if (desc)
1022 return desc;
1023
1024 // Try the Objective-C language runtime. This fallback is necessary
1025 // for Objective-C++ and mixed Objective-C / C++ programs.
1026 if (Language::LanguageIsCFamily(native_language)) {
1027 // We're going to try again, so let's drop the first error.
1028 llvm::consumeError(desc.takeError());
1029 return get_object_description(eLanguageTypeObjC);
1030 }
1031 return desc;
1032}
1033
1035 std::string &destination) {
1036 if (UpdateValueIfNeeded(false))
1037 return format.FormatObject(this, destination);
1038 else
1039 return false;
1040}
1041
1043 std::string &destination) {
1044 return GetValueAsCString(TypeFormatImpl_Format(format), destination);
1045}
1046
1048 if (UpdateValueIfNeeded(true)) {
1049 lldb::TypeFormatImplSP format_sp;
1050 lldb::Format my_format = GetFormat();
1051 if (my_format == lldb::eFormatDefault) {
1052 if (m_type_format_sp)
1053 format_sp = m_type_format_sp;
1054 else {
1056 my_format = eFormatUnsigned;
1057 else {
1059 const RegisterInfo *reg_info = m_value.GetRegisterInfo();
1060 if (reg_info)
1061 my_format = reg_info->format;
1062 } else {
1063 my_format = GetValue().GetCompilerType().GetFormat();
1064 }
1065 }
1066 }
1067 }
1068 if (my_format != m_last_format || m_value_str.empty()) {
1069 m_last_format = my_format;
1070 if (!format_sp)
1071 format_sp = std::make_shared<TypeFormatImpl_Format>(my_format);
1072 if (GetValueAsCString(*format_sp.get(), m_value_str)) {
1074 // The value was gotten successfully, so we consider the value as
1075 // changed if the value string differs
1077 }
1078 }
1079 }
1080 }
1081 if (m_value_str.empty())
1082 return nullptr;
1083 return m_value_str.c_str();
1084}
1085
1086// if > 8bytes, 0 is returned. this method should mostly be used to read
1087// address values out of pointers
1088uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) {
1089 // If our byte size is zero this is an aggregate type that has children
1090 if (CanProvideValue()) {
1091 Scalar scalar;
1092 if (ResolveValue(scalar)) {
1093 if (success)
1094 *success = true;
1095 scalar.MakeUnsigned();
1096 return scalar.ULongLong(fail_value);
1097 }
1098 // fallthrough, otherwise...
1099 }
1100
1101 if (success)
1102 *success = false;
1103 return fail_value;
1104}
1105
1106int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) {
1107 // If our byte size is zero this is an aggregate type that has children
1108 if (CanProvideValue()) {
1109 Scalar scalar;
1110 if (ResolveValue(scalar)) {
1111 if (success)
1112 *success = true;
1113 scalar.MakeSigned();
1114 return scalar.SLongLong(fail_value);
1115 }
1116 // fallthrough, otherwise...
1117 }
1118
1119 if (success)
1120 *success = false;
1121 return fail_value;
1122}
1123
1124llvm::Expected<llvm::APSInt> ValueObject::GetValueAsAPSInt() {
1125 // Make sure the type can be converted to an APSInt.
1126 if (!GetCompilerType().IsInteger() &&
1127 !GetCompilerType().IsScopedEnumerationType() &&
1128 !GetCompilerType().IsEnumerationType() &&
1130 !GetCompilerType().IsNullPtrType() &&
1131 !GetCompilerType().IsReferenceType() && !GetCompilerType().IsBoolean())
1132 return llvm::make_error<llvm::StringError>(
1133 "type cannot be converted to APSInt", llvm::inconvertibleErrorCode());
1134
1135 if (CanProvideValue()) {
1136 Scalar scalar;
1137 if (ResolveValue(scalar))
1138 return scalar.GetAPSInt();
1139 }
1140
1141 return llvm::make_error<llvm::StringError>(
1142 "error occurred; unable to convert to APSInt",
1143 llvm::inconvertibleErrorCode());
1144}
1145
1146llvm::Expected<llvm::APFloat> ValueObject::GetValueAsAPFloat() {
1147 if (!GetCompilerType().IsFloat())
1148 return llvm::make_error<llvm::StringError>(
1149 "type cannot be converted to APFloat", llvm::inconvertibleErrorCode());
1150
1151 if (CanProvideValue()) {
1152 Scalar scalar;
1153 if (ResolveValue(scalar))
1154 return scalar.GetAPFloat();
1155 }
1156
1157 return llvm::make_error<llvm::StringError>(
1158 "error occurred; unable to convert to APFloat",
1159 llvm::inconvertibleErrorCode());
1160}
1161
1162llvm::Expected<bool> ValueObject::GetValueAsBool() {
1163 CompilerType val_type = GetCompilerType();
1164 if (val_type.IsInteger() || val_type.IsUnscopedEnumerationType() ||
1165 val_type.IsPointerType()) {
1166 auto value_or_err = GetValueAsAPSInt();
1167 if (value_or_err)
1168 return value_or_err->getBoolValue();
1169 }
1170 if (val_type.IsFloat()) {
1171 auto value_or_err = GetValueAsAPFloat();
1172 if (value_or_err)
1173 return value_or_err->isNonZero();
1174 }
1175 if (val_type.IsArrayType())
1176 return GetAddressOf() != 0;
1177
1178 return llvm::make_error<llvm::StringError>("type cannot be converted to bool",
1179 llvm::inconvertibleErrorCode());
1180}
1181
1182void ValueObject::SetValueFromInteger(const llvm::APInt &value, Status &error) {
1183 // Verify the current object is an integer object
1184 CompilerType val_type = GetCompilerType();
1185 if (!val_type.IsInteger() && !val_type.IsUnscopedEnumerationType() &&
1186 !val_type.IsFloat() && !val_type.IsPointerType() &&
1187 !val_type.IsScalarType()) {
1188 error.SetErrorString("current value object is not an integer objet");
1189 return;
1190 }
1191
1192 // Verify the current object is not actually associated with any program
1193 // variable.
1194 if (GetVariable()) {
1195 error.SetErrorString("current value object is not a temporary object");
1196 return;
1197 }
1198
1199 // Verify the proposed new value is the right size.
1200 lldb::TargetSP target = GetTargetSP();
1201 uint64_t byte_size = 0;
1202 if (auto temp = GetCompilerType().GetByteSize(target.get()))
1203 byte_size = temp.value();
1204 if (value.getBitWidth() != byte_size * CHAR_BIT) {
1205 error.SetErrorString(
1206 "illegal argument: new value should be of the same size");
1207 return;
1208 }
1209
1210 lldb::DataExtractorSP data_sp;
1211 data_sp->SetData(value.getRawData(), byte_size,
1212 target->GetArchitecture().GetByteOrder());
1213 data_sp->SetAddressByteSize(
1214 static_cast<uint8_t>(target->GetArchitecture().GetAddressByteSize()));
1215 SetData(*data_sp, error);
1216}
1217
1219 Status &error) {
1220 // Verify the current object is an integer object
1221 CompilerType val_type = GetCompilerType();
1222 if (!val_type.IsInteger() && !val_type.IsUnscopedEnumerationType() &&
1223 !val_type.IsFloat() && !val_type.IsPointerType() &&
1224 !val_type.IsScalarType()) {
1225 error.SetErrorString("current value object is not an integer objet");
1226 return;
1227 }
1228
1229 // Verify the current object is not actually associated with any program
1230 // variable.
1231 if (GetVariable()) {
1232 error.SetErrorString("current value object is not a temporary object");
1233 return;
1234 }
1235
1236 // Verify the proposed new value is the right type.
1237 CompilerType new_val_type = new_val_sp->GetCompilerType();
1238 if (!new_val_type.IsInteger() && !new_val_type.IsFloat() &&
1239 !new_val_type.IsPointerType()) {
1240 error.SetErrorString(
1241 "illegal argument: new value should be of the same size");
1242 return;
1243 }
1244
1245 if (new_val_type.IsInteger()) {
1246 auto value_or_err = new_val_sp->GetValueAsAPSInt();
1247 if (value_or_err)
1248 SetValueFromInteger(*value_or_err, error);
1249 else
1250 error.SetErrorString("error getting APSInt from new_val_sp");
1251 } else if (new_val_type.IsFloat()) {
1252 auto value_or_err = new_val_sp->GetValueAsAPFloat();
1253 if (value_or_err)
1254 SetValueFromInteger(value_or_err->bitcastToAPInt(), error);
1255 else
1256 error.SetErrorString("error getting APFloat from new_val_sp");
1257 } else if (new_val_type.IsPointerType()) {
1258 bool success = true;
1259 uint64_t int_val = new_val_sp->GetValueAsUnsigned(0, &success);
1260 if (success) {
1261 lldb::TargetSP target = GetTargetSP();
1262 uint64_t num_bits = 0;
1263 if (auto temp = new_val_sp->GetCompilerType().GetBitSize(target.get()))
1264 num_bits = temp.value();
1265 SetValueFromInteger(llvm::APInt(num_bits, int_val), error);
1266 } else
1267 error.SetErrorString("error converting new_val_sp to integer");
1268 }
1269}
1270
1271// if any more "special cases" are added to
1272// ValueObject::DumpPrintableRepresentation() please keep this call up to date
1273// by returning true for your new special cases. We will eventually move to
1274// checking this call result before trying to display special cases
1276 ValueObjectRepresentationStyle val_obj_display, Format custom_format) {
1277 Flags flags(GetTypeInfo());
1278 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
1280 if (IsCStringContainer(true) &&
1281 (custom_format == eFormatCString || custom_format == eFormatCharArray ||
1282 custom_format == eFormatChar || custom_format == eFormatVectorOfChar))
1283 return true;
1284
1285 if (flags.Test(eTypeIsArray)) {
1286 if ((custom_format == eFormatBytes) ||
1287 (custom_format == eFormatBytesWithASCII))
1288 return true;
1289
1290 if ((custom_format == eFormatVectorOfChar) ||
1291 (custom_format == eFormatVectorOfFloat32) ||
1292 (custom_format == eFormatVectorOfFloat64) ||
1293 (custom_format == eFormatVectorOfSInt16) ||
1294 (custom_format == eFormatVectorOfSInt32) ||
1295 (custom_format == eFormatVectorOfSInt64) ||
1296 (custom_format == eFormatVectorOfSInt8) ||
1297 (custom_format == eFormatVectorOfUInt128) ||
1298 (custom_format == eFormatVectorOfUInt16) ||
1299 (custom_format == eFormatVectorOfUInt32) ||
1300 (custom_format == eFormatVectorOfUInt64) ||
1301 (custom_format == eFormatVectorOfUInt8))
1302 return true;
1303 }
1304 }
1305 return false;
1306}
1307
1309 Stream &s, ValueObjectRepresentationStyle val_obj_display,
1310 Format custom_format, PrintableRepresentationSpecialCases special,
1311 bool do_dump_error) {
1312
1313 // If the ValueObject has an error, we might end up dumping the type, which
1314 // is useful, but if we don't even have a type, then don't examine the object
1315 // further as that's not meaningful, only the error is.
1316 if (m_error.Fail() && !GetCompilerType().IsValid()) {
1317 if (do_dump_error)
1318 s.Printf("<%s>", m_error.AsCString());
1319 return false;
1320 }
1321
1322 Flags flags(GetTypeInfo());
1323
1324 bool allow_special =
1326 const bool only_special = false;
1327
1328 if (allow_special) {
1329 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) &&
1331 // when being asked to get a printable display an array or pointer type
1332 // directly, try to "do the right thing"
1333
1334 if (IsCStringContainer(true) &&
1335 (custom_format == eFormatCString ||
1336 custom_format == eFormatCharArray || custom_format == eFormatChar ||
1337 custom_format ==
1338 eFormatVectorOfChar)) // print char[] & char* directly
1339 {
1340 Status error;
1342 std::pair<size_t, bool> read_string =
1343 ReadPointedString(buffer_sp, error,
1344 (custom_format == eFormatVectorOfChar) ||
1345 (custom_format == eFormatCharArray));
1346 lldb_private::formatters::StringPrinter::
1347 ReadBufferAndDumpToStreamOptions options(*this);
1348 options.SetData(DataExtractor(
1349 buffer_sp, lldb::eByteOrderInvalid,
1350 8)); // none of this matters for a string - pass some defaults
1351 options.SetStream(&s);
1352 options.SetPrefixToken(nullptr);
1353 options.SetQuote('"');
1354 options.SetSourceSize(buffer_sp->GetByteSize());
1355 options.SetIsTruncated(read_string.second);
1356 options.SetBinaryZeroIsTerminator(custom_format != eFormatVectorOfChar);
1358 lldb_private::formatters::StringPrinter::StringElementType::ASCII>(
1359 options);
1360 return !error.Fail();
1361 }
1362
1363 if (custom_format == eFormatEnum)
1364 return false;
1365
1366 // this only works for arrays, because I have no way to know when the
1367 // pointed memory ends, and no special \0 end of data marker
1368 if (flags.Test(eTypeIsArray)) {
1369 if ((custom_format == eFormatBytes) ||
1370 (custom_format == eFormatBytesWithASCII)) {
1371 const size_t count = GetNumChildrenIgnoringErrors();
1372
1373 s << '[';
1374 for (size_t low = 0; low < count; low++) {
1375
1376 if (low)
1377 s << ',';
1378
1379 ValueObjectSP child = GetChildAtIndex(low);
1380 if (!child.get()) {
1381 s << "<invalid child>";
1382 continue;
1383 }
1384 child->DumpPrintableRepresentation(
1386 custom_format);
1387 }
1388
1389 s << ']';
1390
1391 return true;
1392 }
1393
1394 if ((custom_format == eFormatVectorOfChar) ||
1395 (custom_format == eFormatVectorOfFloat32) ||
1396 (custom_format == eFormatVectorOfFloat64) ||
1397 (custom_format == eFormatVectorOfSInt16) ||
1398 (custom_format == eFormatVectorOfSInt32) ||
1399 (custom_format == eFormatVectorOfSInt64) ||
1400 (custom_format == eFormatVectorOfSInt8) ||
1401 (custom_format == eFormatVectorOfUInt128) ||
1402 (custom_format == eFormatVectorOfUInt16) ||
1403 (custom_format == eFormatVectorOfUInt32) ||
1404 (custom_format == eFormatVectorOfUInt64) ||
1405 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes
1406 // with ASCII or any vector
1407 // format should be printed
1408 // directly
1409 {
1410 const size_t count = GetNumChildrenIgnoringErrors();
1411
1412 Format format = FormatManager::GetSingleItemFormat(custom_format);
1413
1414 s << '[';
1415 for (size_t low = 0; low < count; low++) {
1416
1417 if (low)
1418 s << ',';
1419
1420 ValueObjectSP child = GetChildAtIndex(low);
1421 if (!child.get()) {
1422 s << "<invalid child>";
1423 continue;
1424 }
1425 child->DumpPrintableRepresentation(
1427 }
1428
1429 s << ']';
1430
1431 return true;
1432 }
1433 }
1434
1435 if ((custom_format == eFormatBoolean) ||
1436 (custom_format == eFormatBinary) || (custom_format == eFormatChar) ||
1437 (custom_format == eFormatCharPrintable) ||
1438 (custom_format == eFormatComplexFloat) ||
1439 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) ||
1440 (custom_format == eFormatHexUppercase) ||
1441 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) ||
1442 (custom_format == eFormatOSType) ||
1443 (custom_format == eFormatUnicode16) ||
1444 (custom_format == eFormatUnicode32) ||
1445 (custom_format == eFormatUnsigned) ||
1446 (custom_format == eFormatPointer) ||
1447 (custom_format == eFormatComplexInteger) ||
1448 (custom_format == eFormatComplex) ||
1449 (custom_format == eFormatDefault)) // use the [] operator
1450 return false;
1451 }
1452 }
1453
1454 if (only_special)
1455 return false;
1456
1457 bool var_success = false;
1458
1459 {
1460 llvm::StringRef str;
1461
1462 // this is a local stream that we are using to ensure that the data pointed
1463 // to by cstr survives long enough for us to copy it to its destination -
1464 // it is necessary to have this temporary storage area for cases where our
1465 // desired output is not backed by some other longer-term storage
1466 StreamString strm;
1467
1468 if (custom_format != eFormatInvalid)
1469 SetFormat(custom_format);
1470
1471 switch (val_obj_display) {
1473 str = GetValueAsCString();
1474 break;
1475
1477 str = GetSummaryAsCString();
1478 break;
1479
1481 llvm::Expected<std::string> desc = GetObjectDescription();
1482 if (!desc) {
1483 strm << "error: " << toString(desc.takeError());
1484 str = strm.GetString();
1485 } else {
1486 strm << *desc;
1487 str = strm.GetString();
1488 }
1489 } break;
1490
1492 str = GetLocationAsCString();
1493 break;
1494
1496 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildrenIgnoringErrors());
1497 str = strm.GetString();
1498 break;
1499
1501 str = GetTypeName().GetStringRef();
1502 break;
1503
1505 str = GetName().GetStringRef();
1506 break;
1507
1509 GetExpressionPath(strm);
1510 str = strm.GetString();
1511 break;
1512 }
1513
1514 // If the requested display style produced no output, try falling back to
1515 // alternative presentations.
1516 if (str.empty()) {
1517 if (val_obj_display == eValueObjectRepresentationStyleValue)
1518 str = GetSummaryAsCString();
1519 else if (val_obj_display == eValueObjectRepresentationStyleSummary) {
1520 if (!CanProvideValue()) {
1521 strm.Printf("%s @ %s", GetTypeName().AsCString(),
1523 str = strm.GetString();
1524 } else
1525 str = GetValueAsCString();
1526 }
1527 }
1528
1529 if (!str.empty())
1530 s << str;
1531 else {
1532 // We checked for errors at the start, but do it again here in case
1533 // realizing the value for dumping produced an error.
1534 if (m_error.Fail()) {
1535 if (do_dump_error)
1536 s.Printf("<%s>", m_error.AsCString());
1537 else
1538 return false;
1539 } else if (val_obj_display == eValueObjectRepresentationStyleSummary)
1540 s.PutCString("<no summary available>");
1541 else if (val_obj_display == eValueObjectRepresentationStyleValue)
1542 s.PutCString("<no value available>");
1543 else if (val_obj_display ==
1545 s.PutCString("<not a valid Objective-C object>"); // edit this if we
1546 // have other runtimes
1547 // that support a
1548 // description
1549 else
1550 s.PutCString("<no printable representation>");
1551 }
1552
1553 // we should only return false here if we could not do *anything* even if
1554 // we have an error message as output, that's a success from our callers'
1555 // perspective, so return true
1556 var_success = true;
1557
1558 if (custom_format != eFormatInvalid)
1560 }
1561
1562 return var_success;
1563}
1564
1565addr_t ValueObject::GetAddressOf(bool scalar_is_load_address,
1566 AddressType *address_type) {
1567 // Can't take address of a bitfield
1568 if (IsBitfield())
1569 return LLDB_INVALID_ADDRESS;
1570
1571 if (!UpdateValueIfNeeded(false))
1572 return LLDB_INVALID_ADDRESS;
1573
1574 switch (m_value.GetValueType()) {
1576 return LLDB_INVALID_ADDRESS;
1578 if (scalar_is_load_address) {
1579 if (address_type)
1580 *address_type = eAddressTypeLoad;
1582 }
1583 break;
1584
1587 if (address_type)
1588 *address_type = m_value.GetValueAddressType();
1590 } break;
1592 if (address_type)
1593 *address_type = m_value.GetValueAddressType();
1594 return LLDB_INVALID_ADDRESS;
1595 } break;
1596 }
1597 if (address_type)
1598 *address_type = eAddressTypeInvalid;
1599 return LLDB_INVALID_ADDRESS;
1600}
1601
1603 addr_t address = LLDB_INVALID_ADDRESS;
1604 if (address_type)
1605 *address_type = eAddressTypeInvalid;
1606
1607 if (!UpdateValueIfNeeded(false))
1608 return address;
1609
1610 switch (m_value.GetValueType()) {
1612 return LLDB_INVALID_ADDRESS;
1615 break;
1616
1620 lldb::offset_t data_offset = 0;
1621 address = m_data.GetAddress(&data_offset);
1622 } break;
1623 }
1624
1625 if (address_type)
1626 *address_type = GetAddressTypeOfChildren();
1627
1628 return address;
1629}
1630
1631bool ValueObject::SetValueFromCString(const char *value_str, Status &error) {
1632 error.Clear();
1633 // Make sure our value is up to date first so that our location and location
1634 // type is valid.
1635 if (!UpdateValueIfNeeded(false)) {
1636 error.SetErrorString("unable to read value");
1637 return false;
1638 }
1639
1640 uint64_t count = 0;
1641 const Encoding encoding = GetCompilerType().GetEncoding(count);
1642
1643 const size_t byte_size = GetByteSize().value_or(0);
1644
1645 Value::ValueType value_type = m_value.GetValueType();
1646
1647 if (value_type == Value::ValueType::Scalar) {
1648 // If the value is already a scalar, then let the scalar change itself:
1649 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size);
1650 } else if (byte_size <= 16) {
1651 // If the value fits in a scalar, then make a new scalar and again let the
1652 // scalar code do the conversion, then figure out where to put the new
1653 // value.
1654 Scalar new_scalar;
1655 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size);
1656 if (error.Success()) {
1657 switch (value_type) {
1659 // If it is a load address, then the scalar value is the storage
1660 // location of the data, and we have to shove this value down to that
1661 // load location.
1663 Process *process = exe_ctx.GetProcessPtr();
1664 if (process) {
1665 addr_t target_addr =
1667 size_t bytes_written = process->WriteScalarToMemory(
1668 target_addr, new_scalar, byte_size, error);
1669 if (!error.Success())
1670 return false;
1671 if (bytes_written != byte_size) {
1672 error.SetErrorString("unable to write value to memory");
1673 return false;
1674 }
1675 }
1676 } break;
1678 // If it is a host address, then we stuff the scalar as a DataBuffer
1679 // into the Value's data.
1680 DataExtractor new_data;
1681 new_data.SetByteOrder(m_data.GetByteOrder());
1682
1683 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0));
1684 m_data.SetData(buffer_sp, 0);
1685 bool success = new_scalar.GetData(new_data);
1686 if (success) {
1687 new_data.CopyByteOrderedData(
1688 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()),
1689 byte_size, m_data.GetByteOrder());
1690 }
1691 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart();
1692
1693 } break;
1695 error.SetErrorString("invalid location");
1696 return false;
1699 break;
1700 }
1701 } else {
1702 return false;
1703 }
1704 } else {
1705 // We don't support setting things bigger than a scalar at present.
1706 error.SetErrorString("unable to write aggregate data type");
1707 return false;
1708 }
1709
1710 // If we have reached this point, then we have successfully changed the
1711 // value.
1713 return true;
1714}
1715
1717 decl.Clear();
1718 return false;
1719}
1720
1722 ValueObject *valobj) {
1723 m_synthetic_children[key] = valobj;
1724}
1725
1727 ValueObjectSP synthetic_child_sp;
1728 std::map<ConstString, ValueObject *>::const_iterator pos =
1729 m_synthetic_children.find(key);
1730 if (pos != m_synthetic_children.end())
1731 synthetic_child_sp = pos->second->GetSP();
1732 return synthetic_child_sp;
1733}
1734
1737 Process *process = exe_ctx.GetProcessPtr();
1738 if (process)
1739 return process->IsPossibleDynamicValue(*this);
1740 else
1741 return GetCompilerType().IsPossibleDynamicType(nullptr, true, true);
1742}
1743
1745 Process *process(GetProcessSP().get());
1746 if (!process)
1747 return false;
1748
1749 // We trust that the compiler did the right thing and marked runtime support
1750 // values as artificial.
1751 if (!GetVariable() || !GetVariable()->IsArtificial())
1752 return false;
1753
1754 if (auto *runtime = process->GetLanguageRuntime(GetVariable()->GetLanguage()))
1755 if (runtime->IsAllowedRuntimeValue(GetName()))
1756 return false;
1757
1758 return true;
1759}
1760
1763 return language->IsNilReference(*this);
1764 }
1765 return false;
1766}
1767
1770 return language->IsUninitializedReference(*this);
1771 }
1772 return false;
1773}
1774
1775// This allows you to create an array member using and index that doesn't not
1776// fall in the normal bounds of the array. Many times structure can be defined
1777// as: struct Collection {
1778// uint32_t item_count;
1779// Item item_array[0];
1780// };
1781// The size of the "item_array" is 1, but many times in practice there are more
1782// items in "item_array".
1783
1785 bool can_create) {
1786 ValueObjectSP synthetic_child_sp;
1787 if (IsPointerType() || IsArrayType()) {
1788 std::string index_str = llvm::formatv("[{0}]", index);
1789 ConstString index_const_str(index_str);
1790 // Check if we have already created a synthetic array member in this valid
1791 // object. If we have we will re-use it.
1792 synthetic_child_sp = GetSyntheticChild(index_const_str);
1793 if (!synthetic_child_sp) {
1794 ValueObject *synthetic_child;
1795 // We haven't made a synthetic array member for INDEX yet, so lets make
1796 // one and cache it for any future reference.
1797 synthetic_child = CreateSyntheticArrayMember(index);
1798
1799 // Cache the value if we got one back...
1800 if (synthetic_child) {
1801 AddSyntheticChild(index_const_str, synthetic_child);
1802 synthetic_child_sp = synthetic_child->GetSP();
1803 synthetic_child_sp->SetName(ConstString(index_str));
1804 synthetic_child_sp->m_flags.m_is_array_item_for_pointer = true;
1805 }
1806 }
1807 }
1808 return synthetic_child_sp;
1809}
1810
1812 bool can_create) {
1813 ValueObjectSP synthetic_child_sp;
1814 if (IsScalarType()) {
1815 std::string index_str = llvm::formatv("[{0}-{1}]", from, to);
1816 ConstString index_const_str(index_str);
1817 // Check if we have already created a synthetic array member in this valid
1818 // object. If we have we will re-use it.
1819 synthetic_child_sp = GetSyntheticChild(index_const_str);
1820 if (!synthetic_child_sp) {
1821 uint32_t bit_field_size = to - from + 1;
1822 uint32_t bit_field_offset = from;
1823 if (GetDataExtractor().GetByteOrder() == eByteOrderBig)
1824 bit_field_offset =
1825 GetByteSize().value_or(0) * 8 - bit_field_size - bit_field_offset;
1826 // We haven't made a synthetic array member for INDEX yet, so lets make
1827 // one and cache it for any future reference.
1828 ValueObjectChild *synthetic_child = new ValueObjectChild(
1829 *this, GetCompilerType(), index_const_str, GetByteSize().value_or(0),
1830 0, bit_field_size, bit_field_offset, false, false,
1832
1833 // Cache the value if we got one back...
1834 if (synthetic_child) {
1835 AddSyntheticChild(index_const_str, synthetic_child);
1836 synthetic_child_sp = synthetic_child->GetSP();
1837 synthetic_child_sp->SetName(ConstString(index_str));
1838 synthetic_child_sp->m_flags.m_is_bitfield_for_scalar = true;
1839 }
1840 }
1841 }
1842 return synthetic_child_sp;
1843}
1844
1846 uint32_t offset, const CompilerType &type, bool can_create,
1847 ConstString name_const_str) {
1848
1849 ValueObjectSP synthetic_child_sp;
1850
1851 if (name_const_str.IsEmpty()) {
1852 name_const_str.SetString("@" + std::to_string(offset));
1853 }
1854
1855 // Check if we have already created a synthetic array member in this valid
1856 // object. If we have we will re-use it.
1857 synthetic_child_sp = GetSyntheticChild(name_const_str);
1858
1859 if (synthetic_child_sp.get())
1860 return synthetic_child_sp;
1861
1862 if (!can_create)
1863 return {};
1864
1866 std::optional<uint64_t> size =
1868 if (!size)
1869 return {};
1870 ValueObjectChild *synthetic_child =
1871 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0,
1872 false, false, eAddressTypeInvalid, 0);
1873 if (synthetic_child) {
1874 AddSyntheticChild(name_const_str, synthetic_child);
1875 synthetic_child_sp = synthetic_child->GetSP();
1876 synthetic_child_sp->SetName(name_const_str);
1877 synthetic_child_sp->m_flags.m_is_child_at_offset = true;
1878 }
1879 return synthetic_child_sp;
1880}
1881
1883 const CompilerType &type,
1884 bool can_create,
1885 ConstString name_const_str) {
1886 ValueObjectSP synthetic_child_sp;
1887
1888 if (name_const_str.IsEmpty()) {
1889 char name_str[128];
1890 snprintf(name_str, sizeof(name_str), "base%s@%i",
1891 type.GetTypeName().AsCString("<unknown>"), offset);
1892 name_const_str.SetCString(name_str);
1893 }
1894
1895 // Check if we have already created a synthetic array member in this valid
1896 // object. If we have we will re-use it.
1897 synthetic_child_sp = GetSyntheticChild(name_const_str);
1898
1899 if (synthetic_child_sp.get())
1900 return synthetic_child_sp;
1901
1902 if (!can_create)
1903 return {};
1904
1905 const bool is_base_class = true;
1906
1908 std::optional<uint64_t> size =
1910 if (!size)
1911 return {};
1912 ValueObjectChild *synthetic_child =
1913 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0,
1914 is_base_class, false, eAddressTypeInvalid, 0);
1915 if (synthetic_child) {
1916 AddSyntheticChild(name_const_str, synthetic_child);
1917 synthetic_child_sp = synthetic_child->GetSP();
1918 synthetic_child_sp->SetName(name_const_str);
1919 }
1920 return synthetic_child_sp;
1921}
1922
1923// your expression path needs to have a leading . or -> (unless it somehow
1924// "looks like" an array, in which case it has a leading [ symbol). while the [
1925// is meaningful and should be shown to the user, . and -> are just parser
1926// design, but by no means added information for the user.. strip them off
1927static const char *SkipLeadingExpressionPathSeparators(const char *expression) {
1928 if (!expression || !expression[0])
1929 return expression;
1930 if (expression[0] == '.')
1931 return expression + 1;
1932 if (expression[0] == '-' && expression[1] == '>')
1933 return expression + 2;
1934 return expression;
1935}
1936
1939 bool can_create) {
1940 ValueObjectSP synthetic_child_sp;
1941 ConstString name_const_string(expression);
1942 // Check if we have already created a synthetic array member in this valid
1943 // object. If we have we will re-use it.
1944 synthetic_child_sp = GetSyntheticChild(name_const_string);
1945 if (!synthetic_child_sp) {
1946 // We haven't made a synthetic array member for expression yet, so lets
1947 // make one and cache it for any future reference.
1948 synthetic_child_sp = GetValueForExpressionPath(
1949 expression, nullptr, nullptr,
1950 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal(
1952 None));
1953
1954 // Cache the value if we got one back...
1955 if (synthetic_child_sp.get()) {
1956 // FIXME: this causes a "real" child to end up with its name changed to
1957 // the contents of expression
1958 AddSyntheticChild(name_const_string, synthetic_child_sp.get());
1959 synthetic_child_sp->SetName(
1961 }
1962 }
1963 return synthetic_child_sp;
1964}
1965
1967 TargetSP target_sp(GetTargetSP());
1968 if (target_sp && !target_sp->GetEnableSyntheticValue()) {
1969 m_synthetic_value = nullptr;
1970 return;
1971 }
1972
1974
1976 return;
1977
1978 if (m_synthetic_children_sp.get() == nullptr)
1979 return;
1980
1981 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value)
1982 return;
1983
1985}
1986
1988 if (use_dynamic == eNoDynamicValues)
1989 return;
1990
1991 if (!m_dynamic_value && !IsDynamic()) {
1993 Process *process = exe_ctx.GetProcessPtr();
1994 if (process && process->IsPossibleDynamicValue(*this)) {
1996 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic);
1997 }
1998 }
1999}
2000
2002 if (use_dynamic == eNoDynamicValues)
2003 return ValueObjectSP();
2004
2005 if (!IsDynamic() && m_dynamic_value == nullptr) {
2006 CalculateDynamicValue(use_dynamic);
2007 }
2009 return m_dynamic_value->GetSP();
2010 else
2011 return ValueObjectSP();
2012}
2013
2016
2018 return m_synthetic_value->GetSP();
2019 else
2020 return ValueObjectSP();
2021}
2022
2025
2026 if (m_synthetic_children_sp.get() == nullptr)
2027 return false;
2028
2030
2031 return m_synthetic_value != nullptr;
2032}
2033
2035 if (GetParent()) {
2036 if (GetParent()->IsBaseClass())
2037 return GetParent()->GetNonBaseClassParent();
2038 else
2039 return GetParent();
2040 }
2041 return nullptr;
2042}
2043
2044bool ValueObject::IsBaseClass(uint32_t &depth) {
2045 if (!IsBaseClass()) {
2046 depth = 0;
2047 return false;
2048 }
2049 if (GetParent()) {
2050 GetParent()->IsBaseClass(depth);
2051 depth = depth + 1;
2052 return true;
2053 }
2054 // TODO: a base of no parent? weird..
2055 depth = 1;
2056 return true;
2057}
2058
2060 GetExpressionPathFormat epformat) {
2061 // synthetic children do not actually "exist" as part of the hierarchy, and
2062 // sometimes they are consed up in ways that don't make sense from an
2063 // underlying language/API standpoint. So, use a special code path here to
2064 // return something that can hopefully be used in expression
2067
2070 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"),
2072 return;
2073 } else {
2074 uint64_t load_addr =
2076 if (load_addr != LLDB_INVALID_ADDRESS) {
2077 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"),
2078 load_addr);
2079 return;
2080 }
2081 }
2082 }
2083
2084 if (CanProvideValue()) {
2085 s.Printf("((%s)%s)", GetTypeName().AsCString("void"),
2087 return;
2088 }
2089
2090 return;
2091 }
2092
2093 const bool is_deref_of_parent = IsDereferenceOfParent();
2094
2095 if (is_deref_of_parent &&
2097 // this is the original format of GetExpressionPath() producing code like
2098 // *(a_ptr).memberName, which is entirely fine, until you put this into
2099 // StackFrame::GetValueForVariableExpressionPath() which prefers to see
2100 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings
2101 // in this latter format
2102 s.PutCString("*(");
2103 }
2104
2105 ValueObject *parent = GetParent();
2106
2107 if (parent)
2108 parent->GetExpressionPath(s, epformat);
2109
2110 // if we are a deref_of_parent just because we are synthetic array members
2111 // made up to allow ptr[%d] syntax to work in variable printing, then add our
2112 // name ([%d]) to the expression path
2116
2117 if (!IsBaseClass()) {
2118 if (!is_deref_of_parent) {
2119 ValueObject *non_base_class_parent = GetNonBaseClassParent();
2120 if (non_base_class_parent &&
2121 !non_base_class_parent->GetName().IsEmpty()) {
2122 CompilerType non_base_class_parent_compiler_type =
2123 non_base_class_parent->GetCompilerType();
2124 if (non_base_class_parent_compiler_type) {
2125 if (parent && parent->IsDereferenceOfParent() &&
2127 s.PutCString("->");
2128 } else {
2129 const uint32_t non_base_class_parent_type_info =
2130 non_base_class_parent_compiler_type.GetTypeInfo();
2131
2132 if (non_base_class_parent_type_info & eTypeIsPointer) {
2133 s.PutCString("->");
2134 } else if ((non_base_class_parent_type_info & eTypeHasChildren) &&
2135 !(non_base_class_parent_type_info & eTypeIsArray)) {
2136 s.PutChar('.');
2137 }
2138 }
2139 }
2140 }
2141
2142 const char *name = GetName().GetCString();
2143 if (name)
2144 s.PutCString(name);
2145 }
2146 }
2147
2148 if (is_deref_of_parent &&
2150 s.PutChar(')');
2151 }
2152}
2153
2155 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop,
2156 ExpressionPathEndResultType *final_value_type,
2157 const GetValueForExpressionPathOptions &options,
2158 ExpressionPathAftermath *final_task_on_target) {
2159
2160 ExpressionPathScanEndReason dummy_reason_to_stop =
2162 ExpressionPathEndResultType dummy_final_value_type =
2164 ExpressionPathAftermath dummy_final_task_on_target =
2166
2168 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop,
2169 final_value_type ? final_value_type : &dummy_final_value_type, options,
2170 final_task_on_target ? final_task_on_target
2171 : &dummy_final_task_on_target);
2172
2173 if (!final_task_on_target ||
2174 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing)
2175 return ret_val;
2176
2177 if (ret_val.get() &&
2178 ((final_value_type ? *final_value_type : dummy_final_value_type) ==
2179 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress
2180 // of plain objects
2181 {
2182 if ((final_task_on_target ? *final_task_on_target
2183 : dummy_final_task_on_target) ==
2185 Status error;
2186 ValueObjectSP final_value = ret_val->Dereference(error);
2187 if (error.Fail() || !final_value.get()) {
2188 if (reason_to_stop)
2189 *reason_to_stop =
2191 if (final_value_type)
2193 return ValueObjectSP();
2194 } else {
2195 if (final_task_on_target)
2196 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
2197 return final_value;
2198 }
2199 }
2200 if (*final_task_on_target ==
2202 Status error;
2203 ValueObjectSP final_value = ret_val->AddressOf(error);
2204 if (error.Fail() || !final_value.get()) {
2205 if (reason_to_stop)
2206 *reason_to_stop =
2208 if (final_value_type)
2210 return ValueObjectSP();
2211 } else {
2212 if (final_task_on_target)
2213 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing;
2214 return final_value;
2215 }
2216 }
2217 }
2218 return ret_val; // final_task_on_target will still have its original value, so
2219 // you know I did not do it
2220}
2221
2223 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop,
2224 ExpressionPathEndResultType *final_result,
2225 const GetValueForExpressionPathOptions &options,
2226 ExpressionPathAftermath *what_next) {
2227 ValueObjectSP root = GetSP();
2228
2229 if (!root)
2230 return nullptr;
2231
2232 llvm::StringRef remainder = expression;
2233
2234 while (true) {
2235 llvm::StringRef temp_expression = remainder;
2236
2237 CompilerType root_compiler_type = root->GetCompilerType();
2238 CompilerType pointee_compiler_type;
2239 Flags pointee_compiler_type_info;
2240
2241 Flags root_compiler_type_info(
2242 root_compiler_type.GetTypeInfo(&pointee_compiler_type));
2243 if (pointee_compiler_type)
2244 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo());
2245
2246 if (temp_expression.empty()) {
2248 return root;
2249 }
2250
2251 switch (temp_expression.front()) {
2252 case '-': {
2253 temp_expression = temp_expression.drop_front();
2254 if (options.m_check_dot_vs_arrow_syntax &&
2255 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to
2256 // use -> on a
2257 // non-pointer and I
2258 // must catch the error
2259 {
2260 *reason_to_stop =
2263 return ValueObjectSP();
2264 }
2265 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to
2266 // extract an ObjC IVar
2267 // when this is forbidden
2268 root_compiler_type_info.Test(eTypeIsPointer) &&
2269 options.m_no_fragile_ivar) {
2270 *reason_to_stop =
2273 return ValueObjectSP();
2274 }
2275 if (!temp_expression.starts_with(">")) {
2276 *reason_to_stop =
2279 return ValueObjectSP();
2280 }
2281 }
2282 [[fallthrough]];
2283 case '.': // or fallthrough from ->
2284 {
2285 if (options.m_check_dot_vs_arrow_syntax &&
2286 temp_expression.front() == '.' &&
2287 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to
2288 // use . on a pointer
2289 // and I must catch the
2290 // error
2291 {
2292 *reason_to_stop =
2295 return nullptr;
2296 }
2297 temp_expression = temp_expression.drop_front(); // skip . or >
2298
2299 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1);
2300 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just
2301 // expand this last layer
2302 {
2303 llvm::StringRef child_name = temp_expression;
2304 ValueObjectSP child_valobj_sp =
2305 root->GetChildMemberWithName(child_name);
2306
2307 if (child_valobj_sp.get()) // we know we are done, so just return
2308 {
2309 *reason_to_stop =
2312 return child_valobj_sp;
2313 } else {
2314 switch (options.m_synthetic_children_traversal) {
2316 None:
2317 break;
2320 if (root->IsSynthetic()) {
2321 child_valobj_sp = root->GetNonSyntheticValue();
2322 if (child_valobj_sp.get())
2323 child_valobj_sp =
2324 child_valobj_sp->GetChildMemberWithName(child_name);
2325 }
2326 break;
2329 if (!root->IsSynthetic()) {
2330 child_valobj_sp = root->GetSyntheticValue();
2331 if (child_valobj_sp.get())
2332 child_valobj_sp =
2333 child_valobj_sp->GetChildMemberWithName(child_name);
2334 }
2335 break;
2337 Both:
2338 if (root->IsSynthetic()) {
2339 child_valobj_sp = root->GetNonSyntheticValue();
2340 if (child_valobj_sp.get())
2341 child_valobj_sp =
2342 child_valobj_sp->GetChildMemberWithName(child_name);
2343 } else {
2344 child_valobj_sp = root->GetSyntheticValue();
2345 if (child_valobj_sp.get())
2346 child_valobj_sp =
2347 child_valobj_sp->GetChildMemberWithName(child_name);
2348 }
2349 break;
2350 }
2351 }
2352
2353 // if we are here and options.m_no_synthetic_children is true,
2354 // child_valobj_sp is going to be a NULL SP, so we hit the "else"
2355 // branch, and return an error
2356 if (child_valobj_sp.get()) // if it worked, just return
2357 {
2358 *reason_to_stop =
2361 return child_valobj_sp;
2362 } else {
2363 *reason_to_stop =
2366 return nullptr;
2367 }
2368 } else // other layers do expand
2369 {
2370 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos);
2371 llvm::StringRef child_name = temp_expression.slice(0, next_sep_pos);
2372
2373 ValueObjectSP child_valobj_sp =
2374 root->GetChildMemberWithName(child_name);
2375 if (child_valobj_sp.get()) // store the new root and move on
2376 {
2377 root = child_valobj_sp;
2378 remainder = next_separator;
2380 continue;
2381 } else {
2382 switch (options.m_synthetic_children_traversal) {
2384 None:
2385 break;
2388 if (root->IsSynthetic()) {
2389 child_valobj_sp = root->GetNonSyntheticValue();
2390 if (child_valobj_sp.get())
2391 child_valobj_sp =
2392 child_valobj_sp->GetChildMemberWithName(child_name);
2393 }
2394 break;
2397 if (!root->IsSynthetic()) {
2398 child_valobj_sp = root->GetSyntheticValue();
2399 if (child_valobj_sp.get())
2400 child_valobj_sp =
2401 child_valobj_sp->GetChildMemberWithName(child_name);
2402 }
2403 break;
2405 Both:
2406 if (root->IsSynthetic()) {
2407 child_valobj_sp = root->GetNonSyntheticValue();
2408 if (child_valobj_sp.get())
2409 child_valobj_sp =
2410 child_valobj_sp->GetChildMemberWithName(child_name);
2411 } else {
2412 child_valobj_sp = root->GetSyntheticValue();
2413 if (child_valobj_sp.get())
2414 child_valobj_sp =
2415 child_valobj_sp->GetChildMemberWithName(child_name);
2416 }
2417 break;
2418 }
2419 }
2420
2421 // if we are here and options.m_no_synthetic_children is true,
2422 // child_valobj_sp is going to be a NULL SP, so we hit the "else"
2423 // branch, and return an error
2424 if (child_valobj_sp.get()) // if it worked, move on
2425 {
2426 root = child_valobj_sp;
2427 remainder = next_separator;
2429 continue;
2430 } else {
2431 *reason_to_stop =
2434 return nullptr;
2435 }
2436 }
2437 break;
2438 }
2439 case '[': {
2440 if (!root_compiler_type_info.Test(eTypeIsArray) &&
2441 !root_compiler_type_info.Test(eTypeIsPointer) &&
2442 !root_compiler_type_info.Test(
2443 eTypeIsVector)) // if this is not a T[] nor a T*
2444 {
2445 if (!root_compiler_type_info.Test(
2446 eTypeIsScalar)) // if this is not even a scalar...
2447 {
2448 if (options.m_synthetic_children_traversal ==
2450 None) // ...only chance left is synthetic
2451 {
2452 *reason_to_stop =
2455 return ValueObjectSP();
2456 }
2457 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar,
2458 // check that we can
2459 // expand bitfields
2460 {
2461 *reason_to_stop =
2464 return ValueObjectSP();
2465 }
2466 }
2467 if (temp_expression[1] ==
2468 ']') // if this is an unbounded range it only works for arrays
2469 {
2470 if (!root_compiler_type_info.Test(eTypeIsArray)) {
2471 *reason_to_stop =
2474 return nullptr;
2475 } else // even if something follows, we cannot expand unbounded ranges,
2476 // just let the caller do it
2477 {
2478 *reason_to_stop =
2480 *final_result =
2482 return root;
2483 }
2484 }
2485
2486 size_t close_bracket_position = temp_expression.find(']', 1);
2487 if (close_bracket_position ==
2488 llvm::StringRef::npos) // if there is no ], this is a syntax error
2489 {
2490 *reason_to_stop =
2493 return nullptr;
2494 }
2495
2496 llvm::StringRef bracket_expr =
2497 temp_expression.slice(1, close_bracket_position);
2498
2499 // If this was an empty expression it would have been caught by the if
2500 // above.
2501 assert(!bracket_expr.empty());
2502
2503 if (!bracket_expr.contains('-')) {
2504 // if no separator, this is of the form [N]. Note that this cannot be
2505 // an unbounded range of the form [], because that case was handled
2506 // above with an unconditional return.
2507 unsigned long index = 0;
2508 if (bracket_expr.getAsInteger(0, index)) {
2509 *reason_to_stop =
2512 return nullptr;
2513 }
2514
2515 // from here on we do have a valid index
2516 if (root_compiler_type_info.Test(eTypeIsArray)) {
2517 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index);
2518 if (!child_valobj_sp)
2519 child_valobj_sp = root->GetSyntheticArrayMember(index, true);
2520 if (!child_valobj_sp)
2521 if (root->HasSyntheticValue() &&
2522 llvm::expectedToStdOptional(
2523 root->GetSyntheticValue()->GetNumChildren())
2524 .value_or(0) > index)
2525 child_valobj_sp =
2526 root->GetSyntheticValue()->GetChildAtIndex(index);
2527 if (child_valobj_sp) {
2528 root = child_valobj_sp;
2529 remainder =
2530 temp_expression.substr(close_bracket_position + 1); // skip ]
2532 continue;
2533 } else {
2534 *reason_to_stop =
2537 return nullptr;
2538 }
2539 } else if (root_compiler_type_info.Test(eTypeIsPointer)) {
2540 if (*what_next ==
2541 ValueObject::
2542 eExpressionPathAftermathDereference && // if this is a
2543 // ptr-to-scalar, I
2544 // am accessing it
2545 // by index and I
2546 // would have
2547 // deref'ed anyway,
2548 // then do it now
2549 // and use this as
2550 // a bitfield
2551 pointee_compiler_type_info.Test(eTypeIsScalar)) {
2552 Status error;
2553 root = root->Dereference(error);
2554 if (error.Fail() || !root) {
2555 *reason_to_stop =
2558 return nullptr;
2559 } else {
2561 continue;
2562 }
2563 } else {
2564 if (root->GetCompilerType().GetMinimumLanguage() ==
2566 pointee_compiler_type_info.AllClear(eTypeIsPointer) &&
2567 root->HasSyntheticValue() &&
2570 SyntheticChildrenTraversal::ToSynthetic ||
2573 SyntheticChildrenTraversal::Both)) {
2574 root = root->GetSyntheticValue()->GetChildAtIndex(index);
2575 } else
2576 root = root->GetSyntheticArrayMember(index, true);
2577 if (!root) {
2578 *reason_to_stop =
2581 return nullptr;
2582 } else {
2583 remainder =
2584 temp_expression.substr(close_bracket_position + 1); // skip ]
2586 continue;
2587 }
2588 }
2589 } else if (root_compiler_type_info.Test(eTypeIsScalar)) {
2590 root = root->GetSyntheticBitFieldChild(index, index, true);
2591 if (!root) {
2592 *reason_to_stop =
2595 return nullptr;
2596 } else // we do not know how to expand members of bitfields, so we
2597 // just return and let the caller do any further processing
2598 {
2599 *reason_to_stop = ValueObject::
2602 return root;
2603 }
2604 } else if (root_compiler_type_info.Test(eTypeIsVector)) {
2605 root = root->GetChildAtIndex(index);
2606 if (!root) {
2607 *reason_to_stop =
2610 return ValueObjectSP();
2611 } else {
2612 remainder =
2613 temp_expression.substr(close_bracket_position + 1); // skip ]
2615 continue;
2616 }
2617 } else if (options.m_synthetic_children_traversal ==
2619 SyntheticChildrenTraversal::ToSynthetic ||
2622 SyntheticChildrenTraversal::Both) {
2623 if (root->HasSyntheticValue())
2624 root = root->GetSyntheticValue();
2625 else if (!root->IsSynthetic()) {
2626 *reason_to_stop =
2629 return nullptr;
2630 }
2631 // if we are here, then root itself is a synthetic VO.. should be
2632 // good to go
2633
2634 if (!root) {
2635 *reason_to_stop =
2638 return nullptr;
2639 }
2640 root = root->GetChildAtIndex(index);
2641 if (!root) {
2642 *reason_to_stop =
2645 return nullptr;
2646 } else {
2647 remainder =
2648 temp_expression.substr(close_bracket_position + 1); // skip ]
2650 continue;
2651 }
2652 } else {
2653 *reason_to_stop =
2656 return nullptr;
2657 }
2658 } else {
2659 // we have a low and a high index
2660 llvm::StringRef sleft, sright;
2661 unsigned long low_index, high_index;
2662 std::tie(sleft, sright) = bracket_expr.split('-');
2663 if (sleft.getAsInteger(0, low_index) ||
2664 sright.getAsInteger(0, high_index)) {
2665 *reason_to_stop =
2668 return nullptr;
2669 }
2670
2671 if (low_index > high_index) // swap indices if required
2672 std::swap(low_index, high_index);
2673
2674 if (root_compiler_type_info.Test(
2675 eTypeIsScalar)) // expansion only works for scalars
2676 {
2677 root = root->GetSyntheticBitFieldChild(low_index, high_index, true);
2678 if (!root) {
2679 *reason_to_stop =
2682 return nullptr;
2683 } else {
2684 *reason_to_stop = ValueObject::
2687 return root;
2688 }
2689 } else if (root_compiler_type_info.Test(
2690 eTypeIsPointer) && // if this is a ptr-to-scalar, I am
2691 // accessing it by index and I would
2692 // have deref'ed anyway, then do it
2693 // now and use this as a bitfield
2694 *what_next ==
2696 pointee_compiler_type_info.Test(eTypeIsScalar)) {
2697 Status error;
2698 root = root->Dereference(error);
2699 if (error.Fail() || !root) {
2700 *reason_to_stop =
2703 return nullptr;
2704 } else {
2706 continue;
2707 }
2708 } else {
2709 *reason_to_stop =
2712 return root;
2713 }
2714 }
2715 break;
2716 }
2717 default: // some non-separator is in the way
2718 {
2719 *reason_to_stop =
2722 return nullptr;
2723 }
2724 }
2725 }
2726}
2727
2728llvm::Error ValueObject::Dump(Stream &s) {
2729 return Dump(s, DumpValueObjectOptions(*this));
2730}
2731
2733 const DumpValueObjectOptions &options) {
2734 ValueObjectPrinter printer(*this, &s, options);
2735 return printer.PrintValueObject();
2736}
2737
2739 ValueObjectSP valobj_sp;
2740
2741 if (UpdateValueIfNeeded(false) && m_error.Success()) {
2743
2744 DataExtractor data;
2747
2748 if (IsBitfield()) {
2750 m_error = v.GetValueAsData(&exe_ctx, data, GetModule().get());
2751 } else
2752 m_error = m_value.GetValueAsData(&exe_ctx, data, GetModule().get());
2753
2755 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data,
2756 GetAddressOf());
2757 }
2758
2759 if (!valobj_sp) {
2763 }
2764 return valobj_sp;
2765}
2766
2768 lldb::DynamicValueType dynValue, bool synthValue) {
2769 ValueObjectSP result_sp;
2770 switch (dynValue) {
2773 if (!IsDynamic())
2774 result_sp = GetDynamicValue(dynValue);
2775 } break;
2777 if (IsDynamic())
2778 result_sp = GetStaticValue();
2779 } break;
2780 }
2781 if (!result_sp)
2782 result_sp = GetSP();
2783 assert(result_sp);
2784
2785 bool is_synthetic = result_sp->IsSynthetic();
2786 if (synthValue && !is_synthetic) {
2787 if (auto synth_sp = result_sp->GetSyntheticValue())
2788 return synth_sp;
2789 }
2790 if (!synthValue && is_synthetic) {
2791 if (auto non_synth_sp = result_sp->GetNonSyntheticValue())
2792 return non_synth_sp;
2793 }
2794
2795 return result_sp;
2796}
2797
2799 if (m_deref_valobj)
2800 return m_deref_valobj->GetSP();
2801
2802 const bool is_pointer_or_reference_type = IsPointerOrReferenceType();
2803 if (is_pointer_or_reference_type) {
2804 bool omit_empty_base_classes = true;
2805 bool ignore_array_bounds = false;
2806
2807 std::string child_name_str;
2808 uint32_t child_byte_size = 0;
2809 int32_t child_byte_offset = 0;
2810 uint32_t child_bitfield_bit_size = 0;
2811 uint32_t child_bitfield_bit_offset = 0;
2812 bool child_is_base_class = false;
2813 bool child_is_deref_of_parent = false;
2814 const bool transparent_pointers = false;
2815 CompilerType compiler_type = GetCompilerType();
2816 uint64_t language_flags = 0;
2817
2819
2820 CompilerType child_compiler_type;
2821 auto child_compiler_type_or_err = compiler_type.GetChildCompilerTypeAtIndex(
2822 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes,
2823 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset,
2824 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class,
2825 child_is_deref_of_parent, this, language_flags);
2826 if (!child_compiler_type_or_err)
2828 child_compiler_type_or_err.takeError(),
2829 "could not find child: {0}");
2830 else
2831 child_compiler_type = *child_compiler_type_or_err;
2832
2833 if (child_compiler_type && child_byte_size) {
2834 ConstString child_name;
2835 if (!child_name_str.empty())
2836 child_name.SetCString(child_name_str.c_str());
2837
2839 *this, child_compiler_type, child_name, child_byte_size,
2840 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset,
2841 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid,
2842 language_flags);
2843 }
2844
2845 // In case of incomplete child compiler type, use the pointee type and try
2846 // to recreate a new ValueObjectChild using it.
2847 if (!m_deref_valobj) {
2848 // FIXME(#59012): C++ stdlib formatters break with incomplete types (e.g.
2849 // `std::vector<int> &`). Remove ObjC restriction once that's resolved.
2852 child_compiler_type = compiler_type.GetPointeeType();
2853
2854 if (child_compiler_type) {
2855 ConstString child_name;
2856 if (!child_name_str.empty())
2857 child_name.SetCString(child_name_str.c_str());
2858
2860 *this, child_compiler_type, child_name, child_byte_size,
2861 child_byte_offset, child_bitfield_bit_size,
2862 child_bitfield_bit_offset, child_is_base_class,
2863 child_is_deref_of_parent, eAddressTypeInvalid, language_flags);
2864 }
2865 }
2866 }
2867
2868 } else if (HasSyntheticValue()) {
2870 GetSyntheticValue()->GetChildMemberWithName("$$dereference$$").get();
2871 } else if (IsSynthetic()) {
2872 m_deref_valobj = GetChildMemberWithName("$$dereference$$").get();
2873 }
2874
2875 if (m_deref_valobj) {
2876 error.Clear();
2877 return m_deref_valobj->GetSP();
2878 } else {
2879 StreamString strm;
2880 GetExpressionPath(strm);
2881
2882 if (is_pointer_or_reference_type)
2883 error.SetErrorStringWithFormat("dereference failed: (%s) %s",
2884 GetTypeName().AsCString("<invalid type>"),
2885 strm.GetData());
2886 else
2887 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s",
2888 GetTypeName().AsCString("<invalid type>"),
2889 strm.GetData());
2890 return ValueObjectSP();
2891 }
2892}
2893
2896 return m_addr_of_valobj_sp;
2897
2898 AddressType address_type = eAddressTypeInvalid;
2899 const bool scalar_is_load_address = false;
2900 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type);
2901 error.Clear();
2902 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) {
2903 switch (address_type) {
2904 case eAddressTypeInvalid: {
2905 StreamString expr_path_strm;
2906 GetExpressionPath(expr_path_strm);
2907 error.SetErrorStringWithFormat("'%s' is not in memory",
2908 expr_path_strm.GetData());
2909 } break;
2910
2911 case eAddressTypeFile:
2912 case eAddressTypeLoad: {
2913 CompilerType compiler_type = GetCompilerType();
2914 if (compiler_type) {
2915 std::string name(1, '&');
2916 name.append(m_name.AsCString(""));
2920 compiler_type.GetPointerType(), ConstString(name.c_str()), addr,
2922 }
2923 } break;
2924 default:
2925 break;
2926 }
2927 } else {
2928 StreamString expr_path_strm;
2929 GetExpressionPath(expr_path_strm);
2930 error.SetErrorStringWithFormat("'%s' doesn't have a valid address",
2931 expr_path_strm.GetData());
2932 }
2933
2934 return m_addr_of_valobj_sp;
2935}
2936
2938 return ValueObjectCast::Create(*this, GetName(), compiler_type);
2939}
2940
2942 // Only allow casts if the original type is equal or larger than the cast
2943 // type, unless we know this is a load address. Getting the size wrong for
2944 // a host side storage could leak lldb memory, so we absolutely want to
2945 // prevent that. We may not always get the right value, for instance if we
2946 // have an expression result value that's copied into a storage location in
2947 // the target may not have copied enough memory. I'm not trying to fix that
2948 // here, I'm just making Cast from a smaller to a larger possible in all the
2949 // cases where that doesn't risk making a Value out of random lldb memory.
2950 // You have to check the ValueObject's Value for the address types, since
2951 // ValueObjects that use live addresses will tell you they fetch data from the
2952 // live address, but once they are made, they actually don't.
2953 // FIXME: Can we make ValueObject's with a live address fetch "more data" from
2954 // the live address if it is still valid?
2955
2956 Status error;
2957 CompilerType my_type = GetCompilerType();
2958
2959 ExecutionContextScope *exe_scope
2962 if (compiler_type.GetByteSize(exe_scope)
2963 <= GetCompilerType().GetByteSize(exe_scope)
2965 return DoCast(compiler_type);
2966
2967 error.SetErrorString("Can only cast to a type that is equal to or smaller "
2968 "than the orignal type.");
2969
2971 ExecutionContext(GetExecutionContextRef()).GetBestExecutionContextScope(),
2972 error);
2973}
2974
2976 return ValueObjectCast::Create(*this, new_name, GetCompilerType());
2977}
2978
2980 CompilerType &compiler_type) {
2981 ValueObjectSP valobj_sp;
2982 AddressType address_type;
2983 addr_t ptr_value = GetPointerValue(&address_type);
2984
2985 if (ptr_value != LLDB_INVALID_ADDRESS) {
2986 Address ptr_addr(ptr_value);
2988 valobj_sp = ValueObjectMemory::Create(
2989 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type);
2990 }
2991 return valobj_sp;
2992}
2993
2995 ValueObjectSP valobj_sp;
2996 AddressType address_type;
2997 addr_t ptr_value = GetPointerValue(&address_type);
2998
2999 if (ptr_value != LLDB_INVALID_ADDRESS) {
3000 Address ptr_addr(ptr_value);
3002 valobj_sp = ValueObjectMemory::Create(
3003 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp);
3004 }
3005 return valobj_sp;
3006}
3007
3010 if (auto target_sp = GetTargetSP()) {
3011 const bool scalar_is_load_address = true;
3012 AddressType addr_type;
3013 addr_value = GetAddressOf(scalar_is_load_address, &addr_type);
3014 if (addr_type == eAddressTypeFile) {
3015 lldb::ModuleSP module_sp(GetModule());
3016 if (!module_sp)
3017 addr_value = LLDB_INVALID_ADDRESS;
3018 else {
3019 Address tmp_addr;
3020 module_sp->ResolveFileAddress(addr_value, tmp_addr);
3021 addr_value = tmp_addr.GetLoadAddress(target_sp.get());
3022 }
3023 } else if (addr_type == eAddressTypeHost ||
3024 addr_type == eAddressTypeInvalid)
3025 addr_value = LLDB_INVALID_ADDRESS;
3026 }
3027 return addr_value;
3028}
3029
3030llvm::Expected<lldb::ValueObjectSP> ValueObject::CastDerivedToBaseType(
3031 CompilerType type, const llvm::ArrayRef<uint32_t> &base_type_indices) {
3032 // Make sure the starting type and the target type are both valid for this
3033 // type of cast; otherwise return the shared pointer to the original
3034 // (unchanged) ValueObject.
3035 if (!type.IsPointerType() && !type.IsReferenceType())
3036 return llvm::make_error<llvm::StringError>(
3037 "Invalid target type: should be a pointer or a reference",
3038 llvm::inconvertibleErrorCode());
3039
3040 CompilerType start_type = GetCompilerType();
3041 if (start_type.IsReferenceType())
3042 start_type = start_type.GetNonReferenceType();
3043
3044 auto target_record_type =
3045 type.IsPointerType() ? type.GetPointeeType() : type.GetNonReferenceType();
3046 auto start_record_type =
3047 start_type.IsPointerType() ? start_type.GetPointeeType() : start_type;
3048
3049 if (!target_record_type.IsRecordType() || !start_record_type.IsRecordType())
3050 return llvm::make_error<llvm::StringError>(
3051 "Underlying start & target types should be record types",
3052 llvm::inconvertibleErrorCode());
3053
3054 if (target_record_type.CompareTypes(start_record_type))
3055 return llvm::make_error<llvm::StringError>(
3056 "Underlying start & target types should be different",
3057 llvm::inconvertibleErrorCode());
3058
3059 if (base_type_indices.empty())
3060 return llvm::make_error<llvm::StringError>(
3061 "Children sequence must be non-empty", llvm::inconvertibleErrorCode());
3062
3063 // Both the starting & target types are valid for the cast, and the list of
3064 // base class indices is non-empty, so we can proceed with the cast.
3065
3066 lldb::TargetSP target = GetTargetSP();
3067 // The `value` can be a pointer, but GetChildAtIndex works for pointers too.
3068 lldb::ValueObjectSP inner_value = GetSP();
3069
3070 for (const uint32_t i : base_type_indices)
3071 // Create synthetic value if needed.
3072 inner_value =
3073 inner_value->GetChildAtIndex(i, /*can_create_synthetic*/ true);
3074
3075 // At this point type of `inner_value` should be the dereferenced target
3076 // type.
3077 CompilerType inner_value_type = inner_value->GetCompilerType();
3078 if (type.IsPointerType()) {
3079 if (!inner_value_type.CompareTypes(type.GetPointeeType()))
3080 return llvm::make_error<llvm::StringError>(
3081 "casted value doesn't match the desired type",
3082 llvm::inconvertibleErrorCode());
3083
3084 uintptr_t addr = inner_value->GetLoadAddress();
3085 llvm::StringRef name = "";
3086 ExecutionContext exe_ctx(target.get(), false);
3087 return ValueObject::CreateValueObjectFromAddress(name, addr, exe_ctx, type,
3088 /* do deref */ false);
3089 }
3090
3091 // At this point the target type should be a reference.
3092 if (!inner_value_type.CompareTypes(type.GetNonReferenceType()))
3093 return llvm::make_error<llvm::StringError>(
3094 "casted value doesn't match the desired type",
3095 llvm::inconvertibleErrorCode());
3096
3097 return lldb::ValueObjectSP(inner_value->Cast(type.GetNonReferenceType()));
3098}
3099
3100llvm::Expected<lldb::ValueObjectSP>
3102 // Make sure the starting type and the target type are both valid for this
3103 // type of cast; otherwise return the shared pointer to the original
3104 // (unchanged) ValueObject.
3105 if (!type.IsPointerType() && !type.IsReferenceType())
3106 return llvm::make_error<llvm::StringError>(
3107 "Invalid target type: should be a pointer or a reference",
3108 llvm::inconvertibleErrorCode());
3109
3110 CompilerType start_type = GetCompilerType();
3111 if (start_type.IsReferenceType())
3112 start_type = start_type.GetNonReferenceType();
3113
3114 auto target_record_type =
3115 type.IsPointerType() ? type.GetPointeeType() : type.GetNonReferenceType();
3116 auto start_record_type =
3117 start_type.IsPointerType() ? start_type.GetPointeeType() : start_type;
3118
3119 if (!target_record_type.IsRecordType() || !start_record_type.IsRecordType())
3120 return llvm::make_error<llvm::StringError>(
3121 "Underlying start & target types should be record types",
3122 llvm::inconvertibleErrorCode());
3123
3124 if (target_record_type.CompareTypes(start_record_type))
3125 return llvm::make_error<llvm::StringError>(
3126 "Underlying start & target types should be different",
3127 llvm::inconvertibleErrorCode());
3128
3129 CompilerType virtual_base;
3130 if (target_record_type.IsVirtualBase(start_record_type, &virtual_base)) {
3131 if (!virtual_base.IsValid())
3132 return llvm::make_error<llvm::StringError>(
3133 "virtual base should be valid", llvm::inconvertibleErrorCode());
3134 return llvm::make_error<llvm::StringError>(
3135 llvm::Twine("cannot cast " + start_type.TypeDescription() + " to " +
3136 type.TypeDescription() + " via virtual base " +
3137 virtual_base.TypeDescription()),
3138 llvm::inconvertibleErrorCode());
3139 }
3140
3141 // Both the starting & target types are valid for the cast, so we can
3142 // proceed with the cast.
3143
3144 lldb::TargetSP target = GetTargetSP();
3145 auto pointer_type =
3146 type.IsPointerType() ? type : type.GetNonReferenceType().GetPointerType();
3147
3148 uintptr_t addr =
3150
3151 llvm::StringRef name = "";
3152 ExecutionContext exe_ctx(target.get(), false);
3154 name, addr - offset, exe_ctx, pointer_type, /* do_deref */ false);
3155
3156 if (type.IsPointerType())
3157 return value;
3158
3159 // At this point the target type is a reference. Since `value` is a pointer,
3160 // it has to be dereferenced.
3161 Status error;
3162 return value->Dereference(error);
3163}
3164
3166 bool is_scalar = GetCompilerType().IsScalarType();
3167 bool is_enum = GetCompilerType().IsEnumerationType();
3168 bool is_pointer =
3170 bool is_float = GetCompilerType().IsFloat();
3171 bool is_integer = GetCompilerType().IsInteger();
3172
3173 if (!type.IsScalarType()) {
3174 m_error.SetErrorString("target type must be a scalar");
3175 return GetSP();
3176 }
3177
3178 if (!is_scalar && !is_enum && !is_pointer) {
3179 m_error.SetErrorString("argument must be a scalar, enum, or pointer");
3180 return GetSP();
3181 }
3182
3183 lldb::TargetSP target = GetTargetSP();
3184 uint64_t type_byte_size = 0;
3185 uint64_t val_byte_size = 0;
3186 if (auto temp = type.GetByteSize(target.get()))
3187 type_byte_size = temp.value();
3188 if (auto temp = GetCompilerType().GetByteSize(target.get()))
3189 val_byte_size = temp.value();
3190
3191 if (is_pointer) {
3192 if (!type.IsInteger() && !type.IsBoolean()) {
3193 m_error.SetErrorString("target type must be an integer or boolean");
3194 return GetSP();
3195 }
3196 if (!type.IsBoolean() && type_byte_size < val_byte_size) {
3198 "target type cannot be smaller than the pointer type");
3199 return GetSP();
3200 }
3201 }
3202
3203 if (type.IsBoolean()) {
3204 if (!is_scalar || is_integer)
3206 target, GetValueAsUnsigned(0) != 0, "result");
3207 else if (is_scalar && is_float) {
3208 auto float_value_or_err = GetValueAsAPFloat();
3209 if (float_value_or_err)
3211 target, !float_value_or_err->isZero(), "result");
3212 else {
3214 "cannot get value as APFloat: %s",
3215 llvm::toString(float_value_or_err.takeError()).c_str());
3216 return GetSP();
3217 }
3218 }
3219 }
3220
3221 if (type.IsInteger()) {
3222 if (!is_scalar || is_integer) {
3223 auto int_value_or_err = GetValueAsAPSInt();
3224 if (int_value_or_err) {
3225 // Get the value as APSInt and extend or truncate it to the requested
3226 // size.
3227 llvm::APSInt ext =
3228 int_value_or_err->extOrTrunc(type_byte_size * CHAR_BIT);
3229 return ValueObject::CreateValueObjectFromAPInt(target, ext, type,
3230 "result");
3231 } else {
3233 "cannot get value as APSInt: %s",
3234 llvm::toString(int_value_or_err.takeError()).c_str());
3235 ;
3236 return GetSP();
3237 }
3238 } else if (is_scalar && is_float) {
3239 llvm::APSInt integer(type_byte_size * CHAR_BIT, !type.IsSigned());
3240 bool is_exact;
3241 auto float_value_or_err = GetValueAsAPFloat();
3242 if (float_value_or_err) {
3243 llvm::APFloatBase::opStatus status =
3244 float_value_or_err->convertToInteger(
3245 integer, llvm::APFloat::rmTowardZero, &is_exact);
3246
3247 // Casting floating point values that are out of bounds of the target
3248 // type is undefined behaviour.
3249 if (status & llvm::APFloatBase::opInvalidOp) {
3251 "invalid type cast detected: %s",
3252 llvm::toString(float_value_or_err.takeError()).c_str());
3253 return GetSP();
3254 }
3256 "result");
3257 }
3258 }
3259 }
3260
3261 if (type.IsFloat()) {
3262 if (!is_scalar) {
3263 auto int_value_or_err = GetValueAsAPSInt();
3264 if (int_value_or_err) {
3265 llvm::APSInt ext =
3266 int_value_or_err->extOrTrunc(type_byte_size * CHAR_BIT);
3267 Scalar scalar_int(ext);
3268 llvm::APFloat f = scalar_int.CreateAPFloatFromAPSInt(
3270 return ValueObject::CreateValueObjectFromAPFloat(target, f, type,
3271 "result");
3272 } else {
3274 "cannot get value as APSInt: %s",
3275 llvm::toString(int_value_or_err.takeError()).c_str());
3276 return GetSP();
3277 }
3278 } else {
3279 if (is_integer) {
3280 auto int_value_or_err = GetValueAsAPSInt();
3281 if (int_value_or_err) {
3282 Scalar scalar_int(*int_value_or_err);
3283 llvm::APFloat f = scalar_int.CreateAPFloatFromAPSInt(
3285 return ValueObject::CreateValueObjectFromAPFloat(target, f, type,
3286 "result");
3287 } else {
3289 "cannot get value as APSInt: %s",
3290 llvm::toString(int_value_or_err.takeError()).c_str());
3291 return GetSP();
3292 }
3293 }
3294 if (is_float) {
3295 auto float_value_or_err = GetValueAsAPFloat();
3296 if (float_value_or_err) {
3297 Scalar scalar_float(*float_value_or_err);
3298 llvm::APFloat f = scalar_float.CreateAPFloatFromAPFloat(
3300 return ValueObject::CreateValueObjectFromAPFloat(target, f, type,
3301 "result");
3302 } else {
3304 "cannot get value as APFloat: %s",
3305 llvm::toString(float_value_or_err.takeError()).c_str());
3306 return GetSP();
3307 }
3308 }
3309 }
3310 }
3311
3312 m_error.SetErrorString("Unable to perform requested cast");
3313 return GetSP();
3314}
3315
3317 bool is_enum = GetCompilerType().IsEnumerationType();
3318 bool is_integer = GetCompilerType().IsInteger();
3319 bool is_float = GetCompilerType().IsFloat();
3320
3321 if (!is_enum && !is_integer && !is_float) {
3322 m_error.SetErrorString("argument must be an integer, a float, or an enum");
3323 return GetSP();
3324 }
3325
3326 if (!type.IsEnumerationType()) {
3327 m_error.SetErrorString("target type must be an enum");
3328 return GetSP();
3329 }
3330
3331 lldb::TargetSP target = GetTargetSP();
3332 uint64_t byte_size = 0;
3333 if (auto temp = type.GetByteSize(target.get()))
3334 byte_size = temp.value();
3335
3336 if (is_float) {
3337 llvm::APSInt integer(byte_size * CHAR_BIT, !type.IsSigned());
3338 bool is_exact;
3339 auto value_or_err = GetValueAsAPFloat();
3340 if (value_or_err) {
3341 llvm::APFloatBase::opStatus status = value_or_err->convertToInteger(
3342 integer, llvm::APFloat::rmTowardZero, &is_exact);
3343
3344 // Casting floating point values that are out of bounds of the target
3345 // type is undefined behaviour.
3346 if (status & llvm::APFloatBase::opInvalidOp) {
3348 "invalid type cast detected: %s",
3349 llvm::toString(value_or_err.takeError()).c_str());
3350 return GetSP();
3351 }
3353 "result");
3354 } else {
3355 m_error.SetErrorString("cannot get value as APFloat");
3356 return GetSP();
3357 }
3358 } else {
3359 // Get the value as APSInt and extend or truncate it to the requested size.
3360 auto value_or_err = GetValueAsAPSInt();
3361 if (value_or_err) {
3362 llvm::APSInt ext = value_or_err->extOrTrunc(byte_size * CHAR_BIT);
3363 return ValueObject::CreateValueObjectFromAPInt(target, ext, type,
3364 "result");
3365 } else {
3367 "cannot get value as APSInt: %s",
3368 llvm::toString(value_or_err.takeError()).c_str());
3369 return GetSP();
3370 }
3371 }
3372 m_error.SetErrorString("Cannot perform requested cast");
3373 return GetSP();
3374}
3375
3376ValueObject::EvaluationPoint::EvaluationPoint() : m_mod_id(), m_exe_ctx_ref() {}
3377
3379 bool use_selected)
3380 : m_mod_id(), m_exe_ctx_ref() {
3381 ExecutionContext exe_ctx(exe_scope);
3382 TargetSP target_sp(exe_ctx.GetTargetSP());
3383 if (target_sp) {
3384 m_exe_ctx_ref.SetTargetSP(target_sp);
3385 ProcessSP process_sp(exe_ctx.GetProcessSP());
3386 if (!process_sp)
3387 process_sp = target_sp->GetProcessSP();
3388
3389 if (process_sp) {
3390 m_mod_id = process_sp->GetModID();
3391 m_exe_ctx_ref.SetProcessSP(process_sp);
3392
3393 ThreadSP thread_sp(exe_ctx.GetThreadSP());
3394
3395 if (!thread_sp) {
3396 if (use_selected)
3397 thread_sp = process_sp->GetThreadList().GetSelectedThread();
3398 }
3399
3400 if (thread_sp) {
3401 m_exe_ctx_ref.SetThreadSP(thread_sp);
3402
3403 StackFrameSP frame_sp(exe_ctx.GetFrameSP());
3404 if (!frame_sp) {
3405 if (use_selected)
3406 frame_sp = thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame);
3407 }
3408 if (frame_sp)
3409 m_exe_ctx_ref.SetFrameSP(frame_sp);
3410 }
3411 }
3412 }
3413}
3414
3417 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref) {}
3418
3420
3421// This function checks the EvaluationPoint against the current process state.
3422// If the current state matches the evaluation point, or the evaluation point
3423// is already invalid, then we return false, meaning "no change". If the
3424// current state is different, we update our state, and return true meaning
3425// "yes, change". If we did see a change, we also set m_needs_update to true,
3426// so future calls to NeedsUpdate will return true. exe_scope will be set to
3427// the current execution context scope.
3428
3430 bool accept_invalid_exe_ctx) {
3431 // Start with the target, if it is NULL, then we're obviously not going to
3432 // get any further:
3433 const bool thread_and_frame_only_if_stopped = true;
3434 ExecutionContext exe_ctx(
3435 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped));
3436
3437 if (exe_ctx.GetTargetPtr() == nullptr)
3438 return false;
3439
3440 // If we don't have a process nothing can change.
3441 Process *process = exe_ctx.GetProcessPtr();
3442 if (process == nullptr)
3443 return false;
3444
3445 // If our stop id is the current stop ID, nothing has changed:
3446 ProcessModID current_mod_id = process->GetModID();
3447
3448 // If the current stop id is 0, either we haven't run yet, or the process
3449 // state has been cleared. In either case, we aren't going to be able to sync
3450 // with the process state.
3451 if (current_mod_id.GetStopID() == 0)
3452 return false;
3453
3454 bool changed = false;
3455 const bool was_valid = m_mod_id.IsValid();
3456 if (was_valid) {
3457 if (m_mod_id == current_mod_id) {
3458 // Everything is already up to date in this object, no need to update the
3459 // execution context scope.
3460 changed = false;
3461 } else {
3462 m_mod_id = current_mod_id;
3463 m_needs_update = true;
3464 changed = true;
3465 }
3466 }
3467
3468 // Now re-look up the thread and frame in case the underlying objects have
3469 // gone away & been recreated. That way we'll be sure to return a valid
3470 // exe_scope. If we used to have a thread or a frame but can't find it
3471 // anymore, then mark ourselves as invalid.
3472
3473 if (!accept_invalid_exe_ctx) {
3474 if (m_exe_ctx_ref.HasThreadRef()) {
3475 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP());
3476 if (thread_sp) {
3477 if (m_exe_ctx_ref.HasFrameRef()) {
3478 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP());
3479 if (!frame_sp) {
3480 // We used to have a frame, but now it is gone
3481 SetInvalid();
3482 changed = was_valid;
3483 }
3484 }
3485 } else {
3486 // We used to have a thread, but now it is gone
3487 SetInvalid();
3488 changed = was_valid;
3489 }
3490 }
3491 }
3492
3493 return changed;
3494}
3495
3497 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP());
3498 if (process_sp)
3499 m_mod_id = process_sp->GetModID();
3500 m_needs_update = false;
3501}
3502
3503void ValueObject::ClearUserVisibleData(uint32_t clear_mask) {
3504 if ((clear_mask & eClearUserVisibleDataItemsValue) ==
3506 m_value_str.clear();
3507
3508 if ((clear_mask & eClearUserVisibleDataItemsLocation) ==
3510 m_location_str.clear();
3511
3512 if ((clear_mask & eClearUserVisibleDataItemsSummary) ==
3514 m_summary_str.clear();
3515
3516 if ((clear_mask & eClearUserVisibleDataItemsDescription) ==
3518 m_object_desc_str.clear();
3519
3523 m_synthetic_value = nullptr;
3524 }
3525}
3526
3528 if (m_parent) {
3531 }
3532 return nullptr;
3533}
3534
3537 llvm::StringRef expression,
3538 const ExecutionContext &exe_ctx) {
3539 return CreateValueObjectFromExpression(name, expression, exe_ctx,
3541}
3542
3544 llvm::StringRef name, llvm::StringRef expression,
3545 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) {
3546 lldb::ValueObjectSP retval_sp;
3547 lldb::TargetSP target_sp(exe_ctx.GetTargetSP());
3548 if (!target_sp)
3549 return retval_sp;
3550 if (expression.empty())
3551 return retval_sp;
3552 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(),
3553 retval_sp, options);
3554 if (retval_sp && !name.empty())
3555 retval_sp->SetName(ConstString(name));
3556 return retval_sp;
3557}
3558
3560 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx,
3561 CompilerType type, bool do_deref) {
3562 if (type) {
3563 CompilerType pointer_type(type.GetPointerType());
3564 if (!do_deref)
3565 pointer_type = type;
3566 if (pointer_type) {
3567 lldb::DataBufferSP buffer(
3568 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t)));
3570 exe_ctx.GetBestExecutionContextScope(), pointer_type,
3571 ConstString(name), buffer, exe_ctx.GetByteOrder(),
3572 exe_ctx.GetAddressByteSize()));
3573 if (ptr_result_valobj_sp) {
3574 if (do_deref)
3575 ptr_result_valobj_sp->GetValue().SetValueType(
3577 Status err;
3578 if (do_deref)
3579 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err);
3580 if (ptr_result_valobj_sp && !name.empty())
3581 ptr_result_valobj_sp->SetName(ConstString(name));
3582 }
3583 return ptr_result_valobj_sp;
3584 }
3585 }
3586 return lldb::ValueObjectSP();
3587}
3588
3590 llvm::StringRef name, const DataExtractor &data,
3591 const ExecutionContext &exe_ctx, CompilerType type) {
3592 lldb::ValueObjectSP new_value_sp;
3593 new_value_sp = ValueObjectConstResult::Create(
3594 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data,
3596 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad);
3597 if (new_value_sp && !name.empty())
3598 new_value_sp->SetName(ConstString(name));
3599 return new_value_sp;
3600}
3601
3604 const llvm::APInt &v, CompilerType type,
3605 llvm::StringRef name) {
3606 ExecutionContext exe_ctx(target.get(), false);
3607 uint64_t byte_size = 0;
3608 if (auto temp = type.GetByteSize(target.get()))
3609 byte_size = temp.value();
3610 lldb::DataExtractorSP data_sp = std::make_shared<DataExtractor>(
3611 reinterpret_cast<const void *>(v.getRawData()), byte_size,
3612 exe_ctx.GetByteOrder(), exe_ctx.GetAddressByteSize());
3613 return ValueObject::CreateValueObjectFromData(name, *data_sp, exe_ctx, type);
3614}
3615
3617 lldb::TargetSP target, const llvm::APFloat &v, CompilerType type,
3618 llvm::StringRef name) {
3619 return CreateValueObjectFromAPInt(target, v.bitcastToAPInt(), type, name);
3620}
3621
3624 llvm::StringRef name) {
3625 CompilerType target_type;
3626 if (target) {
3627 for (auto type_system_sp : target->GetScratchTypeSystems())
3628 if (auto compiler_type =
3629 type_system_sp->GetBasicTypeFromAST(lldb::eBasicTypeBool)) {
3630 target_type = compiler_type;
3631 break;
3632 }
3633 }
3634 ExecutionContext exe_ctx(target.get(), false);
3635 uint64_t byte_size = 0;
3636 if (auto temp = target_type.GetByteSize(target.get()))
3637 byte_size = temp.value();
3638 lldb::DataExtractorSP data_sp = std::make_shared<DataExtractor>(
3639 reinterpret_cast<const void *>(&value), byte_size, exe_ctx.GetByteOrder(),
3640 exe_ctx.GetAddressByteSize());
3641 return ValueObject::CreateValueObjectFromData(name, *data_sp, exe_ctx,
3642 target_type);
3643}
3644
3646 lldb::TargetSP target, CompilerType type, llvm::StringRef name) {
3647 if (!type.IsNullPtrType()) {
3648 lldb::ValueObjectSP ret_val;
3649 return ret_val;
3650 }
3651 uintptr_t zero = 0;
3652 ExecutionContext exe_ctx(target.get(), false);
3653 uint64_t byte_size = 0;
3654 if (auto temp = type.GetByteSize(target.get()))
3655 byte_size = temp.value();
3656 lldb::DataExtractorSP data_sp = std::make_shared<DataExtractor>(
3657 reinterpret_cast<const void *>(zero), byte_size, exe_ctx.GetByteOrder(),
3658 exe_ctx.GetAddressByteSize());
3659 return ValueObject::CreateValueObjectFromData(name, *data_sp, exe_ctx, type);
3660}
3661
3663 ValueObject *root(GetRoot());
3664 if (root != this)
3665 return root->GetModule();
3666 return lldb::ModuleSP();
3667}
3668
3670 if (m_root)
3671 return m_root;
3672 return (m_root = FollowParentChain([](ValueObject *vo) -> bool {
3673 return (vo->m_parent != nullptr);
3674 }));
3675}
3676
3679 ValueObject *vo = this;
3680 while (vo) {
3681 if (!f(vo))
3682 break;
3683 vo = vo->m_parent;
3684 }
3685 return vo;
3686}
3687
3690 ValueObject *root(GetRoot());
3691 if (root != this)
3692 return root->GetAddressTypeOfChildren();
3693 }
3695}
3696
3698 ValueObject *with_dv_info = this;
3699 while (with_dv_info) {
3700 if (with_dv_info->HasDynamicValueTypeInfo())
3701 return with_dv_info->GetDynamicValueTypeImpl();
3702 with_dv_info = with_dv_info->m_parent;
3703 }
3705}
3706
3708 const ValueObject *with_fmt_info = this;
3709 while (with_fmt_info) {
3710 if (with_fmt_info->m_format != lldb::eFormatDefault)
3711 return with_fmt_info->m_format;
3712 with_fmt_info = with_fmt_info->m_parent;
3713 }
3714 return m_format;
3715}
3716
3720 if (GetRoot()) {
3721 if (GetRoot() == this) {
3722 if (StackFrameSP frame_sp = GetFrameSP()) {
3723 const SymbolContext &sc(
3724 frame_sp->GetSymbolContext(eSymbolContextCompUnit));
3725 if (CompileUnit *cu = sc.comp_unit)
3726 type = cu->GetLanguage();
3727 }
3728 } else {
3730 }
3731 }
3732 }
3733 return (m_preferred_display_language = type); // only compute it once
3734}
3735
3739}
3740
3742 // we need to support invalid types as providers of values because some bare-
3743 // board debugging scenarios have no notion of types, but still manage to
3744 // have raw numeric values for things like registers. sigh.
3746 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue));
3747}
3748
3749
3750
3752 if (!UpdateValueIfNeeded())
3753 return nullptr;
3754
3755 TargetSP target_sp(GetTargetSP());
3756 if (!target_sp)
3757 return nullptr;
3758
3759 PersistentExpressionState *persistent_state =
3760 target_sp->GetPersistentExpressionStateForLanguage(
3762
3763 if (!persistent_state)
3764 return nullptr;
3765
3766 ConstString name = persistent_state->GetNextPersistentVariableName();
3767
3768 ValueObjectSP const_result_sp =
3769 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name);
3770
3771 ExpressionVariableSP persistent_var_sp =
3772 persistent_state->CreatePersistentVariable(const_result_sp);
3773 persistent_var_sp->m_live_sp = persistent_var_sp->m_frozen_sp;
3774 persistent_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference;
3775
3776 return persistent_var_sp->GetValueObject();
3777}
3778
3780 return ValueObjectVTable::Create(*this);
3781}
static llvm::raw_ostream & error(Stream &strm)
#define integer
#define LLDB_LOG_ERRORV(log, error,...)
Definition: Log.h:396
#define LLDB_LOGF(log,...)
Definition: Log.h:366
#define LLDB_LOG_ERROR(log, error,...)
Definition: Log.h:382
static user_id_t g_value_obj_uid
Definition: ValueObject.cpp:79
static bool CopyStringDataToBufferSP(const StreamString &source, lldb::WritableDataBufferSP &destination)
static const char * SkipLeadingExpressionPathSeparators(const char *expression)
A section + offset based address class.
Definition: Address.h:62
lldb::addr_t GetLoadAddress(Target *target) const
Get the load address.
Definition: Address.cpp:313
An architecture specification class.
Definition: ArchSpec.h:31
uint32_t GetAddressByteSize() const
Returns the size in bytes of an address of the current architecture.
Definition: ArchSpec.cpp:691
lldb::ByteOrder GetByteOrder() const
Returns the byte order for the architecture specification.
Definition: ArchSpec.cpp:738
void ManageObject(T *new_object)
Definition: SharedCluster.h:33
A class that describes a compilation unit.
Definition: CompileUnit.h:41
Generic representation of a type in a programming language.
Definition: CompilerType.h:36
bool IsEnumerationType(bool &is_signed) const
lldb::BasicType GetBasicTypeEnumeration() const
bool IsPossibleDynamicType(CompilerType *target_type, bool check_cplusplus, bool check_objc) const
std::optional< uint64_t > GetByteSize(ExecutionContextScope *exe_scope) const
Return the size of the type in bytes.
lldb::Encoding GetEncoding(uint64_t &count) const
bool IsArrayType(CompilerType *element_type=nullptr, uint64_t *size=nullptr, bool *is_incomplete=nullptr) const
size_t GetIndexOfChildMemberWithName(llvm::StringRef name, bool omit_empty_base_classes, std::vector< uint32_t > &child_indexes) const
Lookup a child member given a name.
CompilerType GetPointerType() const
Return a new CompilerType that is a pointer to this type.
CompilerType GetNonReferenceType() const
If this type is a reference to a type (L value or R value reference), return a new type with the refe...
ConstString GetTypeName(bool BaseOnly=false) const
uint32_t GetIndexOfChildWithName(llvm::StringRef name, bool omit_empty_base_classes) const
Lookup a child given a name.
bool IsReferenceType(CompilerType *pointee_type=nullptr, bool *is_rvalue=nullptr) const
bool IsInteger() const
This is used when you don't care about the signedness of the integer.
lldb::Format GetFormat() const
llvm::Expected< CompilerType > GetChildCompilerTypeAtIndex(ExecutionContext *exe_ctx, size_t idx, bool transparent_pointers, bool omit_empty_base_classes, bool ignore_array_bounds, std::string &child_name, uint32_t &child_byte_size, int32_t &child_byte_offset, uint32_t &child_bitfield_bit_size, uint32_t &child_bitfield_bit_offset, bool &child_is_base_class, bool &child_is_deref_of_parent, ValueObject *valobj, uint64_t &language_flags) const
CompilerType GetPointeeType() const
If this type is a pointer type, return the type that the pointer points to, else return an invalid ty...
bool IsUnscopedEnumerationType() const
uint32_t GetTypeInfo(CompilerType *pointee_or_element_compiler_type=nullptr) const
bool CompareTypes(CompilerType rhs) const
CompilerType GetCanonicalType() const
bool IsPointerType(CompilerType *pointee_type=nullptr) const
A uniqued constant string class.
Definition: ConstString.h:40
void SetCString(const char *cstr)
Set the C string value.
const char * AsCString(const char *value_if_empty=nullptr) const
Get the string value as a C string.
Definition: ConstString.h:188
bool IsEmpty() const
Test for empty string.
Definition: ConstString.h:304
llvm::StringRef GetStringRef() const
Get the string value as a llvm::StringRef.
Definition: ConstString.h:197
void SetString(llvm::StringRef s)
const char * GetCString() const
Get the string value as a C string.
Definition: ConstString.h:216
A subclass of DataBuffer that stores a data buffer on the heap.
lldb::offset_t SetByteSize(lldb::offset_t byte_size)
Set the number of bytes in the data buffer.
void CopyData(const void *src, lldb::offset_t src_len)
Makes a copy of the src_len bytes in src.
An data extractor class.
Definition: DataExtractor.h:48
const uint8_t * PeekData(lldb::offset_t offset, lldb::offset_t length) const
Peek at a bytes at offset.
void SetByteOrder(lldb::ByteOrder byte_order)
Set the byte_order value.
uint64_t GetByteSize() const
Get the number of bytes contained in this object.
uint64_t GetAddress(lldb::offset_t *offset_ptr) const
Extract an address from *offset_ptr.
void Checksum(llvm::SmallVectorImpl< uint8_t > &dest, uint64_t max_data=0)
const uint8_t * GetDataStart() const
Get the data start pointer.
lldb::offset_t SetData(const void *bytes, lldb::offset_t length, lldb::ByteOrder byte_order)
Set data with a buffer that is caller owned.
uint32_t GetAddressByteSize() const
Get the current address size.
lldb::ByteOrder GetByteOrder() const
Get the current byte order value.
void SetAddressByteSize(uint32_t addr_size)
Set the address byte size.
lldb::offset_t CopyByteOrderedData(lldb::offset_t src_offset, lldb::offset_t src_len, void *dst, lldb::offset_t dst_len, lldb::ByteOrder dst_byte_order) const
Copy dst_len bytes from *offset_ptr and ensure the copied data is treated as a value that can be swap...
const char * PeekCStr(lldb::offset_t offset) const
Peek at a C string at offset.
static lldb::TypeSummaryImplSP GetSummaryFormat(ValueObject &valobj, lldb::DynamicValueType use_dynamic)
static lldb::TypeFormatImplSP GetFormat(ValueObject &valobj, lldb::DynamicValueType use_dynamic)
static lldb::SyntheticChildrenSP GetSyntheticChildren(ValueObject &valobj, lldb::DynamicValueType use_dynamic)
A class that describes the declaration location of a lldb object.
Definition: Declaration.h:24
void Clear()
Clear the object's state.
Definition: Declaration.h:57
void SetThreadSP(const lldb::ThreadSP &thread_sp)
Set accessor that creates a weak reference to the thread referenced in thread_sp.
void SetFrameSP(const lldb::StackFrameSP &frame_sp)
Set accessor that creates a weak reference to the frame referenced in frame_sp.
void SetTargetSP(const lldb::TargetSP &target_sp)
Set accessor that creates a weak reference to the target referenced in target_sp.
void SetProcessSP(const lldb::ProcessSP &process_sp)
Set accessor that creates a weak reference to the process referenced in process_sp.
"lldb/Target/ExecutionContextScope.h" Inherit from this if your object can reconstruct its execution ...
virtual lldb::TargetSP CalculateTarget()=0
"lldb/Target/ExecutionContext.h" A class that contains an execution context.
ExecutionContextScope * GetBestExecutionContextScope() const
const lldb::TargetSP & GetTargetSP() const
Get accessor to get the target shared pointer.
const lldb::ProcessSP & GetProcessSP() const
Get accessor to get the process shared pointer.
lldb::ByteOrder GetByteOrder() const
const lldb::StackFrameSP & GetFrameSP() const
Get accessor to get the frame shared pointer.
Target * GetTargetPtr() const
Returns a pointer to the target object.
const lldb::ThreadSP & GetThreadSP() const
Get accessor to get the thread shared pointer.
Process * GetProcessPtr() const
Returns a pointer to the process object.
@ EVIsProgramReference
This variable is a reference to a (possibly invalid) area managed by the target program.
A class to manage flags.
Definition: Flags.h:22
bool AllClear(ValueType mask) const
Test if all bits in mask are clear.
Definition: Flags.h:103
void Reset(ValueType flags)
Set accessor for all flags.
Definition: Flags.h:52
bool Test(ValueType bit) const
Test a single flag bit.
Definition: Flags.h:96
bool AnySet(ValueType mask) const
Test one or more flags.
Definition: Flags.h:90
static lldb::Format GetSingleItemFormat(lldb::Format vector_format)
static Language * FindPlugin(lldb::LanguageType language)
Definition: Language.cpp:84
static bool LanguageIsCFamily(lldb::LanguageType language)
Equivalent to LanguageIsC||LanguageIsObjC||LanguageIsCPlusPlus.
Definition: Language.cpp:336
static bool LanguageIsObjC(lldb::LanguageType language)
Definition: Language.cpp:314
virtual lldb::ExpressionVariableSP CreatePersistentVariable(const lldb::ValueObjectSP &valobj_sp)=0
virtual ConstString GetNextPersistentVariableName(bool is_error=false)=0
Return a new persistent variable name with the specified prefix.
uint32_t GetStopID() const
Definition: Process.h:249
bool IsValid() const
Definition: Process.h:267
A plug-in interface definition class for debugging a process.
Definition: Process.h:341
ProcessModID GetModID() const
Get the Modification ID of the process.
Definition: Process.h:1480
virtual size_t ReadMemory(lldb::addr_t vm_addr, void *buf, size_t size, Status &error)
Read of memory from a process.
Definition: Process.cpp:1973
bool IsPossibleDynamicValue(ValueObject &in_value)
Definition: Process.cpp:1585
LanguageRuntime * GetLanguageRuntime(lldb::LanguageType language)
Definition: Process.cpp:1557
size_t WriteMemory(lldb::addr_t vm_addr, const void *buf, size_t size, Status &error)
Write memory to a process.
Definition: Process.cpp:2295
size_t WriteScalarToMemory(lldb::addr_t vm_addr, const Scalar &scalar, size_t size, Status &error)
Write all or part of a scalar value to memory.
Definition: Process.cpp:2377
llvm::APFloat CreateAPFloatFromAPFloat(lldb::BasicType basic_type)
Definition: Scalar.cpp:834
llvm::APFloat CreateAPFloatFromAPSInt(lldb::BasicType basic_type)
Definition: Scalar.cpp:814
Status SetValueFromData(const DataExtractor &data, lldb::Encoding encoding, size_t byte_size)
Definition: Scalar.cpp:702
unsigned long long ULongLong(unsigned long long fail_value=0) const
Definition: Scalar.cpp:335
llvm::APFloat GetAPFloat() const
Definition: Scalar.h:186
bool GetData(DataExtractor &data, size_t limit_byte_size=UINT32_MAX) const
Definition: Scalar.cpp:85
long long SLongLong(long long fail_value=0) const
Definition: Scalar.cpp:331
bool ExtractBitfield(uint32_t bit_size, uint32_t bit_offset)
Definition: Scalar.cpp:797
Status SetValueFromCString(const char *s, lldb::Encoding encoding, size_t byte_size)
Definition: Scalar.cpp:631
bool IsValid() const
Definition: Scalar.h:107
llvm::APSInt GetAPSInt() const
Definition: Scalar.h:184
An error handling class.
Definition: Status.h:44
void Clear()
Clear the object state.
Definition: Status.cpp:166
int SetErrorStringWithFormat(const char *format,...) __attribute__((format(printf
Set the current error string to a formatted error string.
Definition: Status.cpp:246
bool Fail() const
Test for error condition.
Definition: Status.cpp:180
const char * AsCString(const char *default_error_str="unknown error") const
Get the error string associated with the current error.
Definition: Status.cpp:129
void SetErrorString(llvm::StringRef err_str)
Set the current error string to err_str.
Definition: Status.cpp:232
bool Success() const
Test for success condition.
Definition: Status.cpp:278
const char * GetData() const
Definition: StreamString.h:45
llvm::StringRef GetString() const
A stream class that can stream formatted output to a file.
Definition: Stream.h:28
size_t Printf(const char *format,...) __attribute__((format(printf
Output printf formatted output to the stream.
Definition: Stream.cpp:134
size_t PutCString(llvm::StringRef cstr)
Output a C string to the stream.
Definition: Stream.cpp:65
size_t PutChar(char ch)
Definition: Stream.cpp:131
"lldb/Symbol/SymbolContextScope.h" Inherit from this if your object is part of a symbol context and c...
Defines a symbol context baton that can be handed other debug core functions.
Definition: SymbolContext.h:34
CompileUnit * comp_unit
The CompileUnit for a given query.
uint32_t GetMaximumSizeOfStringSummary() const
Definition: Target.cpp:4617
virtual size_t ReadMemory(const Address &addr, void *dst, size_t dst_len, Status &error, bool force_live_memory=false, lldb::addr_t *load_addr_ptr=nullptr)
Definition: Target.cpp:1828
virtual bool FormatObject(ValueObject *valobj, std::string &dest) const =0
virtual bool FormatObject(ValueObject *valobj, std::string &dest, const TypeSummaryOptions &options)=0
lldb::LanguageType GetLanguage() const
Definition: TypeSummary.cpp:31
TypeSummaryOptions & SetLanguage(lldb::LanguageType)
Definition: TypeSummary.cpp:37
static lldb::ValueObjectSP Create(ValueObject &parent, ConstString name, const CompilerType &cast_type)
A child of another ValueObject.
static lldb::ValueObjectSP Create(ExecutionContextScope *exe_scope, lldb::ByteOrder byte_order, uint32_t addr_byte_size, lldb::addr_t address=LLDB_INVALID_ADDRESS)
A ValueObject that represents memory at a given address, viewed as some set lldb type.
static lldb::ValueObjectSP Create(ExecutionContextScope *exe_scope, llvm::StringRef name, const Address &address, lldb::TypeSP &type_sp)
static lldb::ValueObjectSP Create(ValueObject &parent)
ValueObject * GetChildAtIndex(uint32_t idx)
Definition: ValueObject.h:880
void SetChildAtIndex(size_t idx, ValueObject *valobj)
Definition: ValueObject.h:886
bool SyncWithProcessState(bool accept_invalid_exe_ctx)
AddressType m_address_type_of_ptr_or_ref_children
Definition: ValueObject.h:971
void SetValueIsValid(bool valid)
Definition: ValueObject.h:1059
EvaluationPoint m_update_point
Stores both the stop id and the full context at which this value was last updated.
Definition: ValueObject.h:922
lldb::TypeSummaryImplSP GetSummaryFormat()
Definition: ValueObject.h:788
llvm::SmallVector< uint8_t, 16 > m_value_checksum
Definition: ValueObject.h:973
llvm::Expected< llvm::APFloat > GetValueAsAPFloat()
If the current ValueObject is of an appropriate type, convert the value to an APFloat and return that...
virtual uint32_t GetBitfieldBitSize()
Definition: ValueObject.h:424
void ClearUserVisibleData(uint32_t items=ValueObject::eClearUserVisibleDataItemsAllStrings)
ValueObject * FollowParentChain(std::function< bool(ValueObject *)>)
Given a ValueObject, loop over itself and its parent, and its parent's parent, .
CompilerType m_override_type
If the type of the value object should be overridden, the type to impose.
Definition: ValueObject.h:943
virtual bool IsInScope()
Definition: ValueObject.h:420
lldb::ValueObjectSP Cast(const CompilerType &compiler_type)
const EvaluationPoint & GetUpdatePoint() const
Definition: ValueObject.h:326
void AddSyntheticChild(ConstString key, ValueObject *valobj)
virtual uint64_t GetData(DataExtractor &data, Status &error)
uint32_t m_last_format_mgr_revision
Definition: ValueObject.h:966
friend class ValueObjectSynthetic
Definition: ValueObject.h:1010
bool DumpPrintableRepresentation(Stream &s, ValueObjectRepresentationStyle val_obj_display=eValueObjectRepresentationStyleSummary, lldb::Format custom_format=lldb::eFormatInvalid, PrintableRepresentationSpecialCases special=PrintableRepresentationSpecialCases::eAllow, bool do_dump_error=true)
ValueObject * m_deref_valobj
Definition: ValueObject.h:958
virtual lldb::ValueObjectSP GetChildAtIndex(uint32_t idx, bool can_create=true)
virtual lldb::DynamicValueType GetDynamicValueTypeImpl()
Definition: ValueObject.h:1031
static lldb::ValueObjectSP CreateValueObjectFromBool(lldb::TargetSP target, bool value, llvm::StringRef name)
Create a value object containing the given boolean value.
lldb::addr_t GetPointerValue(AddressType *address_type=nullptr)
virtual bool GetIsConstant() const
Definition: ValueObject.h:764
virtual bool MightHaveChildren()
Find out if a ValueObject might have children.
static lldb::ValueObjectSP CreateValueObjectFromExpression(llvm::StringRef name, llvm::StringRef expression, const ExecutionContext &exe_ctx)
virtual bool IsDereferenceOfParent()
Definition: ValueObject.h:402
CompilerType GetCompilerType()
Definition: ValueObject.h:352
virtual ValueObject * CreateSyntheticArrayMember(size_t idx)
Should only be called by ValueObject::GetSyntheticArrayMember().
void SetValueFormat(lldb::TypeFormatImplSP format)
Definition: ValueObject.h:802
virtual void CalculateSyntheticValue()
void SetPreferredDisplayLanguage(lldb::LanguageType lt)
Definition: ValueObject.h:784
struct lldb_private::ValueObject::Bitflags m_flags
ValueObject(ExecutionContextScope *exe_scope, ValueObjectManager &manager, AddressType child_ptr_or_ref_addr_type=eAddressTypeLoad)
Use this constructor to create a "root variable object".
Definition: ValueObject.cpp:93
std::string m_summary_str
Cached summary string that will get cleared if/when the value is updated.
Definition: ValueObject.h:938
virtual lldb::ValueObjectSP DoCast(const CompilerType &compiler_type)
lldb::ValueObjectSP GetSP()
Definition: ValueObject.h:569
ChildrenManager m_children
Definition: ValueObject.h:953
virtual lldb::ValueObjectSP CastPointerType(const char *name, CompilerType &ast_type)
Status m_error
An error object that can describe any errors that occur when updating values.
Definition: ValueObject.h:930
virtual size_t GetPointeeData(DataExtractor &data, uint32_t item_idx=0, uint32_t item_count=1)
lldb::ValueObjectSP GetSyntheticValue()
static lldb::ValueObjectSP CreateValueObjectFromAPFloat(lldb::TargetSP target, const llvm::APFloat &v, CompilerType type, llvm::StringRef name)
Create a value object containing the given APFloat value.
ValueObjectManager * m_manager
This object is managed by the root object (any ValueObject that gets created without a parent....
Definition: ValueObject.h:951
lldb::ValueObjectSP GetSyntheticBitFieldChild(uint32_t from, uint32_t to, bool can_create)
lldb::ProcessSP GetProcessSP() const
Definition: ValueObject.h:338
lldb::ValueObjectSP GetSyntheticChild(ConstString key) const
@ eExpressionPathScanEndReasonArrowInsteadOfDot
-> used when . should be used.
Definition: ValueObject.h:135
@ eExpressionPathScanEndReasonDereferencingFailed
Impossible to apply * operator.
Definition: ValueObject.h:151
@ eExpressionPathScanEndReasonNoSuchChild
Child element not found.
Definition: ValueObject.h:127
@ eExpressionPathScanEndReasonDotInsteadOfArrow
. used when -> should be used.
Definition: ValueObject.h:133
@ eExpressionPathScanEndReasonEndOfString
Out of data to parse.
Definition: ValueObject.h:125
@ eExpressionPathScanEndReasonBitfieldRangeOperatorMet
[] is good for bitfields, but I cannot parse after it.
Definition: ValueObject.h:145
@ eExpressionPathScanEndReasonRangeOperatorNotAllowed
[] not allowed by options.
Definition: ValueObject.h:139
@ eExpressionPathScanEndReasonEmptyRangeNotAllowed
[] only allowed for arrays.
Definition: ValueObject.h:131
@ eExpressionPathScanEndReasonRangeOperatorInvalid
[] not valid on objects other than scalars, pointers or arrays.
Definition: ValueObject.h:141
@ eExpressionPathScanEndReasonUnexpectedSymbol
Something is malformed in he expression.
Definition: ValueObject.h:147
@ eExpressionPathScanEndReasonArrayRangeOperatorMet
[] is good for arrays, but I cannot parse it.
Definition: ValueObject.h:143
@ eExpressionPathScanEndReasonSyntheticValueMissing
getting the synthetic children failed.
Definition: ValueObject.h:155
@ eExpressionPathScanEndReasonTakingAddressFailed
Impossible to apply & operator.
Definition: ValueObject.h:149
@ eExpressionPathScanEndReasonFragileIVarNotAllowed
ObjC ivar expansion not allowed.
Definition: ValueObject.h:137
virtual bool UpdateValue()=0
lldb::Format GetFormat() const
virtual lldb::VariableSP GetVariable()
Definition: ValueObject.h:860
@ eExpressionPathAftermathNothing
Just return it.
Definition: ValueObject.h:175
@ eExpressionPathAftermathDereference
Dereference the target.
Definition: ValueObject.h:177
@ eExpressionPathAftermathTakeAddress
Take target's address.
Definition: ValueObject.h:179
lldb::ValueObjectSP CastToBasicType(CompilerType type)
virtual std::optional< uint64_t > GetByteSize()=0
virtual size_t GetIndexOfChildWithName(llvm::StringRef name)
ValueObject * GetNonBaseClassParent()
virtual ValueObject * CreateChildAtIndex(size_t idx)
Should only be called by ValueObject::GetChildAtIndex().
lldb::ValueObjectSP GetValueForExpressionPath(llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop=nullptr, ExpressionPathEndResultType *final_value_type=nullptr, const GetValueForExpressionPathOptions &options=GetValueForExpressionPathOptions::DefaultOptions(), ExpressionPathAftermath *final_task_on_target=nullptr)
virtual lldb::ValueObjectSP GetSyntheticChildAtOffset(uint32_t offset, const CompilerType &type, bool can_create, ConstString name_const_str=ConstString())
virtual void CalculateDynamicValue(lldb::DynamicValueType use_dynamic)
DataExtractor m_data
A data extractor that can be used to extract the value.
Definition: ValueObject.h:926
static lldb::ValueObjectSP CreateValueObjectFromAddress(llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, CompilerType type, bool do_deref=true)
Given an address either create a value object containing the value at that address,...
virtual CompilerType GetCompilerTypeImpl()=0
virtual lldb::ValueObjectSP GetSyntheticBase(uint32_t offset, const CompilerType &type, bool can_create, ConstString name_const_str=ConstString())
virtual uint64_t GetValueAsUnsigned(uint64_t fail_value, bool *success=nullptr)
virtual bool IsDynamic()
Definition: ValueObject.h:683
virtual lldb::ValueObjectSP GetChildMemberWithName(llvm::StringRef name, bool can_create=true)
lldb::ValueObjectSP CastToEnumType(CompilerType type)
llvm::Expected< uint32_t > GetNumChildren(uint32_t max=UINT32_MAX)
virtual void GetExpressionPath(Stream &s, GetExpressionPathFormat=eGetExpressionPathFormatDereferencePointers)
virtual bool HasSyntheticValue()
lldb::StackFrameSP GetFrameSP() const
Definition: ValueObject.h:346
friend class ValueObjectChild
Definition: ValueObject.h:1006
lldb::ValueObjectSP GetChildAtNamePath(llvm::ArrayRef< llvm::StringRef > names)
void SetSummaryFormat(lldb::TypeSummaryImplSP format)
Definition: ValueObject.h:793
virtual bool IsRuntimeSupportValue()
virtual ConstString GetTypeName()
Definition: ValueObject.h:365
DataExtractor & GetDataExtractor()
static lldb::ValueObjectSP CreateValueObjectFromData(llvm::StringRef name, const DataExtractor &data, const ExecutionContext &exe_ctx, CompilerType type)
void SetValueDidChange(bool value_changed)
Definition: ValueObject.h:1055
ValueObject * m_root
The root of the hierarchy for this ValueObject (or nullptr if never calculated).
Definition: ValueObject.h:918
lldb::addr_t GetLoadAddress()
Return the target load address associated with this value object.
bool GetValueIsValid() const
Definition: ValueObject.h:559
virtual lldb::ModuleSP GetModule()
Return the module associated with this value object in case the value is from an executable file and ...
virtual lldb::ValueObjectSP GetDynamicValue(lldb::DynamicValueType valueType)
llvm::Expected< lldb::ValueObjectSP > CastDerivedToBaseType(CompilerType type, const llvm::ArrayRef< uint32_t > &base_type_indices)
Take a ValueObject whose type is an inherited class, and cast it to 'type', which should be one of it...
virtual lldb::ValueObjectSP AddressOf(Status &error)
lldb::DynamicValueType GetDynamicValueType()
llvm::Expected< lldb::ValueObjectSP > CastBaseToDerivedType(CompilerType type, uint64_t offset)
Take a ValueObject whose type is a base class, and cast it to 'type', which should be one of its deri...
lldb::LanguageType m_preferred_display_language
Definition: ValueObject.h:975
uint32_t GetTypeInfo(CompilerType *pointee_or_element_compiler_type=nullptr)
Definition: ValueObject.h:378
virtual llvm::Expected< uint32_t > CalculateNumChildren(uint32_t max=UINT32_MAX)=0
Should only be called by ValueObject::GetNumChildren().
lldb::LanguageType GetObjectRuntimeLanguage()
Definition: ValueObject.h:373
virtual lldb::ValueObjectSP CreateConstantValue(ConstString name)
virtual lldb::addr_t GetAddressOf(bool scalar_is_load_address=true, AddressType *address_type=nullptr)
virtual bool IsLogicalTrue(Status &error)
lldb::Format m_last_format
Definition: ValueObject.h:965
virtual SymbolContextScope * GetSymbolContextScope()
virtual bool HasDynamicValueTypeInfo()
Definition: ValueObject.h:1035
static lldb::ValueObjectSP CreateValueObjectFromNullptr(lldb::TargetSP target, CompilerType type, llvm::StringRef name)
Create a nullptr value object with the specified type (must be a nullptr type).
ValueObject * m_synthetic_value
Definition: ValueObject.h:957
void SetNumChildren(uint32_t num_children)
ValueObject * m_parent
The parent value object, or nullptr if this has no parent.
Definition: ValueObject.h:915
virtual bool IsBaseClass()
Definition: ValueObject.h:398
llvm::Expected< bool > GetValueAsBool()
If the current ValueObject is of an appropriate type, convert the value to a boolean and return that.
virtual bool GetDeclaration(Declaration &decl)
virtual lldb::ValueObjectSP Clone(ConstString new_name)
Creates a copy of the ValueObject with a new name and setting the current ValueObject as its parent.
lldb::ValueObjectSP GetQualifiedRepresentationIfAvailable(lldb::DynamicValueType dynValue, bool synthValue)
lldb::ValueObjectSP m_addr_of_valobj_sp
We have to hold onto a shared pointer to this one because it is created as an independent ValueObject...
Definition: ValueObject.h:962
std::pair< size_t, bool > ReadPointedString(lldb::WritableDataBufferSP &buffer_sp, Status &error, bool honor_array)
llvm::Error Dump(Stream &s)
bool UpdateValueIfNeeded(bool update_format=true)
static lldb::ValueObjectSP CreateValueObjectFromAPInt(lldb::TargetSP target, const llvm::APInt &v, CompilerType type, llvm::StringRef name)
Create a value object containing the given APInt value.
AddressType GetAddressTypeOfChildren()
const Status & GetError()
lldb::TypeFormatImplSP m_type_format_sp
Definition: ValueObject.h:968
lldb::TargetSP GetTargetSP() const
Definition: ValueObject.h:334
@ eExpressionPathEndResultTypePlain
Anything but...
Definition: ValueObject.h:161
@ eExpressionPathEndResultTypeBoundedRange
A range [low-high].
Definition: ValueObject.h:165
@ eExpressionPathEndResultTypeBitfield
A bitfield.
Definition: ValueObject.h:163
@ eExpressionPathEndResultTypeUnboundedRange
A range [].
Definition: ValueObject.h:167
virtual lldb::ValueObjectSP Dereference(Status &error)
void SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType)
virtual const char * GetValueAsCString()
bool HasSpecialPrintableRepresentation(ValueObjectRepresentationStyle val_obj_display, lldb::Format custom_format)
virtual const char * GetLocationAsCString()
Definition: ValueObject.h:522
ConstString GetName() const
Definition: ValueObject.h:487
std::string m_location_str
Cached location string that will get cleared if/when the value is updated.
Definition: ValueObject.h:936
lldb::ValueObjectSP GetVTable()
If this object represents a C++ class with a vtable, return an object that represents the virtual fun...
virtual bool SetValueFromCString(const char *value_str, Status &error)
virtual lldb::ValueObjectSP GetStaticValue()
Definition: ValueObject.h:604
lldb::ValueObjectSP Persist()
std::string m_object_desc_str
Cached result of the "object printer".
Definition: ValueObject.h:941
virtual ValueObject * GetParent()
Definition: ValueObject.h:828
virtual CompilerType MaybeCalculateCompleteType()
lldb::SyntheticChildrenSP m_synthetic_children_sp
Definition: ValueObject.h:969
virtual uint32_t GetBitfieldBitOffset()
Definition: ValueObject.h:426
llvm::Expected< std::string > GetObjectDescription()
std::string m_old_value_str
Cached old value string from the last time the value was gotten.
Definition: ValueObject.h:934
lldb::ValueObjectSP GetSyntheticExpressionPathChild(const char *expression, bool can_create)
virtual bool SetData(DataExtractor &data, Status &error)
virtual int64_t GetValueAsSigned(int64_t fail_value, bool *success=nullptr)
void SetValueFromInteger(const llvm::APInt &value, Status &error)
Update an existing integer ValueObject with a new integer value.
const char * GetSummaryAsCString(lldb::LanguageType lang=lldb::eLanguageTypeUnknown)
@ eValueObjectRepresentationStyleLanguageSpecific
Definition: ValueObject.h:115
std::string m_value_str
Cached value string that will get cleared if/when the value is updated.
Definition: ValueObject.h:932
lldb::ValueObjectSP GetSyntheticArrayMember(size_t index, bool can_create)
virtual bool ResolveValue(Scalar &scalar)
llvm::Expected< llvm::APSInt > GetValueAsAPSInt()
If the current ValueObject is of an appropriate type, convert the value to an APSInt and return that.
void SetSyntheticChildren(const lldb::SyntheticChildrenSP &synth_sp)
Definition: ValueObject.h:812
ConstString m_name
The name of this object.
Definition: ValueObject.h:924
const char * GetLocationAsCStringImpl(const Value &value, const DataExtractor &data)
virtual void SetFormat(lldb::Format format)
Definition: ValueObject.h:776
ValueObject * m_dynamic_value
Definition: ValueObject.h:956
bool IsCStringContainer(bool check_pointer=false)
Returns true if this is a char* or a char[] if it is a char* and check_pointer is true,...
virtual bool IsSynthetic()
Definition: ValueObject.h:612
std::map< ConstString, ValueObject * > m_synthetic_children
Definition: ValueObject.h:954
const ExecutionContextRef & GetExecutionContextRef() const
Definition: ValueObject.h:330
uint32_t GetNumChildrenIgnoringErrors(uint32_t max=UINT32_MAX)
Like GetNumChildren but returns 0 on error.
virtual bool CanProvideValue()
const Value & GetValue() const
Definition: ValueObject.h:511
virtual lldb::LanguageType GetPreferredDisplayLanguage()
lldb::ValueObjectSP GetValueForExpressionPath_Impl(llvm::StringRef expression_cstr, ExpressionPathScanEndReason *reason_to_stop, ExpressionPathEndResultType *final_value_type, const GetValueForExpressionPathOptions &options, ExpressionPathAftermath *final_task_on_target)
const Scalar & GetScalar() const
Definition: Value.h:112
Status GetValueAsData(ExecutionContext *exe_ctx, DataExtractor &data, Module *module)
Definition: Value.cpp:315
RegisterInfo * GetRegisterInfo() const
Definition: Value.cpp:140
ValueType
Type that describes Value::m_value.
Definition: Value.h:41
@ HostAddress
A host address value (for memory in the process that < A is using liblldb).
@ FileAddress
A file address value.
@ LoadAddress
A load address value.
@ Scalar
A raw scalar value.
ValueType GetValueType() const
Definition: Value.cpp:109
Scalar & ResolveValue(ExecutionContext *exe_ctx, Module *module=nullptr)
Definition: Value.cpp:577
@ RegisterInfo
RegisterInfo * (can be a scalar or a vector register).
ContextType GetContextType() const
Definition: Value.h:87
AddressType GetValueAddressType() const
Definition: Value.cpp:111
const CompilerType & GetCompilerType()
Definition: Value.cpp:239
uint8_t * GetBytes()
Get a pointer to the data.
Definition: DataBuffer.h:108
static bool ReadBufferAndDumpToStream(const ReadBufferAndDumpToStreamOptions &options)
#define UINT64_MAX
Definition: lldb-defines.h:23
#define LLDB_INVALID_ADDRESS
Definition: lldb-defines.h:82
#define UINT32_MAX
Definition: lldb-defines.h:19
@ DoNoSelectMostRelevantFrame
A class that represents a running process on the host machine.
Log * GetLog(Cat mask)
Retrieve the Log object for the channel associated with the given log enum.
Definition: Log.h:331
@ eAddressTypeFile
Address is an address as found in an object or symbol file.
@ eAddressTypeLoad
Address is an address as in the current target inferior process.
@ eAddressTypeHost
Address is an address in the process that is running this code.
const char * toString(AppleArm64ExceptionClass EC)
Definition: SBAddress.h:15
std::shared_ptr< lldb_private::StackFrame > StackFrameSP
Definition: lldb-forward.h:419
std::shared_ptr< lldb_private::TypeSummaryImpl > TypeSummaryImplSP
Definition: lldb-forward.h:470
std::shared_ptr< lldb_private::Thread > ThreadSP
Definition: lldb-forward.h:445
std::shared_ptr< lldb_private::TypeFormatImpl > TypeFormatImplSP
Definition: lldb-forward.h:467
std::shared_ptr< lldb_private::ValueObject > ValueObjectSP
Definition: lldb-forward.h:479
std::shared_ptr< lldb_private::ExpressionVariable > ExpressionVariableSP
Definition: lldb-forward.h:348
Format
Display format definitions.
@ eFormatCString
NULL terminated C strings.
@ eFormatCharArray
Print characters with no single quotes, used for character arrays that can contain non printable char...
@ eFormatVectorOfChar
@ eFormatVectorOfUInt64
@ eFormatVectorOfSInt64
@ eFormatComplex
Floating point complex type.
@ eFormatBytesWithASCII
@ eFormatOSType
OS character codes encoded into an integer 'PICT' 'text' etc...
@ eFormatUnicode16
@ eFormatVectorOfUInt128
@ eFormatVectorOfUInt8
@ eFormatComplexFloat
@ eFormatVectorOfFloat32
@ eFormatVectorOfSInt32
@ eFormatUnicode32
@ eFormatVectorOfSInt8
@ eFormatVectorOfUInt16
@ eFormatHexUppercase
@ eFormatVectorOfFloat64
@ eFormatCharPrintable
Only printable characters, '.' if not printable.
@ eFormatComplexInteger
Integer complex type.
@ eFormatVectorOfSInt16
@ eFormatVectorOfUInt32
uint64_t offset_t
Definition: lldb-types.h:85
LanguageType
Programming language type.
@ eLanguageTypeUnknown
Unknown or invalid language value.
@ eLanguageTypeObjC
Objective-C.
std::shared_ptr< lldb_private::Type > TypeSP
Definition: lldb-forward.h:456
std::shared_ptr< lldb_private::Process > ProcessSP
Definition: lldb-forward.h:386
Encoding
Register encoding definitions.
@ eEncodingVector
vector registers
@ eByteOrderInvalid
std::shared_ptr< lldb_private::SyntheticChildren > SyntheticChildrenSP
Definition: lldb-forward.h:440
uint64_t user_id_t
Definition: lldb-types.h:82
std::shared_ptr< lldb_private::DataBuffer > DataBufferSP
Definition: lldb-forward.h:333
std::shared_ptr< lldb_private::WritableDataBuffer > WritableDataBufferSP
Definition: lldb-forward.h:334
uint64_t addr_t
Definition: lldb-types.h:80
std::shared_ptr< lldb_private::Target > TargetSP
Definition: lldb-forward.h:443
@ eDynamicDontRunTarget
@ eDynamicCanRunTarget
@ eNoDynamicValues
std::shared_ptr< lldb_private::DataExtractor > DataExtractorSP
Definition: lldb-forward.h:335
std::shared_ptr< lldb_private::Module > ModuleSP
Definition: lldb-forward.h:370
Every register is described in detail including its name, alternate name (optional),...
lldb::Encoding encoding
Encoding of the register bits.
const char * alt_name
Alternate name of this register, can be NULL.
const char * name
Name of this register, can't be NULL.
lldb::Format format
Default display format.