LLDB mainline
ProcessGDBRemote.cpp
Go to the documentation of this file.
1//===-- ProcessGDBRemote.cpp ----------------------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "lldb/Host/Config.h"
10
11#include <cerrno>
12#include <cstdlib>
13#if LLDB_ENABLE_POSIX
14#include <netinet/in.h>
15#include <sys/mman.h>
16#include <sys/socket.h>
17#include <unistd.h>
18#endif
19#include <sys/stat.h>
20#if defined(__APPLE__)
21#include <sys/sysctl.h>
22#endif
23#include <ctime>
24#include <sys/types.h>
25
29#include "lldb/Core/Debugger.h"
30#include "lldb/Core/Module.h"
33#include "lldb/Core/Value.h"
38#include "lldb/Host/PosixApi.h"
42#include "lldb/Host/XML.h"
54#include "lldb/Target/ABI.h"
59#include "lldb/Target/Target.h"
62#include "lldb/Utility/Args.h"
65#include "lldb/Utility/State.h"
67#include "lldb/Utility/Timer.h"
68#include <algorithm>
69#include <csignal>
70#include <map>
71#include <memory>
72#include <mutex>
73#include <optional>
74#include <sstream>
75#include <thread>
76
82#include "ProcessGDBRemote.h"
83#include "ProcessGDBRemoteLog.h"
84#include "ThreadGDBRemote.h"
85#include "lldb/Host/Host.h"
87
88#include "llvm/ADT/ScopeExit.h"
89#include "llvm/ADT/StringMap.h"
90#include "llvm/ADT/StringSwitch.h"
91#include "llvm/Support/FormatAdapters.h"
92#include "llvm/Support/Threading.h"
93#include "llvm/Support/raw_ostream.h"
94
95#define DEBUGSERVER_BASENAME "debugserver"
96using namespace lldb;
97using namespace lldb_private;
99
101
102namespace lldb {
103// Provide a function that can easily dump the packet history if we know a
104// ProcessGDBRemote * value (which we can get from logs or from debugging). We
105// need the function in the lldb namespace so it makes it into the final
106// executable since the LLDB shared library only exports stuff in the lldb
107// namespace. This allows you to attach with a debugger and call this function
108// and get the packet history dumped to a file.
109void DumpProcessGDBRemotePacketHistory(void *p, const char *path) {
110 auto file = FileSystem::Instance().Open(
112 if (!file) {
113 llvm::consumeError(file.takeError());
114 return;
115 }
116 StreamFile stream(std::move(file.get()));
117 ((Process *)p)->DumpPluginHistory(stream);
118}
119} // namespace lldb
120
121namespace {
122
123#define LLDB_PROPERTIES_processgdbremote
124#include "ProcessGDBRemoteProperties.inc"
125
126enum {
127#define LLDB_PROPERTIES_processgdbremote
128#include "ProcessGDBRemotePropertiesEnum.inc"
129};
130
131class PluginProperties : public Properties {
132public:
133 static llvm::StringRef GetSettingName() {
135 }
136
137 PluginProperties() : Properties() {
138 m_collection_sp = std::make_shared<OptionValueProperties>(GetSettingName());
139 m_collection_sp->Initialize(g_processgdbremote_properties);
140 }
141
142 ~PluginProperties() override = default;
143
144 uint64_t GetPacketTimeout() {
145 const uint32_t idx = ePropertyPacketTimeout;
146 return GetPropertyAtIndexAs<uint64_t>(
147 idx, g_processgdbremote_properties[idx].default_uint_value);
148 }
149
150 bool SetPacketTimeout(uint64_t timeout) {
151 const uint32_t idx = ePropertyPacketTimeout;
152 return SetPropertyAtIndex(idx, timeout);
153 }
154
155 FileSpec GetTargetDefinitionFile() const {
156 const uint32_t idx = ePropertyTargetDefinitionFile;
157 return GetPropertyAtIndexAs<FileSpec>(idx, {});
158 }
159
160 bool GetUseSVR4() const {
161 const uint32_t idx = ePropertyUseSVR4;
162 return GetPropertyAtIndexAs<bool>(
163 idx, g_processgdbremote_properties[idx].default_uint_value != 0);
164 }
165
166 bool GetUseGPacketForReading() const {
167 const uint32_t idx = ePropertyUseGPacketForReading;
168 return GetPropertyAtIndexAs<bool>(idx, true);
169 }
170};
171
172} // namespace
173
174static PluginProperties &GetGlobalPluginProperties() {
175 static PluginProperties g_settings;
176 return g_settings;
177}
178
179// TODO Randomly assigning a port is unsafe. We should get an unused
180// ephemeral port from the kernel and make sure we reserve it before passing it
181// to debugserver.
182
183#if defined(__APPLE__)
184#define LOW_PORT (IPPORT_RESERVED)
185#define HIGH_PORT (IPPORT_HIFIRSTAUTO)
186#else
187#define LOW_PORT (1024u)
188#define HIGH_PORT (49151u)
189#endif
190
192 return "GDB Remote protocol based debugging plug-in.";
193}
194
197}
198
200 lldb::TargetSP target_sp, ListenerSP listener_sp,
201 const FileSpec *crash_file_path, bool can_connect) {
202 lldb::ProcessSP process_sp;
203 if (crash_file_path == nullptr)
204 process_sp = std::shared_ptr<ProcessGDBRemote>(
205 new ProcessGDBRemote(target_sp, listener_sp));
206 return process_sp;
207}
208
211 gdb_comm.DumpHistory(s);
212}
213
215 return std::chrono::seconds(GetGlobalPluginProperties().GetPacketTimeout());
216}
217
220}
221
223 bool plugin_specified_by_name) {
224 if (plugin_specified_by_name)
225 return true;
226
227 // For now we are just making sure the file exists for a given module
228 Module *exe_module = target_sp->GetExecutableModulePointer();
229 if (exe_module) {
230 ObjectFile *exe_objfile = exe_module->GetObjectFile();
231 // We can't debug core files...
232 switch (exe_objfile->GetType()) {
240 return false;
244 break;
245 }
246 return FileSystem::Instance().Exists(exe_module->GetFileSpec());
247 }
248 // However, if there is no executable module, we return true since we might
249 // be preparing to attach.
250 return true;
251}
252
253// ProcessGDBRemote constructor
255 ListenerSP listener_sp)
256 : Process(target_sp, listener_sp),
257 m_debugserver_pid(LLDB_INVALID_PROCESS_ID), m_register_info_sp(nullptr),
258 m_async_broadcaster(nullptr, "lldb.process.gdb-remote.async-broadcaster"),
259 m_async_listener_sp(
260 Listener::MakeListener("lldb.process.gdb-remote.async-listener")),
261 m_async_thread_state_mutex(), m_thread_ids(), m_thread_pcs(),
262 m_jstopinfo_sp(), m_jthreadsinfo_sp(), m_continue_c_tids(),
263 m_continue_C_tids(), m_continue_s_tids(), m_continue_S_tids(),
264 m_max_memory_size(0), m_remote_stub_max_memory_size(0),
265 m_addr_to_mmap_size(), m_thread_create_bp_sp(),
266 m_waiting_for_attach(false), m_command_sp(), m_breakpoint_pc_offset(0),
267 m_initial_tid(LLDB_INVALID_THREAD_ID), m_allow_flash_writes(false),
268 m_erased_flash_ranges(), m_vfork_in_progress_count(0) {
270 "async thread should exit");
272 "async thread continue");
274 "async thread did exit");
275
276 Log *log = GetLog(GDBRLog::Async);
277
278 const uint32_t async_event_mask =
280
281 if (m_async_listener_sp->StartListeningForEvents(
282 &m_async_broadcaster, async_event_mask) != async_event_mask) {
283 LLDB_LOGF(log,
284 "ProcessGDBRemote::%s failed to listen for "
285 "m_async_broadcaster events",
286 __FUNCTION__);
287 }
288
289 const uint64_t timeout_seconds =
290 GetGlobalPluginProperties().GetPacketTimeout();
291 if (timeout_seconds > 0)
292 m_gdb_comm.SetPacketTimeout(std::chrono::seconds(timeout_seconds));
293
295 GetGlobalPluginProperties().GetUseGPacketForReading();
296}
297
298// Destructor
300 // m_mach_process.UnregisterNotificationCallbacks (this);
301 Clear();
302 // We need to call finalize on the process before destroying ourselves to
303 // make sure all of the broadcaster cleanup goes as planned. If we destruct
304 // this class, then Process::~Process() might have problems trying to fully
305 // destroy the broadcaster.
306 Finalize(true /* destructing */);
307
308 // The general Finalize is going to try to destroy the process and that
309 // SHOULD shut down the async thread. However, if we don't kill it it will
310 // get stranded and its connection will go away so when it wakes up it will
311 // crash. So kill it for sure here.
314}
315
317 const FileSpec &target_definition_fspec) {
318 ScriptInterpreter *interpreter =
321 StructuredData::ObjectSP module_object_sp(
322 interpreter->LoadPluginModule(target_definition_fspec, error));
323 if (module_object_sp) {
324 StructuredData::DictionarySP target_definition_sp(
325 interpreter->GetDynamicSettings(module_object_sp, &GetTarget(),
326 "gdb-server-target-definition", error));
327
328 if (target_definition_sp) {
329 StructuredData::ObjectSP target_object(
330 target_definition_sp->GetValueForKey("host-info"));
331 if (target_object) {
332 if (auto host_info_dict = target_object->GetAsDictionary()) {
333 StructuredData::ObjectSP triple_value =
334 host_info_dict->GetValueForKey("triple");
335 if (auto triple_string_value = triple_value->GetAsString()) {
336 std::string triple_string =
337 std::string(triple_string_value->GetValue());
338 ArchSpec host_arch(triple_string.c_str());
339 if (!host_arch.IsCompatibleMatch(GetTarget().GetArchitecture())) {
340 GetTarget().SetArchitecture(host_arch);
341 }
342 }
343 }
344 }
346 StructuredData::ObjectSP breakpoint_pc_offset_value =
347 target_definition_sp->GetValueForKey("breakpoint-pc-offset");
348 if (breakpoint_pc_offset_value) {
349 if (auto breakpoint_pc_int_value =
350 breakpoint_pc_offset_value->GetAsSignedInteger())
351 m_breakpoint_pc_offset = breakpoint_pc_int_value->GetValue();
352 }
353
354 if (m_register_info_sp->SetRegisterInfo(
355 *target_definition_sp, GetTarget().GetArchitecture()) > 0) {
356 return true;
357 }
358 }
359 }
360 return false;
361}
362
364 const llvm::StringRef &comma_separated_register_numbers,
365 std::vector<uint32_t> &regnums, int base) {
366 regnums.clear();
367 for (llvm::StringRef x : llvm::split(comma_separated_register_numbers, ',')) {
368 uint32_t reg;
369 if (llvm::to_integer(x, reg, base))
370 regnums.push_back(reg);
371 }
372 return regnums.size();
373}
374
376 if (!force && m_register_info_sp)
377 return;
378
379 m_register_info_sp = std::make_shared<GDBRemoteDynamicRegisterInfo>();
380
381 // Check if qHostInfo specified a specific packet timeout for this
382 // connection. If so then lets update our setting so the user knows what the
383 // timeout is and can see it.
384 const auto host_packet_timeout = m_gdb_comm.GetHostDefaultPacketTimeout();
385 if (host_packet_timeout > std::chrono::seconds(0)) {
386 GetGlobalPluginProperties().SetPacketTimeout(host_packet_timeout.count());
387 }
388
389 // Register info search order:
390 // 1 - Use the target definition python file if one is specified.
391 // 2 - If the target definition doesn't have any of the info from the
392 // target.xml (registers) then proceed to read the target.xml.
393 // 3 - Fall back on the qRegisterInfo packets.
394 // 4 - Use hardcoded defaults if available.
395
396 FileSpec target_definition_fspec =
397 GetGlobalPluginProperties().GetTargetDefinitionFile();
398 if (!FileSystem::Instance().Exists(target_definition_fspec)) {
399 // If the filename doesn't exist, it may be a ~ not having been expanded -
400 // try to resolve it.
401 FileSystem::Instance().Resolve(target_definition_fspec);
402 }
403 if (target_definition_fspec) {
404 // See if we can get register definitions from a python file
405 if (ParsePythonTargetDefinition(target_definition_fspec))
406 return;
407
408 Debugger::ReportError("target description file " +
409 target_definition_fspec.GetPath() +
410 " failed to parse",
411 GetTarget().GetDebugger().GetID());
412 }
413
414 const ArchSpec &target_arch = GetTarget().GetArchitecture();
415 const ArchSpec &remote_host_arch = m_gdb_comm.GetHostArchitecture();
416 const ArchSpec &remote_process_arch = m_gdb_comm.GetProcessArchitecture();
417
418 // Use the process' architecture instead of the host arch, if available
419 ArchSpec arch_to_use;
420 if (remote_process_arch.IsValid())
421 arch_to_use = remote_process_arch;
422 else
423 arch_to_use = remote_host_arch;
424
425 if (!arch_to_use.IsValid())
426 arch_to_use = target_arch;
427
428 if (GetGDBServerRegisterInfo(arch_to_use))
429 return;
430
431 char packet[128];
432 std::vector<DynamicRegisterInfo::Register> registers;
433 uint32_t reg_num = 0;
434 for (StringExtractorGDBRemote::ResponseType response_type =
436 response_type == StringExtractorGDBRemote::eResponse; ++reg_num) {
437 const int packet_len =
438 ::snprintf(packet, sizeof(packet), "qRegisterInfo%x", reg_num);
439 assert(packet_len < (int)sizeof(packet));
440 UNUSED_IF_ASSERT_DISABLED(packet_len);
442 if (m_gdb_comm.SendPacketAndWaitForResponse(packet, response) ==
444 response_type = response.GetResponseType();
445 if (response_type == StringExtractorGDBRemote::eResponse) {
446 llvm::StringRef name;
447 llvm::StringRef value;
449
450 while (response.GetNameColonValue(name, value)) {
451 if (name == "name") {
452 reg_info.name.SetString(value);
453 } else if (name == "alt-name") {
454 reg_info.alt_name.SetString(value);
455 } else if (name == "bitsize") {
456 if (!value.getAsInteger(0, reg_info.byte_size))
457 reg_info.byte_size /= CHAR_BIT;
458 } else if (name == "offset") {
459 value.getAsInteger(0, reg_info.byte_offset);
460 } else if (name == "encoding") {
461 const Encoding encoding = Args::StringToEncoding(value);
462 if (encoding != eEncodingInvalid)
463 reg_info.encoding = encoding;
464 } else if (name == "format") {
465 if (!OptionArgParser::ToFormat(value.str().c_str(), reg_info.format, nullptr)
466 .Success())
467 reg_info.format =
468 llvm::StringSwitch<Format>(value)
469 .Case("binary", eFormatBinary)
470 .Case("decimal", eFormatDecimal)
471 .Case("hex", eFormatHex)
472 .Case("float", eFormatFloat)
473 .Case("vector-sint8", eFormatVectorOfSInt8)
474 .Case("vector-uint8", eFormatVectorOfUInt8)
475 .Case("vector-sint16", eFormatVectorOfSInt16)
476 .Case("vector-uint16", eFormatVectorOfUInt16)
477 .Case("vector-sint32", eFormatVectorOfSInt32)
478 .Case("vector-uint32", eFormatVectorOfUInt32)
479 .Case("vector-float32", eFormatVectorOfFloat32)
480 .Case("vector-uint64", eFormatVectorOfUInt64)
481 .Case("vector-uint128", eFormatVectorOfUInt128)
482 .Default(eFormatInvalid);
483 } else if (name == "set") {
484 reg_info.set_name.SetString(value);
485 } else if (name == "gcc" || name == "ehframe") {
486 value.getAsInteger(0, reg_info.regnum_ehframe);
487 } else if (name == "dwarf") {
488 value.getAsInteger(0, reg_info.regnum_dwarf);
489 } else if (name == "generic") {
491 } else if (name == "container-regs") {
493 } else if (name == "invalidate-regs") {
495 }
496 }
497
498 assert(reg_info.byte_size != 0);
499 registers.push_back(reg_info);
500 } else {
501 break; // ensure exit before reg_num is incremented
502 }
503 } else {
504 break;
505 }
506 }
507
508 if (registers.empty())
509 registers = GetFallbackRegisters(arch_to_use);
510
511 AddRemoteRegisters(registers, arch_to_use);
512}
513
515 return WillLaunchOrAttach();
516}
517
519 return WillLaunchOrAttach();
520}
521
523 bool wait_for_launch) {
524 return WillLaunchOrAttach();
525}
526
527Status ProcessGDBRemote::DoConnectRemote(llvm::StringRef remote_url) {
529
531 if (error.Fail())
532 return error;
533
534 error = ConnectToDebugserver(remote_url);
535 if (error.Fail())
536 return error;
537
539
541 if (pid == LLDB_INVALID_PROCESS_ID) {
542 // We don't have a valid process ID, so note that we are connected and
543 // could now request to launch or attach, or get remote process listings...
545 } else {
546 // We have a valid process
547 SetID(pid);
550 if (m_gdb_comm.GetStopReply(response)) {
551 SetLastStopPacket(response);
552
553 Target &target = GetTarget();
554 if (!target.GetArchitecture().IsValid()) {
557 } else {
560 }
561 }
562 }
563
564 const StateType state = SetThreadStopInfo(response);
565 if (state != eStateInvalid) {
566 SetPrivateState(state);
567 } else
569 "Process %" PRIu64 " was reported after connecting to "
570 "'%s', but state was not stopped: %s",
571 pid, remote_url.str().c_str(), StateAsCString(state));
572 } else
574 "Process %" PRIu64 " was reported after connecting to '%s', "
575 "but no stop reply packet was received",
576 pid, remote_url.str().c_str());
577 }
578
579 LLDB_LOGF(log,
580 "ProcessGDBRemote::%s pid %" PRIu64
581 ": normalizing target architecture initial triple: %s "
582 "(GetTarget().GetArchitecture().IsValid() %s, "
583 "m_gdb_comm.GetHostArchitecture().IsValid(): %s)",
584 __FUNCTION__, GetID(),
585 GetTarget().GetArchitecture().GetTriple().getTriple().c_str(),
586 GetTarget().GetArchitecture().IsValid() ? "true" : "false",
587 m_gdb_comm.GetHostArchitecture().IsValid() ? "true" : "false");
588
589 if (error.Success() && !GetTarget().GetArchitecture().IsValid() &&
591 // Prefer the *process'* architecture over that of the *host*, if
592 // available.
595 else
597 }
598
599 LLDB_LOGF(log,
600 "ProcessGDBRemote::%s pid %" PRIu64
601 ": normalized target architecture triple: %s",
602 __FUNCTION__, GetID(),
603 GetTarget().GetArchitecture().GetTriple().getTriple().c_str());
604
605 return error;
606}
607
611 return error;
612}
613
614// Process Control
616 ProcessLaunchInfo &launch_info) {
619
620 LLDB_LOGF(log, "ProcessGDBRemote::%s() entered", __FUNCTION__);
621
622 uint32_t launch_flags = launch_info.GetFlags().Get();
623 FileSpec stdin_file_spec{};
624 FileSpec stdout_file_spec{};
625 FileSpec stderr_file_spec{};
626 FileSpec working_dir = launch_info.GetWorkingDirectory();
627
628 const FileAction *file_action;
629 file_action = launch_info.GetFileActionForFD(STDIN_FILENO);
630 if (file_action) {
631 if (file_action->GetAction() == FileAction::eFileActionOpen)
632 stdin_file_spec = file_action->GetFileSpec();
633 }
634 file_action = launch_info.GetFileActionForFD(STDOUT_FILENO);
635 if (file_action) {
636 if (file_action->GetAction() == FileAction::eFileActionOpen)
637 stdout_file_spec = file_action->GetFileSpec();
638 }
639 file_action = launch_info.GetFileActionForFD(STDERR_FILENO);
640 if (file_action) {
641 if (file_action->GetAction() == FileAction::eFileActionOpen)
642 stderr_file_spec = file_action->GetFileSpec();
643 }
644
645 if (log) {
646 if (stdin_file_spec || stdout_file_spec || stderr_file_spec)
647 LLDB_LOGF(log,
648 "ProcessGDBRemote::%s provided with STDIO paths via "
649 "launch_info: stdin=%s, stdout=%s, stderr=%s",
650 __FUNCTION__,
651 stdin_file_spec ? stdin_file_spec.GetPath().c_str() : "<null>",
652 stdout_file_spec ? stdout_file_spec.GetPath().c_str() : "<null>",
653 stderr_file_spec ? stderr_file_spec.GetPath().c_str() : "<null>");
654 else
655 LLDB_LOGF(log,
656 "ProcessGDBRemote::%s no STDIO paths given via launch_info",
657 __FUNCTION__);
658 }
659
660 const bool disable_stdio = (launch_flags & eLaunchFlagDisableSTDIO) != 0;
661 if (stdin_file_spec || disable_stdio) {
662 // the inferior will be reading stdin from the specified file or stdio is
663 // completely disabled
664 m_stdin_forward = false;
665 } else {
666 m_stdin_forward = true;
667 }
668
669 // ::LogSetBitMask (GDBR_LOG_DEFAULT);
670 // ::LogSetOptions (LLDB_LOG_OPTION_THREADSAFE |
671 // LLDB_LOG_OPTION_PREPEND_TIMESTAMP |
672 // LLDB_LOG_OPTION_PREPEND_PROC_AND_THREAD);
673 // ::LogSetLogFile ("/dev/stdout");
674
675 error = EstablishConnectionIfNeeded(launch_info);
676 if (error.Success()) {
677 PseudoTerminal pty;
678 const bool disable_stdio = (launch_flags & eLaunchFlagDisableSTDIO) != 0;
679
680 PlatformSP platform_sp(GetTarget().GetPlatform());
681 if (disable_stdio) {
682 // set to /dev/null unless redirected to a file above
683 if (!stdin_file_spec)
684 stdin_file_spec.SetFile(FileSystem::DEV_NULL,
685 FileSpec::Style::native);
686 if (!stdout_file_spec)
687 stdout_file_spec.SetFile(FileSystem::DEV_NULL,
688 FileSpec::Style::native);
689 if (!stderr_file_spec)
690 stderr_file_spec.SetFile(FileSystem::DEV_NULL,
691 FileSpec::Style::native);
692 } else if (platform_sp && platform_sp->IsHost()) {
693 // If the debugserver is local and we aren't disabling STDIO, lets use
694 // a pseudo terminal to instead of relying on the 'O' packets for stdio
695 // since 'O' packets can really slow down debugging if the inferior
696 // does a lot of output.
697 if ((!stdin_file_spec || !stdout_file_spec || !stderr_file_spec) &&
698 !errorToBool(pty.OpenFirstAvailablePrimary(O_RDWR | O_NOCTTY))) {
699 FileSpec secondary_name(pty.GetSecondaryName());
700
701 if (!stdin_file_spec)
702 stdin_file_spec = secondary_name;
703
704 if (!stdout_file_spec)
705 stdout_file_spec = secondary_name;
706
707 if (!stderr_file_spec)
708 stderr_file_spec = secondary_name;
709 }
710 LLDB_LOGF(
711 log,
712 "ProcessGDBRemote::%s adjusted STDIO paths for local platform "
713 "(IsHost() is true) using secondary: stdin=%s, stdout=%s, "
714 "stderr=%s",
715 __FUNCTION__,
716 stdin_file_spec ? stdin_file_spec.GetPath().c_str() : "<null>",
717 stdout_file_spec ? stdout_file_spec.GetPath().c_str() : "<null>",
718 stderr_file_spec ? stderr_file_spec.GetPath().c_str() : "<null>");
719 }
720
721 LLDB_LOGF(log,
722 "ProcessGDBRemote::%s final STDIO paths after all "
723 "adjustments: stdin=%s, stdout=%s, stderr=%s",
724 __FUNCTION__,
725 stdin_file_spec ? stdin_file_spec.GetPath().c_str() : "<null>",
726 stdout_file_spec ? stdout_file_spec.GetPath().c_str() : "<null>",
727 stderr_file_spec ? stderr_file_spec.GetPath().c_str() : "<null>");
728
729 if (stdin_file_spec)
730 m_gdb_comm.SetSTDIN(stdin_file_spec);
731 if (stdout_file_spec)
732 m_gdb_comm.SetSTDOUT(stdout_file_spec);
733 if (stderr_file_spec)
734 m_gdb_comm.SetSTDERR(stderr_file_spec);
735
736 m_gdb_comm.SetDisableASLR(launch_flags & eLaunchFlagDisableASLR);
737 m_gdb_comm.SetDetachOnError(launch_flags & eLaunchFlagDetachOnError);
738
740 GetTarget().GetArchitecture().GetArchitectureName());
741
742 const char *launch_event_data = launch_info.GetLaunchEventData();
743 if (launch_event_data != nullptr && *launch_event_data != '\0')
744 m_gdb_comm.SendLaunchEventDataPacket(launch_event_data);
745
746 if (working_dir) {
747 m_gdb_comm.SetWorkingDir(working_dir);
748 }
749
750 // Send the environment and the program + arguments after we connect
752
753 {
754 // Scope for the scoped timeout object
756 std::chrono::seconds(10));
757
758 // Since we can't send argv0 separate from the executable path, we need to
759 // make sure to use the actual executable path found in the launch_info...
760 Args args = launch_info.GetArguments();
761 if (FileSpec exe_file = launch_info.GetExecutableFile())
762 args.ReplaceArgumentAtIndex(0, exe_file.GetPath(false));
763 if (llvm::Error err = m_gdb_comm.LaunchProcess(args)) {
765 "Cannot launch '{0}': {1}", args.GetArgumentAtIndex(0),
766 llvm::fmt_consume(std::move(err)));
767 } else {
769 }
770 }
771
773 LLDB_LOGF(log, "failed to connect to debugserver: %s",
774 error.AsCString());
776 return error;
777 }
778
780 if (m_gdb_comm.GetStopReply(response)) {
781 SetLastStopPacket(response);
782
783 const ArchSpec &process_arch = m_gdb_comm.GetProcessArchitecture();
784
785 if (process_arch.IsValid()) {
786 GetTarget().MergeArchitecture(process_arch);
787 } else {
788 const ArchSpec &host_arch = m_gdb_comm.GetHostArchitecture();
789 if (host_arch.IsValid())
790 GetTarget().MergeArchitecture(host_arch);
791 }
792
794
795 if (!disable_stdio) {
798 }
799 }
800 } else {
801 LLDB_LOGF(log, "failed to connect to debugserver: %s", error.AsCString());
802 }
803 return error;
804}
805
806Status ProcessGDBRemote::ConnectToDebugserver(llvm::StringRef connect_url) {
808 // Only connect if we have a valid connect URL
810
811 if (!connect_url.empty()) {
812 LLDB_LOGF(log, "ProcessGDBRemote::%s Connecting to %s", __FUNCTION__,
813 connect_url.str().c_str());
814 std::unique_ptr<ConnectionFileDescriptor> conn_up(
816 if (conn_up) {
817 const uint32_t max_retry_count = 50;
818 uint32_t retry_count = 0;
819 while (!m_gdb_comm.IsConnected()) {
820 if (conn_up->Connect(connect_url, &error) == eConnectionStatusSuccess) {
821 m_gdb_comm.SetConnection(std::move(conn_up));
822 break;
823 }
824
825 retry_count++;
826
827 if (retry_count >= max_retry_count)
828 break;
829
830 std::this_thread::sleep_for(std::chrono::milliseconds(100));
831 }
832 }
833 }
834
835 if (!m_gdb_comm.IsConnected()) {
836 if (error.Success())
837 error = Status::FromErrorString("not connected to remote gdb server");
838 return error;
839 }
840
841 // We always seem to be able to open a connection to a local port so we need
842 // to make sure we can then send data to it. If we can't then we aren't
843 // actually connected to anything, so try and do the handshake with the
844 // remote GDB server and make sure that goes alright.
847 if (error.Success())
848 error = Status::FromErrorString("not connected to remote gdb server");
849 return error;
850 }
851
859
860 // First dispatch any commands from the platform:
861 auto handle_cmds = [&] (const Args &args) -> void {
862 for (const Args::ArgEntry &entry : args) {
865 entry.c_str(), response);
866 }
867 };
868
869 PlatformSP platform_sp = GetTarget().GetPlatform();
870 if (platform_sp) {
871 handle_cmds(platform_sp->GetExtraStartupCommands());
872 }
873
874 // Then dispatch any process commands:
875 handle_cmds(GetExtraStartupCommands());
876
877 return error;
878}
879
883
884 // See if the GDB server supports qHostInfo or qProcessInfo packets. Prefer
885 // qProcessInfo as it will be more specific to our process.
886
887 const ArchSpec &remote_process_arch = m_gdb_comm.GetProcessArchitecture();
888 if (remote_process_arch.IsValid()) {
889 process_arch = remote_process_arch;
890 LLDB_LOG(log, "gdb-remote had process architecture, using {0} {1}",
891 process_arch.GetArchitectureName(),
892 process_arch.GetTriple().getTriple());
893 } else {
894 process_arch = m_gdb_comm.GetHostArchitecture();
895 LLDB_LOG(log,
896 "gdb-remote did not have process architecture, using gdb-remote "
897 "host architecture {0} {1}",
898 process_arch.GetArchitectureName(),
899 process_arch.GetTriple().getTriple());
900 }
901
902 AddressableBits addressable_bits = m_gdb_comm.GetAddressableBits();
903 SetAddressableBitMasks(addressable_bits);
904
905 if (process_arch.IsValid()) {
906 const ArchSpec &target_arch = GetTarget().GetArchitecture();
907 if (target_arch.IsValid()) {
908 LLDB_LOG(log, "analyzing target arch, currently {0} {1}",
909 target_arch.GetArchitectureName(),
910 target_arch.GetTriple().getTriple());
911
912 // If the remote host is ARM and we have apple as the vendor, then
913 // ARM executables and shared libraries can have mixed ARM
914 // architectures.
915 // You can have an armv6 executable, and if the host is armv7, then the
916 // system will load the best possible architecture for all shared
917 // libraries it has, so we really need to take the remote host
918 // architecture as our defacto architecture in this case.
919
920 if ((process_arch.GetMachine() == llvm::Triple::arm ||
921 process_arch.GetMachine() == llvm::Triple::thumb) &&
922 process_arch.GetTriple().getVendor() == llvm::Triple::Apple) {
923 GetTarget().SetArchitecture(process_arch);
924 LLDB_LOG(log,
925 "remote process is ARM/Apple, "
926 "setting target arch to {0} {1}",
927 process_arch.GetArchitectureName(),
928 process_arch.GetTriple().getTriple());
929 } else {
930 // Fill in what is missing in the triple
931 const llvm::Triple &remote_triple = process_arch.GetTriple();
932 llvm::Triple new_target_triple = target_arch.GetTriple();
933 if (new_target_triple.getVendorName().size() == 0) {
934 new_target_triple.setVendor(remote_triple.getVendor());
935
936 if (new_target_triple.getOSName().size() == 0) {
937 new_target_triple.setOS(remote_triple.getOS());
938
939 if (new_target_triple.getEnvironmentName().size() == 0)
940 new_target_triple.setEnvironment(remote_triple.getEnvironment());
941 }
942
943 ArchSpec new_target_arch = target_arch;
944 new_target_arch.SetTriple(new_target_triple);
945 GetTarget().SetArchitecture(new_target_arch);
946 }
947 }
948
949 LLDB_LOG(log,
950 "final target arch after adjustments for remote architecture: "
951 "{0} {1}",
952 target_arch.GetArchitectureName(),
953 target_arch.GetTriple().getTriple());
954 } else {
955 // The target doesn't have a valid architecture yet, set it from the
956 // architecture we got from the remote GDB server
957 GetTarget().SetArchitecture(process_arch);
958 }
959 }
960
961 // Target and Process are reasonably initailized;
962 // load any binaries we have metadata for / set load address.
965
966 // Find out which StructuredDataPlugins are supported by the debug monitor.
967 // These plugins transmit data over async $J packets.
968 if (StructuredData::Array *supported_packets =
970 MapSupportedStructuredDataPlugins(*supported_packets);
971
972 // If connected to LLDB ("native-signals+"), use signal defs for
973 // the remote platform. If connected to GDB, just use the standard set.
975 SetUnixSignals(std::make_shared<GDBRemoteSignals>());
976 } else {
977 PlatformSP platform_sp = GetTarget().GetPlatform();
978 if (platform_sp && platform_sp->IsConnected())
979 SetUnixSignals(platform_sp->GetUnixSignals());
980 else
981 SetUnixSignals(UnixSignals::Create(GetTarget().GetArchitecture()));
982 }
983}
984
986 // The remote stub may know about the "main binary" in
987 // the context of a firmware debug session, and can
988 // give us a UUID and an address/slide of where the
989 // binary is loaded in memory.
990 UUID standalone_uuid;
991 addr_t standalone_value;
992 bool standalone_value_is_offset;
993 if (m_gdb_comm.GetProcessStandaloneBinary(standalone_uuid, standalone_value,
994 standalone_value_is_offset)) {
995 ModuleSP module_sp;
996
997 if (standalone_uuid.IsValid()) {
998 const bool force_symbol_search = true;
999 const bool notify = true;
1000 const bool set_address_in_target = true;
1001 const bool allow_memory_image_last_resort = false;
1003 this, "", standalone_uuid, standalone_value,
1004 standalone_value_is_offset, force_symbol_search, notify,
1005 set_address_in_target, allow_memory_image_last_resort);
1006 }
1007 }
1008
1009 // The remote stub may know about a list of binaries to
1010 // force load into the process -- a firmware type situation
1011 // where multiple binaries are present in virtual memory,
1012 // and we are only given the addresses of the binaries.
1013 // Not intended for use with userland debugging, when we use
1014 // a DynamicLoader plugin that knows how to find the loaded
1015 // binaries, and will track updates as binaries are added.
1016
1017 std::vector<addr_t> bin_addrs = m_gdb_comm.GetProcessStandaloneBinaries();
1018 if (bin_addrs.size()) {
1019 UUID uuid;
1020 const bool value_is_slide = false;
1021 for (addr_t addr : bin_addrs) {
1022 const bool notify = true;
1023 // First see if this is a special platform
1024 // binary that may determine the DynamicLoader and
1025 // Platform to be used in this Process and Target.
1026 if (GetTarget()
1027 .GetDebugger()
1028 .GetPlatformList()
1029 .LoadPlatformBinaryAndSetup(this, addr, notify))
1030 continue;
1031
1032 const bool force_symbol_search = true;
1033 const bool set_address_in_target = true;
1034 const bool allow_memory_image_last_resort = false;
1035 // Second manually load this binary into the Target.
1037 this, llvm::StringRef(), uuid, addr, value_is_slide,
1038 force_symbol_search, notify, set_address_in_target,
1039 allow_memory_image_last_resort);
1040 }
1041 }
1042}
1043
1045 ModuleSP module_sp = GetTarget().GetExecutableModule();
1046 if (!module_sp)
1047 return;
1048
1049 std::optional<QOffsets> offsets = m_gdb_comm.GetQOffsets();
1050 if (!offsets)
1051 return;
1052
1053 bool is_uniform =
1054 size_t(llvm::count(offsets->offsets, offsets->offsets[0])) ==
1055 offsets->offsets.size();
1056 if (!is_uniform)
1057 return; // TODO: Handle non-uniform responses.
1058
1059 bool changed = false;
1060 module_sp->SetLoadAddress(GetTarget(), offsets->offsets[0],
1061 /*value_is_offset=*/true, changed);
1062 if (changed) {
1063 ModuleList list;
1064 list.Append(module_sp);
1066 }
1067}
1068
1070 ArchSpec process_arch;
1071 DidLaunchOrAttach(process_arch);
1072}
1073
1075 lldb::pid_t attach_pid, const ProcessAttachInfo &attach_info) {
1076 Log *log = GetLog(GDBRLog::Process);
1077 Status error;
1078
1079 LLDB_LOGF(log, "ProcessGDBRemote::%s()", __FUNCTION__);
1080
1081 // Clear out and clean up from any current state
1082 Clear();
1083 if (attach_pid != LLDB_INVALID_PROCESS_ID) {
1084 error = EstablishConnectionIfNeeded(attach_info);
1085 if (error.Success()) {
1087
1088 char packet[64];
1089 const int packet_len =
1090 ::snprintf(packet, sizeof(packet), "vAttach;%" PRIx64, attach_pid);
1091 SetID(attach_pid);
1092 auto data_sp =
1093 std::make_shared<EventDataBytes>(llvm::StringRef(packet, packet_len));
1095 } else
1096 SetExitStatus(-1, error.AsCString());
1097 }
1098
1099 return error;
1100}
1101
1103 const char *process_name, const ProcessAttachInfo &attach_info) {
1104 Status error;
1105 // Clear out and clean up from any current state
1106 Clear();
1107
1108 if (process_name && process_name[0]) {
1109 error = EstablishConnectionIfNeeded(attach_info);
1110 if (error.Success()) {
1111 StreamString packet;
1112
1114
1115 if (attach_info.GetWaitForLaunch()) {
1117 packet.PutCString("vAttachWait");
1118 } else {
1119 if (attach_info.GetIgnoreExisting())
1120 packet.PutCString("vAttachWait");
1121 else
1122 packet.PutCString("vAttachOrWait");
1123 }
1124 } else
1125 packet.PutCString("vAttachName");
1126 packet.PutChar(';');
1127 packet.PutBytesAsRawHex8(process_name, strlen(process_name),
1130
1131 auto data_sp = std::make_shared<EventDataBytes>(packet.GetString());
1133
1134 } else
1135 SetExitStatus(-1, error.AsCString());
1136 }
1137 return error;
1138}
1139
1140llvm::Expected<TraceSupportedResponse> ProcessGDBRemote::TraceSupported() {
1142}
1143
1145 return m_gdb_comm.SendTraceStop(request, GetInterruptTimeout());
1146}
1147
1148llvm::Error ProcessGDBRemote::TraceStart(const llvm::json::Value &request) {
1150}
1151
1152llvm::Expected<std::string>
1153ProcessGDBRemote::TraceGetState(llvm::StringRef type) {
1155}
1156
1157llvm::Expected<std::vector<uint8_t>>
1160}
1161
1163 // When we exit, disconnect from the GDB server communications
1165}
1166
1168 // If you can figure out what the architecture is, fill it in here.
1169 process_arch.Clear();
1170 DidLaunchOrAttach(process_arch);
1171}
1172
1174 m_continue_c_tids.clear();
1175 m_continue_C_tids.clear();
1176 m_continue_s_tids.clear();
1177 m_continue_S_tids.clear();
1178 m_jstopinfo_sp.reset();
1179 m_jthreadsinfo_sp.reset();
1180 return Status();
1181}
1182
1184 Status error;
1185 Log *log = GetLog(GDBRLog::Process);
1186 LLDB_LOGF(log, "ProcessGDBRemote::Resume()");
1187
1188 ListenerSP listener_sp(
1189 Listener::MakeListener("gdb-remote.resume-packet-sent"));
1190 if (listener_sp->StartListeningForEvents(
1192 listener_sp->StartListeningForEvents(
1195
1196 const size_t num_threads = GetThreadList().GetSize();
1197
1198 StreamString continue_packet;
1199 bool continue_packet_error = false;
1201 std::string pid_prefix;
1203 pid_prefix = llvm::formatv("p{0:x-}.", GetID());
1204
1205 if (m_continue_c_tids.size() == num_threads ||
1206 (m_continue_c_tids.empty() && m_continue_C_tids.empty() &&
1207 m_continue_s_tids.empty() && m_continue_S_tids.empty())) {
1208 // All threads are continuing
1210 continue_packet.Format("vCont;c:{0}-1", pid_prefix);
1211 else
1212 continue_packet.PutCString("c");
1213 } else {
1214 continue_packet.PutCString("vCont");
1215
1216 if (!m_continue_c_tids.empty()) {
1217 if (m_gdb_comm.GetVContSupported('c')) {
1218 for (tid_collection::const_iterator
1219 t_pos = m_continue_c_tids.begin(),
1220 t_end = m_continue_c_tids.end();
1221 t_pos != t_end; ++t_pos)
1222 continue_packet.Format(";c:{0}{1:x-}", pid_prefix, *t_pos);
1223 } else
1224 continue_packet_error = true;
1225 }
1226
1227 if (!continue_packet_error && !m_continue_C_tids.empty()) {
1228 if (m_gdb_comm.GetVContSupported('C')) {
1229 for (tid_sig_collection::const_iterator
1230 s_pos = m_continue_C_tids.begin(),
1231 s_end = m_continue_C_tids.end();
1232 s_pos != s_end; ++s_pos)
1233 continue_packet.Format(";C{0:x-2}:{1}{2:x-}", s_pos->second,
1234 pid_prefix, s_pos->first);
1235 } else
1236 continue_packet_error = true;
1237 }
1238
1239 if (!continue_packet_error && !m_continue_s_tids.empty()) {
1240 if (m_gdb_comm.GetVContSupported('s')) {
1241 for (tid_collection::const_iterator
1242 t_pos = m_continue_s_tids.begin(),
1243 t_end = m_continue_s_tids.end();
1244 t_pos != t_end; ++t_pos)
1245 continue_packet.Format(";s:{0}{1:x-}", pid_prefix, *t_pos);
1246 } else
1247 continue_packet_error = true;
1248 }
1249
1250 if (!continue_packet_error && !m_continue_S_tids.empty()) {
1251 if (m_gdb_comm.GetVContSupported('S')) {
1252 for (tid_sig_collection::const_iterator
1253 s_pos = m_continue_S_tids.begin(),
1254 s_end = m_continue_S_tids.end();
1255 s_pos != s_end; ++s_pos)
1256 continue_packet.Format(";S{0:x-2}:{1}{2:x-}", s_pos->second,
1257 pid_prefix, s_pos->first);
1258 } else
1259 continue_packet_error = true;
1260 }
1261
1262 if (continue_packet_error)
1263 continue_packet.Clear();
1264 }
1265 } else
1266 continue_packet_error = true;
1267
1268 if (continue_packet_error) {
1269 // Either no vCont support, or we tried to use part of the vCont packet
1270 // that wasn't supported by the remote GDB server. We need to try and
1271 // make a simple packet that can do our continue
1272 const size_t num_continue_c_tids = m_continue_c_tids.size();
1273 const size_t num_continue_C_tids = m_continue_C_tids.size();
1274 const size_t num_continue_s_tids = m_continue_s_tids.size();
1275 const size_t num_continue_S_tids = m_continue_S_tids.size();
1276 if (num_continue_c_tids > 0) {
1277 if (num_continue_c_tids == num_threads) {
1278 // All threads are resuming...
1280 continue_packet.PutChar('c');
1281 continue_packet_error = false;
1282 } else if (num_continue_c_tids == 1 && num_continue_C_tids == 0 &&
1283 num_continue_s_tids == 0 && num_continue_S_tids == 0) {
1284 // Only one thread is continuing
1286 continue_packet.PutChar('c');
1287 continue_packet_error = false;
1288 }
1289 }
1290
1291 if (continue_packet_error && num_continue_C_tids > 0) {
1292 if ((num_continue_C_tids + num_continue_c_tids) == num_threads &&
1293 num_continue_C_tids > 0 && num_continue_s_tids == 0 &&
1294 num_continue_S_tids == 0) {
1295 const int continue_signo = m_continue_C_tids.front().second;
1296 // Only one thread is continuing
1297 if (num_continue_C_tids > 1) {
1298 // More that one thread with a signal, yet we don't have vCont
1299 // support and we are being asked to resume each thread with a
1300 // signal, we need to make sure they are all the same signal, or we
1301 // can't issue the continue accurately with the current support...
1302 if (num_continue_C_tids > 1) {
1303 continue_packet_error = false;
1304 for (size_t i = 1; i < m_continue_C_tids.size(); ++i) {
1305 if (m_continue_C_tids[i].second != continue_signo)
1306 continue_packet_error = true;
1307 }
1308 }
1309 if (!continue_packet_error)
1311 } else {
1312 // Set the continue thread ID
1313 continue_packet_error = false;
1315 }
1316 if (!continue_packet_error) {
1317 // Add threads continuing with the same signo...
1318 continue_packet.Printf("C%2.2x", continue_signo);
1319 }
1320 }
1321 }
1322
1323 if (continue_packet_error && num_continue_s_tids > 0) {
1324 if (num_continue_s_tids == num_threads) {
1325 // All threads are resuming...
1327
1328 continue_packet.PutChar('s');
1329
1330 continue_packet_error = false;
1331 } else if (num_continue_c_tids == 0 && num_continue_C_tids == 0 &&
1332 num_continue_s_tids == 1 && num_continue_S_tids == 0) {
1333 // Only one thread is stepping
1335 continue_packet.PutChar('s');
1336 continue_packet_error = false;
1337 }
1338 }
1339
1340 if (!continue_packet_error && num_continue_S_tids > 0) {
1341 if (num_continue_S_tids == num_threads) {
1342 const int step_signo = m_continue_S_tids.front().second;
1343 // Are all threads trying to step with the same signal?
1344 continue_packet_error = false;
1345 if (num_continue_S_tids > 1) {
1346 for (size_t i = 1; i < num_threads; ++i) {
1347 if (m_continue_S_tids[i].second != step_signo)
1348 continue_packet_error = true;
1349 }
1350 }
1351 if (!continue_packet_error) {
1352 // Add threads stepping with the same signo...
1354 continue_packet.Printf("S%2.2x", step_signo);
1355 }
1356 } else if (num_continue_c_tids == 0 && num_continue_C_tids == 0 &&
1357 num_continue_s_tids == 0 && num_continue_S_tids == 1) {
1358 // Only one thread is stepping with signal
1360 continue_packet.Printf("S%2.2x", m_continue_S_tids.front().second);
1361 continue_packet_error = false;
1362 }
1363 }
1364 }
1365
1366 if (continue_packet_error) {
1367 error =
1368 Status::FromErrorString("can't make continue packet for this resume");
1369 } else {
1370 EventSP event_sp;
1371 if (!m_async_thread.IsJoinable()) {
1373 "Trying to resume but the async thread is dead.");
1374 LLDB_LOGF(log, "ProcessGDBRemote::DoResume: Trying to resume but the "
1375 "async thread is dead.");
1376 return error;
1377 }
1378
1379 auto data_sp =
1380 std::make_shared<EventDataBytes>(continue_packet.GetString());
1382
1383 if (!listener_sp->GetEvent(event_sp, std::chrono::seconds(5))) {
1384 error = Status::FromErrorString("Resume timed out.");
1385 LLDB_LOGF(log, "ProcessGDBRemote::DoResume: Resume timed out.");
1386 } else if (event_sp->BroadcasterIs(&m_async_broadcaster)) {
1388 "Broadcast continue, but the async thread was "
1389 "killed before we got an ack back.");
1390 LLDB_LOGF(log,
1391 "ProcessGDBRemote::DoResume: Broadcast continue, but the "
1392 "async thread was killed before we got an ack back.");
1393 return error;
1394 }
1395 }
1396 }
1397
1398 return error;
1399}
1400
1402 std::lock_guard<std::recursive_mutex> guard(m_thread_list_real.GetMutex());
1403 m_thread_ids.clear();
1404 m_thread_pcs.clear();
1405}
1406
1408 llvm::StringRef value) {
1409 m_thread_ids.clear();
1411 StringExtractorGDBRemote thread_ids{value};
1412
1413 do {
1414 auto pid_tid = thread_ids.GetPidTid(pid);
1415 if (pid_tid && pid_tid->first == pid) {
1416 lldb::tid_t tid = pid_tid->second;
1417 if (tid != LLDB_INVALID_THREAD_ID &&
1419 m_thread_ids.push_back(tid);
1420 }
1421 } while (thread_ids.GetChar() == ',');
1422
1423 return m_thread_ids.size();
1424}
1425
1427 llvm::StringRef value) {
1428 m_thread_pcs.clear();
1429 for (llvm::StringRef x : llvm::split(value, ',')) {
1431 if (llvm::to_integer(x, pc, 16))
1432 m_thread_pcs.push_back(pc);
1433 }
1434 return m_thread_pcs.size();
1435}
1436
1438 std::lock_guard<std::recursive_mutex> guard(m_thread_list_real.GetMutex());
1439
1440 if (m_jthreadsinfo_sp) {
1441 // If we have the JSON threads info, we can get the thread list from that
1442 StructuredData::Array *thread_infos = m_jthreadsinfo_sp->GetAsArray();
1443 if (thread_infos && thread_infos->GetSize() > 0) {
1444 m_thread_ids.clear();
1445 m_thread_pcs.clear();
1446 thread_infos->ForEach([this](StructuredData::Object *object) -> bool {
1447 StructuredData::Dictionary *thread_dict = object->GetAsDictionary();
1448 if (thread_dict) {
1449 // Set the thread stop info from the JSON dictionary
1450 SetThreadStopInfo(thread_dict);
1452 if (thread_dict->GetValueForKeyAsInteger<lldb::tid_t>("tid", tid))
1453 m_thread_ids.push_back(tid);
1454 }
1455 return true; // Keep iterating through all thread_info objects
1456 });
1457 }
1458 if (!m_thread_ids.empty())
1459 return true;
1460 } else {
1461 // See if we can get the thread IDs from the current stop reply packets
1462 // that might contain a "threads" key/value pair
1463
1464 if (m_last_stop_packet) {
1465 // Get the thread stop info
1467 const std::string &stop_info_str = std::string(stop_info.GetStringRef());
1468
1469 m_thread_pcs.clear();
1470 const size_t thread_pcs_pos = stop_info_str.find(";thread-pcs:");
1471 if (thread_pcs_pos != std::string::npos) {
1472 const size_t start = thread_pcs_pos + strlen(";thread-pcs:");
1473 const size_t end = stop_info_str.find(';', start);
1474 if (end != std::string::npos) {
1475 std::string value = stop_info_str.substr(start, end - start);
1477 }
1478 }
1479
1480 const size_t threads_pos = stop_info_str.find(";threads:");
1481 if (threads_pos != std::string::npos) {
1482 const size_t start = threads_pos + strlen(";threads:");
1483 const size_t end = stop_info_str.find(';', start);
1484 if (end != std::string::npos) {
1485 std::string value = stop_info_str.substr(start, end - start);
1487 return true;
1488 }
1489 }
1490 }
1491 }
1492
1493 bool sequence_mutex_unavailable = false;
1494 m_gdb_comm.GetCurrentThreadIDs(m_thread_ids, sequence_mutex_unavailable);
1495 if (sequence_mutex_unavailable) {
1496 return false; // We just didn't get the list
1497 }
1498 return true;
1499}
1500
1502 ThreadList &new_thread_list) {
1503 // locker will keep a mutex locked until it goes out of scope
1504 Log *log = GetLog(GDBRLog::Thread);
1505 LLDB_LOGV(log, "pid = {0}", GetID());
1506
1507 size_t num_thread_ids = m_thread_ids.size();
1508 // The "m_thread_ids" thread ID list should always be updated after each stop
1509 // reply packet, but in case it isn't, update it here.
1510 if (num_thread_ids == 0) {
1511 if (!UpdateThreadIDList())
1512 return false;
1513 num_thread_ids = m_thread_ids.size();
1514 }
1515
1516 ThreadList old_thread_list_copy(old_thread_list);
1517 if (num_thread_ids > 0) {
1518 for (size_t i = 0; i < num_thread_ids; ++i) {
1519 lldb::tid_t tid = m_thread_ids[i];
1520 ThreadSP thread_sp(
1521 old_thread_list_copy.RemoveThreadByProtocolID(tid, false));
1522 if (!thread_sp) {
1523 thread_sp = std::make_shared<ThreadGDBRemote>(*this, tid);
1524 LLDB_LOGV(log, "Making new thread: {0} for thread ID: {1:x}.",
1525 thread_sp.get(), thread_sp->GetID());
1526 } else {
1527 LLDB_LOGV(log, "Found old thread: {0} for thread ID: {1:x}.",
1528 thread_sp.get(), thread_sp->GetID());
1529 }
1530
1531 SetThreadPc(thread_sp, i);
1532 new_thread_list.AddThreadSortedByIndexID(thread_sp);
1533 }
1534 }
1535
1536 // Whatever that is left in old_thread_list_copy are not present in
1537 // new_thread_list. Remove non-existent threads from internal id table.
1538 size_t old_num_thread_ids = old_thread_list_copy.GetSize(false);
1539 for (size_t i = 0; i < old_num_thread_ids; i++) {
1540 ThreadSP old_thread_sp(old_thread_list_copy.GetThreadAtIndex(i, false));
1541 if (old_thread_sp) {
1542 lldb::tid_t old_thread_id = old_thread_sp->GetProtocolID();
1543 m_thread_id_to_index_id_map.erase(old_thread_id);
1544 }
1545 }
1546
1547 return true;
1548}
1549
1550void ProcessGDBRemote::SetThreadPc(const ThreadSP &thread_sp, uint64_t index) {
1551 if (m_thread_ids.size() == m_thread_pcs.size() && thread_sp.get() &&
1553 ThreadGDBRemote *gdb_thread =
1554 static_cast<ThreadGDBRemote *>(thread_sp.get());
1555 RegisterContextSP reg_ctx_sp(thread_sp->GetRegisterContext());
1556 if (reg_ctx_sp) {
1557 uint32_t pc_regnum = reg_ctx_sp->ConvertRegisterKindToRegisterNumber(
1559 if (pc_regnum != LLDB_INVALID_REGNUM) {
1560 gdb_thread->PrivateSetRegisterValue(pc_regnum, m_thread_pcs[index]);
1561 }
1562 }
1563 }
1564}
1565
1567 ThreadGDBRemote *thread, const StructuredData::ObjectSP &thread_infos_sp) {
1568 // See if we got thread stop infos for all threads via the "jThreadsInfo"
1569 // packet
1570 if (thread_infos_sp) {
1571 StructuredData::Array *thread_infos = thread_infos_sp->GetAsArray();
1572 if (thread_infos) {
1573 lldb::tid_t tid;
1574 const size_t n = thread_infos->GetSize();
1575 for (size_t i = 0; i < n; ++i) {
1576 StructuredData::Dictionary *thread_dict =
1577 thread_infos->GetItemAtIndex(i)->GetAsDictionary();
1578 if (thread_dict) {
1579 if (thread_dict->GetValueForKeyAsInteger<lldb::tid_t>(
1580 "tid", tid, LLDB_INVALID_THREAD_ID)) {
1581 if (tid == thread->GetID())
1582 return (bool)SetThreadStopInfo(thread_dict);
1583 }
1584 }
1585 }
1586 }
1587 }
1588 return false;
1589}
1590
1592 // See if we got thread stop infos for all threads via the "jThreadsInfo"
1593 // packet
1595 return true;
1596
1597 // See if we got thread stop info for any threads valid stop info reasons
1598 // threads via the "jstopinfo" packet stop reply packet key/value pair?
1599 if (m_jstopinfo_sp) {
1600 // If we have "jstopinfo" then we have stop descriptions for all threads
1601 // that have stop reasons, and if there is no entry for a thread, then it
1602 // has no stop reason.
1604 // If a thread is stopped at a breakpoint site, set that as the stop
1605 // reason even if it hasn't executed the breakpoint instruction yet.
1606 // We will silently step over the breakpoint when we resume execution
1607 // and miss the fact that this thread hit the breakpoint.
1608 const size_t num_thread_ids = m_thread_ids.size();
1609 for (size_t i = 0; i < num_thread_ids; i++) {
1610 if (m_thread_ids[i] == thread->GetID() && m_thread_pcs.size() > i) {
1611 addr_t pc = m_thread_pcs[i];
1612 lldb::BreakpointSiteSP bp_site_sp =
1613 thread->GetProcess()->GetBreakpointSiteList().FindByAddress(pc);
1614 if (bp_site_sp) {
1615 if (bp_site_sp->ValidForThisThread(*thread)) {
1616 thread->SetStopInfo(
1618 *thread, bp_site_sp->GetID()));
1619 return true;
1620 }
1621 }
1622 }
1623 }
1624 thread->SetStopInfo(StopInfoSP());
1625 }
1626 return true;
1627 }
1628
1629 // Fall back to using the qThreadStopInfo packet
1630 StringExtractorGDBRemote stop_packet;
1631 if (GetGDBRemote().GetThreadStopInfo(thread->GetProtocolID(), stop_packet))
1632 return SetThreadStopInfo(stop_packet) == eStateStopped;
1633 return false;
1634}
1635
1637 ExpeditedRegisterMap &expedited_register_map, ThreadSP thread_sp) {
1638 ThreadGDBRemote *gdb_thread = static_cast<ThreadGDBRemote *>(thread_sp.get());
1639 RegisterContextSP gdb_reg_ctx_sp(gdb_thread->GetRegisterContext());
1640
1641 for (const auto &pair : expedited_register_map) {
1642 StringExtractor reg_value_extractor(pair.second);
1643 WritableDataBufferSP buffer_sp(
1644 new DataBufferHeap(reg_value_extractor.GetStringRef().size() / 2, 0));
1645 reg_value_extractor.GetHexBytes(buffer_sp->GetData(), '\xcc');
1646 uint32_t lldb_regnum = gdb_reg_ctx_sp->ConvertRegisterKindToRegisterNumber(
1647 eRegisterKindProcessPlugin, pair.first);
1648 gdb_thread->PrivateSetRegisterValue(lldb_regnum, buffer_sp->GetData());
1649 }
1650}
1651
1653 lldb::tid_t tid, ExpeditedRegisterMap &expedited_register_map,
1654 uint8_t signo, const std::string &thread_name, const std::string &reason,
1655 const std::string &description, uint32_t exc_type,
1656 const std::vector<addr_t> &exc_data, addr_t thread_dispatch_qaddr,
1657 bool queue_vars_valid, // Set to true if queue_name, queue_kind and
1658 // queue_serial are valid
1659 LazyBool associated_with_dispatch_queue, addr_t dispatch_queue_t,
1660 std::string &queue_name, QueueKind queue_kind, uint64_t queue_serial) {
1661
1662 if (tid == LLDB_INVALID_THREAD_ID)
1663 return nullptr;
1664
1665 ThreadSP thread_sp;
1666 // Scope for "locker" below
1667 {
1668 // m_thread_list_real does have its own mutex, but we need to hold onto the
1669 // mutex between the call to m_thread_list_real.FindThreadByID(...) and the
1670 // m_thread_list_real.AddThread(...) so it doesn't change on us
1671 std::lock_guard<std::recursive_mutex> guard(m_thread_list_real.GetMutex());
1672 thread_sp = m_thread_list_real.FindThreadByProtocolID(tid, false);
1673
1674 if (!thread_sp) {
1675 // Create the thread if we need to
1676 thread_sp = std::make_shared<ThreadGDBRemote>(*this, tid);
1677 m_thread_list_real.AddThread(thread_sp);
1678 }
1679 }
1680
1681 ThreadGDBRemote *gdb_thread = static_cast<ThreadGDBRemote *>(thread_sp.get());
1682 RegisterContextSP reg_ctx_sp(gdb_thread->GetRegisterContext());
1683
1684 reg_ctx_sp->InvalidateIfNeeded(true);
1685
1686 auto iter = std::find(m_thread_ids.begin(), m_thread_ids.end(), tid);
1687 if (iter != m_thread_ids.end())
1688 SetThreadPc(thread_sp, iter - m_thread_ids.begin());
1689
1690 ParseExpeditedRegisters(expedited_register_map, thread_sp);
1691
1692 if (reg_ctx_sp->ReconfigureRegisterInfo()) {
1693 // Now we have changed the offsets of all the registers, so the values
1694 // will be corrupted.
1695 reg_ctx_sp->InvalidateAllRegisters();
1696 // Expedited registers values will never contain registers that would be
1697 // resized by a reconfigure. So we are safe to continue using these
1698 // values.
1699 ParseExpeditedRegisters(expedited_register_map, thread_sp);
1700 }
1701
1702 thread_sp->SetName(thread_name.empty() ? nullptr : thread_name.c_str());
1703
1704 gdb_thread->SetThreadDispatchQAddr(thread_dispatch_qaddr);
1705 // Check if the GDB server was able to provide the queue name, kind and serial
1706 // number
1707 if (queue_vars_valid)
1708 gdb_thread->SetQueueInfo(std::move(queue_name), queue_kind, queue_serial,
1709 dispatch_queue_t, associated_with_dispatch_queue);
1710 else
1711 gdb_thread->ClearQueueInfo();
1712
1713 gdb_thread->SetAssociatedWithLibdispatchQueue(associated_with_dispatch_queue);
1714
1715 if (dispatch_queue_t != LLDB_INVALID_ADDRESS)
1716 gdb_thread->SetQueueLibdispatchQueueAddress(dispatch_queue_t);
1717
1718 // Make sure we update our thread stop reason just once, but don't overwrite
1719 // the stop info for threads that haven't moved:
1720 StopInfoSP current_stop_info_sp = thread_sp->GetPrivateStopInfo(false);
1721 if (thread_sp->GetTemporaryResumeState() == eStateSuspended &&
1722 current_stop_info_sp) {
1723 thread_sp->SetStopInfo(current_stop_info_sp);
1724 return thread_sp;
1725 }
1726
1727 if (!thread_sp->StopInfoIsUpToDate()) {
1728 thread_sp->SetStopInfo(StopInfoSP());
1729 // If there's a memory thread backed by this thread, we need to use it to
1730 // calculate StopInfo.
1731 if (ThreadSP memory_thread_sp = m_thread_list.GetBackingThread(thread_sp))
1732 thread_sp = memory_thread_sp;
1733
1734 if (exc_type != 0) {
1735 // For thread plan async interrupt, creating stop info on the
1736 // original async interrupt request thread instead. If interrupt thread
1737 // does not exist anymore we fallback to current signal receiving thread
1738 // instead.
1739 ThreadSP interrupt_thread;
1741 interrupt_thread = HandleThreadAsyncInterrupt(signo, description);
1742 if (interrupt_thread)
1743 thread_sp = interrupt_thread;
1744 else {
1745 const size_t exc_data_size = exc_data.size();
1746 thread_sp->SetStopInfo(
1748 *thread_sp, exc_type, exc_data_size,
1749 exc_data_size >= 1 ? exc_data[0] : 0,
1750 exc_data_size >= 2 ? exc_data[1] : 0,
1751 exc_data_size >= 3 ? exc_data[2] : 0));
1752 }
1753 } else {
1754 bool handled = false;
1755 bool did_exec = false;
1756 // debugserver can send reason = "none" which is equivalent
1757 // to no reason.
1758 if (!reason.empty() && reason != "none") {
1759 if (reason == "trace") {
1760 addr_t pc = thread_sp->GetRegisterContext()->GetPC();
1761 lldb::BreakpointSiteSP bp_site_sp =
1762 thread_sp->GetProcess()->GetBreakpointSiteList().FindByAddress(
1763 pc);
1764
1765 // If the current pc is a breakpoint site then the StopInfo should be
1766 // set to Breakpoint Otherwise, it will be set to Trace.
1767 if (bp_site_sp && bp_site_sp->ValidForThisThread(*thread_sp)) {
1768 thread_sp->SetStopInfo(
1770 *thread_sp, bp_site_sp->GetID()));
1771 } else
1772 thread_sp->SetStopInfo(
1774 handled = true;
1775 } else if (reason == "breakpoint") {
1776 addr_t pc = thread_sp->GetRegisterContext()->GetPC();
1777 lldb::BreakpointSiteSP bp_site_sp =
1778 thread_sp->GetProcess()->GetBreakpointSiteList().FindByAddress(
1779 pc);
1780 if (bp_site_sp) {
1781 // If the breakpoint is for this thread, then we'll report the hit,
1782 // but if it is for another thread, we can just report no reason.
1783 // We don't need to worry about stepping over the breakpoint here,
1784 // that will be taken care of when the thread resumes and notices
1785 // that there's a breakpoint under the pc.
1786 handled = true;
1787 if (bp_site_sp->ValidForThisThread(*thread_sp)) {
1788 thread_sp->SetStopInfo(
1790 *thread_sp, bp_site_sp->GetID()));
1791 } else {
1792 StopInfoSP invalid_stop_info_sp;
1793 thread_sp->SetStopInfo(invalid_stop_info_sp);
1794 }
1795 }
1796 } else if (reason == "trap") {
1797 // Let the trap just use the standard signal stop reason below...
1798 } else if (reason == "watchpoint") {
1799 // We will have between 1 and 3 fields in the description.
1800 //
1801 // \a wp_addr which is the original start address that
1802 // lldb requested be watched, or an address that the
1803 // hardware reported. This address should be within the
1804 // range of a currently active watchpoint region - lldb
1805 // should be able to find a watchpoint with this address.
1806 //
1807 // \a wp_index is the hardware watchpoint register number.
1808 //
1809 // \a wp_hit_addr is the actual address reported by the hardware,
1810 // which may be outside the range of a region we are watching.
1811 //
1812 // On MIPS, we may get a false watchpoint exception where an
1813 // access to the same 8 byte granule as a watchpoint will trigger,
1814 // even if the access was not within the range of the watched
1815 // region. When we get a \a wp_hit_addr outside the range of any
1816 // set watchpoint, continue execution without making it visible to
1817 // the user.
1818 //
1819 // On ARM, a related issue where a large access that starts
1820 // before the watched region (and extends into the watched
1821 // region) may report a hit address before the watched region.
1822 // lldb will not find the "nearest" watchpoint to
1823 // disable/step/re-enable it, so one of the valid watchpoint
1824 // addresses should be provided as \a wp_addr.
1825 StringExtractor desc_extractor(description.c_str());
1826 // FIXME NativeThreadLinux::SetStoppedByWatchpoint sends this
1827 // up as
1828 // <address within wp range> <wp hw index> <actual accessed addr>
1829 // but this is not reading the <wp hw index>. Seems like it
1830 // wouldn't work on MIPS, where that third field is important.
1831 addr_t wp_addr = desc_extractor.GetU64(LLDB_INVALID_ADDRESS);
1832 addr_t wp_hit_addr = desc_extractor.GetU64(LLDB_INVALID_ADDRESS);
1834 bool silently_continue = false;
1835 WatchpointResourceSP wp_resource_sp;
1836 if (wp_hit_addr != LLDB_INVALID_ADDRESS) {
1837 wp_resource_sp =
1839 // On MIPS, \a wp_hit_addr outside the range of a watched
1840 // region means we should silently continue, it is a false hit.
1842 if (!wp_resource_sp && core >= ArchSpec::kCore_mips_first &&
1844 silently_continue = true;
1845 }
1846 if (!wp_resource_sp && wp_addr != LLDB_INVALID_ADDRESS)
1847 wp_resource_sp = m_watchpoint_resource_list.FindByAddress(wp_addr);
1848 if (!wp_resource_sp) {
1850 LLDB_LOGF(log, "failed to find watchpoint");
1851 watch_id = LLDB_INVALID_SITE_ID;
1852 } else {
1853 // LWP_TODO: This is hardcoding a single Watchpoint in a
1854 // Resource, need to add
1855 // StopInfo::CreateStopReasonWithWatchpointResource which
1856 // represents all watchpoints that were tripped at this stop.
1857 watch_id = wp_resource_sp->GetConstituentAtIndex(0)->GetID();
1858 }
1859 thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithWatchpointID(
1860 *thread_sp, watch_id, silently_continue));
1861 handled = true;
1862 } else if (reason == "exception") {
1863 thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithException(
1864 *thread_sp, description.c_str()));
1865 handled = true;
1866 } else if (reason == "exec") {
1867 did_exec = true;
1868 thread_sp->SetStopInfo(
1870 handled = true;
1871 } else if (reason == "processor trace") {
1872 thread_sp->SetStopInfo(StopInfo::CreateStopReasonProcessorTrace(
1873 *thread_sp, description.c_str()));
1874 } else if (reason == "fork") {
1875 StringExtractor desc_extractor(description.c_str());
1876 lldb::pid_t child_pid =
1877 desc_extractor.GetU64(LLDB_INVALID_PROCESS_ID);
1878 lldb::tid_t child_tid = desc_extractor.GetU64(LLDB_INVALID_THREAD_ID);
1879 thread_sp->SetStopInfo(
1880 StopInfo::CreateStopReasonFork(*thread_sp, child_pid, child_tid));
1881 handled = true;
1882 } else if (reason == "vfork") {
1883 StringExtractor desc_extractor(description.c_str());
1884 lldb::pid_t child_pid =
1885 desc_extractor.GetU64(LLDB_INVALID_PROCESS_ID);
1886 lldb::tid_t child_tid = desc_extractor.GetU64(LLDB_INVALID_THREAD_ID);
1887 thread_sp->SetStopInfo(StopInfo::CreateStopReasonVFork(
1888 *thread_sp, child_pid, child_tid));
1889 handled = true;
1890 } else if (reason == "vforkdone") {
1891 thread_sp->SetStopInfo(
1893 handled = true;
1894 }
1895 } else if (!signo) {
1896 addr_t pc = thread_sp->GetRegisterContext()->GetPC();
1897 lldb::BreakpointSiteSP bp_site_sp =
1898 thread_sp->GetProcess()->GetBreakpointSiteList().FindByAddress(pc);
1899
1900 // If a thread is stopped at a breakpoint site, set that as the stop
1901 // reason even if it hasn't executed the breakpoint instruction yet.
1902 // We will silently step over the breakpoint when we resume execution
1903 // and miss the fact that this thread hit the breakpoint.
1904 if (bp_site_sp && bp_site_sp->ValidForThisThread(*thread_sp)) {
1906 *thread_sp, bp_site_sp->GetID()));
1907 handled = true;
1908 }
1909 }
1910
1911 if (!handled && signo && !did_exec) {
1912 if (signo == SIGTRAP) {
1913 // Currently we are going to assume SIGTRAP means we are either
1914 // hitting a breakpoint or hardware single stepping.
1915 handled = true;
1916 addr_t pc =
1917 thread_sp->GetRegisterContext()->GetPC() + m_breakpoint_pc_offset;
1918 lldb::BreakpointSiteSP bp_site_sp =
1919 thread_sp->GetProcess()->GetBreakpointSiteList().FindByAddress(
1920 pc);
1921
1922 if (bp_site_sp) {
1923 // If the breakpoint is for this thread, then we'll report the hit,
1924 // but if it is for another thread, we can just report no reason.
1925 // We don't need to worry about stepping over the breakpoint here,
1926 // that will be taken care of when the thread resumes and notices
1927 // that there's a breakpoint under the pc.
1928 if (bp_site_sp->ValidForThisThread(*thread_sp)) {
1929 if (m_breakpoint_pc_offset != 0)
1930 thread_sp->GetRegisterContext()->SetPC(pc);
1931 thread_sp->SetStopInfo(
1933 *thread_sp, bp_site_sp->GetID()));
1934 } else {
1935 StopInfoSP invalid_stop_info_sp;
1936 thread_sp->SetStopInfo(invalid_stop_info_sp);
1937 }
1938 } else {
1939 // If we were stepping then assume the stop was the result of the
1940 // trace. If we were not stepping then report the SIGTRAP.
1941 // FIXME: We are still missing the case where we single step over a
1942 // trap instruction.
1943 if (thread_sp->GetTemporaryResumeState() == eStateStepping)
1944 thread_sp->SetStopInfo(
1946 else
1947 thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithSignal(
1948 *thread_sp, signo, description.c_str()));
1949 }
1950 }
1951 if (!handled) {
1952 // For thread plan async interrupt, creating stop info on the
1953 // original async interrupt request thread instead. If interrupt
1954 // thread does not exist anymore we fallback to current signal
1955 // receiving thread instead.
1956 ThreadSP interrupt_thread;
1958 interrupt_thread = HandleThreadAsyncInterrupt(signo, description);
1959 if (interrupt_thread)
1960 thread_sp = interrupt_thread;
1961 else
1962 thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithSignal(
1963 *thread_sp, signo, description.c_str()));
1964 }
1965 }
1966
1967 if (!description.empty()) {
1968 lldb::StopInfoSP stop_info_sp(thread_sp->GetStopInfo());
1969 if (stop_info_sp) {
1970 const char *stop_info_desc = stop_info_sp->GetDescription();
1971 if (!stop_info_desc || !stop_info_desc[0])
1972 stop_info_sp->SetDescription(description.c_str());
1973 } else {
1974 thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithException(
1975 *thread_sp, description.c_str()));
1976 }
1977 }
1978 }
1979 }
1980 return thread_sp;
1981}
1982
1985 const std::string &description) {
1986 ThreadSP thread_sp;
1987 {
1988 std::lock_guard<std::recursive_mutex> guard(m_thread_list_real.GetMutex());
1990 /*can_update=*/false);
1991 }
1992 if (thread_sp)
1993 thread_sp->SetStopInfo(StopInfo::CreateStopReasonWithInterrupt(
1994 *thread_sp, signo, description.c_str()));
1995 // Clear m_interrupt_tid regardless we can find original interrupt thread or
1996 // not.
1998 return thread_sp;
1999}
2000
2003 static constexpr llvm::StringLiteral g_key_tid("tid");
2004 static constexpr llvm::StringLiteral g_key_name("name");
2005 static constexpr llvm::StringLiteral g_key_reason("reason");
2006 static constexpr llvm::StringLiteral g_key_metype("metype");
2007 static constexpr llvm::StringLiteral g_key_medata("medata");
2008 static constexpr llvm::StringLiteral g_key_qaddr("qaddr");
2009 static constexpr llvm::StringLiteral g_key_dispatch_queue_t(
2010 "dispatch_queue_t");
2011 static constexpr llvm::StringLiteral g_key_associated_with_dispatch_queue(
2012 "associated_with_dispatch_queue");
2013 static constexpr llvm::StringLiteral g_key_queue_name("qname");
2014 static constexpr llvm::StringLiteral g_key_queue_kind("qkind");
2015 static constexpr llvm::StringLiteral g_key_queue_serial_number("qserialnum");
2016 static constexpr llvm::StringLiteral g_key_registers("registers");
2017 static constexpr llvm::StringLiteral g_key_memory("memory");
2018 static constexpr llvm::StringLiteral g_key_description("description");
2019 static constexpr llvm::StringLiteral g_key_signal("signal");
2020
2021 // Stop with signal and thread info
2023 uint8_t signo = 0;
2024 std::string value;
2025 std::string thread_name;
2026 std::string reason;
2027 std::string description;
2028 uint32_t exc_type = 0;
2029 std::vector<addr_t> exc_data;
2030 addr_t thread_dispatch_qaddr = LLDB_INVALID_ADDRESS;
2031 ExpeditedRegisterMap expedited_register_map;
2032 bool queue_vars_valid = false;
2033 addr_t dispatch_queue_t = LLDB_INVALID_ADDRESS;
2034 LazyBool associated_with_dispatch_queue = eLazyBoolCalculate;
2035 std::string queue_name;
2036 QueueKind queue_kind = eQueueKindUnknown;
2037 uint64_t queue_serial_number = 0;
2038 // Iterate through all of the thread dictionary key/value pairs from the
2039 // structured data dictionary
2040
2041 // FIXME: we're silently ignoring invalid data here
2042 thread_dict->ForEach([this, &tid, &expedited_register_map, &thread_name,
2043 &signo, &reason, &description, &exc_type, &exc_data,
2044 &thread_dispatch_qaddr, &queue_vars_valid,
2045 &associated_with_dispatch_queue, &dispatch_queue_t,
2046 &queue_name, &queue_kind, &queue_serial_number](
2047 llvm::StringRef key,
2048 StructuredData::Object *object) -> bool {
2049 if (key == g_key_tid) {
2050 // thread in big endian hex
2051 tid = object->GetUnsignedIntegerValue(LLDB_INVALID_THREAD_ID);
2052 } else if (key == g_key_metype) {
2053 // exception type in big endian hex
2054 exc_type = object->GetUnsignedIntegerValue(0);
2055 } else if (key == g_key_medata) {
2056 // exception data in big endian hex
2057 StructuredData::Array *array = object->GetAsArray();
2058 if (array) {
2059 array->ForEach([&exc_data](StructuredData::Object *object) -> bool {
2060 exc_data.push_back(object->GetUnsignedIntegerValue());
2061 return true; // Keep iterating through all array items
2062 });
2063 }
2064 } else if (key == g_key_name) {
2065 thread_name = std::string(object->GetStringValue());
2066 } else if (key == g_key_qaddr) {
2067 thread_dispatch_qaddr =
2068 object->GetUnsignedIntegerValue(LLDB_INVALID_ADDRESS);
2069 } else if (key == g_key_queue_name) {
2070 queue_vars_valid = true;
2071 queue_name = std::string(object->GetStringValue());
2072 } else if (key == g_key_queue_kind) {
2073 std::string queue_kind_str = std::string(object->GetStringValue());
2074 if (queue_kind_str == "serial") {
2075 queue_vars_valid = true;
2076 queue_kind = eQueueKindSerial;
2077 } else if (queue_kind_str == "concurrent") {
2078 queue_vars_valid = true;
2079 queue_kind = eQueueKindConcurrent;
2080 }
2081 } else if (key == g_key_queue_serial_number) {
2082 queue_serial_number = object->GetUnsignedIntegerValue(0);
2083 if (queue_serial_number != 0)
2084 queue_vars_valid = true;
2085 } else if (key == g_key_dispatch_queue_t) {
2086 dispatch_queue_t = object->GetUnsignedIntegerValue(0);
2087 if (dispatch_queue_t != 0 && dispatch_queue_t != LLDB_INVALID_ADDRESS)
2088 queue_vars_valid = true;
2089 } else if (key == g_key_associated_with_dispatch_queue) {
2090 queue_vars_valid = true;
2091 bool associated = object->GetBooleanValue();
2092 if (associated)
2093 associated_with_dispatch_queue = eLazyBoolYes;
2094 else
2095 associated_with_dispatch_queue = eLazyBoolNo;
2096 } else if (key == g_key_reason) {
2097 reason = std::string(object->GetStringValue());
2098 } else if (key == g_key_description) {
2099 description = std::string(object->GetStringValue());
2100 } else if (key == g_key_registers) {
2101 StructuredData::Dictionary *registers_dict = object->GetAsDictionary();
2102
2103 if (registers_dict) {
2104 registers_dict->ForEach(
2105 [&expedited_register_map](llvm::StringRef key,
2106 StructuredData::Object *object) -> bool {
2107 uint32_t reg;
2108 if (llvm::to_integer(key, reg))
2109 expedited_register_map[reg] =
2110 std::string(object->GetStringValue());
2111 return true; // Keep iterating through all array items
2112 });
2113 }
2114 } else if (key == g_key_memory) {
2115 StructuredData::Array *array = object->GetAsArray();
2116 if (array) {
2117 array->ForEach([this](StructuredData::Object *object) -> bool {
2118 StructuredData::Dictionary *mem_cache_dict =
2119 object->GetAsDictionary();
2120 if (mem_cache_dict) {
2121 lldb::addr_t mem_cache_addr = LLDB_INVALID_ADDRESS;
2122 if (mem_cache_dict->GetValueForKeyAsInteger<lldb::addr_t>(
2123 "address", mem_cache_addr)) {
2124 if (mem_cache_addr != LLDB_INVALID_ADDRESS) {
2125 llvm::StringRef str;
2126 if (mem_cache_dict->GetValueForKeyAsString("bytes", str)) {
2127 StringExtractor bytes(str);
2128 bytes.SetFilePos(0);
2129
2130 const size_t byte_size = bytes.GetStringRef().size() / 2;
2131 WritableDataBufferSP data_buffer_sp(
2132 new DataBufferHeap(byte_size, 0));
2133 const size_t bytes_copied =
2134 bytes.GetHexBytes(data_buffer_sp->GetData(), 0);
2135 if (bytes_copied == byte_size)
2136 m_memory_cache.AddL1CacheData(mem_cache_addr,
2137 data_buffer_sp);
2138 }
2139 }
2140 }
2141 }
2142 return true; // Keep iterating through all array items
2143 });
2144 }
2145
2146 } else if (key == g_key_signal)
2147 signo = object->GetUnsignedIntegerValue(LLDB_INVALID_SIGNAL_NUMBER);
2148 return true; // Keep iterating through all dictionary key/value pairs
2149 });
2150
2151 return SetThreadStopInfo(tid, expedited_register_map, signo, thread_name,
2152 reason, description, exc_type, exc_data,
2153 thread_dispatch_qaddr, queue_vars_valid,
2154 associated_with_dispatch_queue, dispatch_queue_t,
2155 queue_name, queue_kind, queue_serial_number);
2156}
2157
2160 stop_packet.SetFilePos(0);
2161 const char stop_type = stop_packet.GetChar();
2162 switch (stop_type) {
2163 case 'T':
2164 case 'S': {
2165 // This is a bit of a hack, but it is required. If we did exec, we need to
2166 // clear our thread lists and also know to rebuild our dynamic register
2167 // info before we lookup and threads and populate the expedited register
2168 // values so we need to know this right away so we can cleanup and update
2169 // our registers.
2170 const uint32_t stop_id = GetStopID();
2171 if (stop_id == 0) {
2172 // Our first stop, make sure we have a process ID, and also make sure we
2173 // know about our registers
2175 SetID(pid);
2177 }
2178 // Stop with signal and thread info
2181 const uint8_t signo = stop_packet.GetHexU8();
2182 llvm::StringRef key;
2183 llvm::StringRef value;
2184 std::string thread_name;
2185 std::string reason;
2186 std::string description;
2187 uint32_t exc_type = 0;
2188 std::vector<addr_t> exc_data;
2189 addr_t thread_dispatch_qaddr = LLDB_INVALID_ADDRESS;
2190 bool queue_vars_valid =
2191 false; // says if locals below that start with "queue_" are valid
2192 addr_t dispatch_queue_t = LLDB_INVALID_ADDRESS;
2193 LazyBool associated_with_dispatch_queue = eLazyBoolCalculate;
2194 std::string queue_name;
2195 QueueKind queue_kind = eQueueKindUnknown;
2196 uint64_t queue_serial_number = 0;
2197 ExpeditedRegisterMap expedited_register_map;
2198 AddressableBits addressable_bits;
2199 while (stop_packet.GetNameColonValue(key, value)) {
2200 if (key.compare("metype") == 0) {
2201 // exception type in big endian hex
2202 value.getAsInteger(16, exc_type);
2203 } else if (key.compare("medata") == 0) {
2204 // exception data in big endian hex
2205 uint64_t x;
2206 value.getAsInteger(16, x);
2207 exc_data.push_back(x);
2208 } else if (key.compare("thread") == 0) {
2209 // thread-id
2210 StringExtractorGDBRemote thread_id{value};
2211 auto pid_tid = thread_id.GetPidTid(pid);
2212 if (pid_tid) {
2213 stop_pid = pid_tid->first;
2214 tid = pid_tid->second;
2215 } else
2217 } else if (key.compare("threads") == 0) {
2218 std::lock_guard<std::recursive_mutex> guard(
2221 } else if (key.compare("thread-pcs") == 0) {
2222 m_thread_pcs.clear();
2223 // A comma separated list of all threads in the current
2224 // process that includes the thread for this stop reply packet
2226 while (!value.empty()) {
2227 llvm::StringRef pc_str;
2228 std::tie(pc_str, value) = value.split(',');
2229 if (pc_str.getAsInteger(16, pc))
2231 m_thread_pcs.push_back(pc);
2232 }
2233 } else if (key.compare("jstopinfo") == 0) {
2234 StringExtractor json_extractor(value);
2235 std::string json;
2236 // Now convert the HEX bytes into a string value
2237 json_extractor.GetHexByteString(json);
2238
2239 // This JSON contains thread IDs and thread stop info for all threads.
2240 // It doesn't contain expedited registers, memory or queue info.
2242 } else if (key.compare("hexname") == 0) {
2243 StringExtractor name_extractor(value);
2244 std::string name;
2245 // Now convert the HEX bytes into a string value
2246 name_extractor.GetHexByteString(thread_name);
2247 } else if (key.compare("name") == 0) {
2248 thread_name = std::string(value);
2249 } else if (key.compare("qaddr") == 0) {
2250 value.getAsInteger(16, thread_dispatch_qaddr);
2251 } else if (key.compare("dispatch_queue_t") == 0) {
2252 queue_vars_valid = true;
2253 value.getAsInteger(16, dispatch_queue_t);
2254 } else if (key.compare("qname") == 0) {
2255 queue_vars_valid = true;
2256 StringExtractor name_extractor(value);
2257 // Now convert the HEX bytes into a string value
2258 name_extractor.GetHexByteString(queue_name);
2259 } else if (key.compare("qkind") == 0) {
2260 queue_kind = llvm::StringSwitch<QueueKind>(value)
2261 .Case("serial", eQueueKindSerial)
2262 .Case("concurrent", eQueueKindConcurrent)
2263 .Default(eQueueKindUnknown);
2264 queue_vars_valid = queue_kind != eQueueKindUnknown;
2265 } else if (key.compare("qserialnum") == 0) {
2266 if (!value.getAsInteger(0, queue_serial_number))
2267 queue_vars_valid = true;
2268 } else if (key.compare("reason") == 0) {
2269 reason = std::string(value);
2270 } else if (key.compare("description") == 0) {
2271 StringExtractor desc_extractor(value);
2272 // Now convert the HEX bytes into a string value
2273 desc_extractor.GetHexByteString(description);
2274 } else if (key.compare("memory") == 0) {
2275 // Expedited memory. GDB servers can choose to send back expedited
2276 // memory that can populate the L1 memory cache in the process so that
2277 // things like the frame pointer backchain can be expedited. This will
2278 // help stack backtracing be more efficient by not having to send as
2279 // many memory read requests down the remote GDB server.
2280
2281 // Key/value pair format: memory:<addr>=<bytes>;
2282 // <addr> is a number whose base will be interpreted by the prefix:
2283 // "0x[0-9a-fA-F]+" for hex
2284 // "0[0-7]+" for octal
2285 // "[1-9]+" for decimal
2286 // <bytes> is native endian ASCII hex bytes just like the register
2287 // values
2288 llvm::StringRef addr_str, bytes_str;
2289 std::tie(addr_str, bytes_str) = value.split('=');
2290 if (!addr_str.empty() && !bytes_str.empty()) {
2291 lldb::addr_t mem_cache_addr = LLDB_INVALID_ADDRESS;
2292 if (!addr_str.getAsInteger(0, mem_cache_addr)) {
2293 StringExtractor bytes(bytes_str);
2294 const size_t byte_size = bytes.GetBytesLeft() / 2;
2295 WritableDataBufferSP data_buffer_sp(
2296 new DataBufferHeap(byte_size, 0));
2297 const size_t bytes_copied =
2298 bytes.GetHexBytes(data_buffer_sp->GetData(), 0);
2299 if (bytes_copied == byte_size)
2300 m_memory_cache.AddL1CacheData(mem_cache_addr, data_buffer_sp);
2301 }
2302 }
2303 } else if (key.compare("watch") == 0 || key.compare("rwatch") == 0 ||
2304 key.compare("awatch") == 0) {
2305 // Support standard GDB remote stop reply packet 'TAAwatch:addr'
2307 value.getAsInteger(16, wp_addr);
2308
2309 WatchpointResourceSP wp_resource_sp =
2311
2312 // Rewrite gdb standard watch/rwatch/awatch to
2313 // "reason:watchpoint" + "description:ADDR",
2314 // which is parsed in SetThreadStopInfo.
2315 reason = "watchpoint";
2316 StreamString ostr;
2317 ostr.Printf("%" PRIu64, wp_addr);
2318 description = std::string(ostr.GetString());
2319 } else if (key.compare("swbreak") == 0 || key.compare("hwbreak") == 0) {
2320 reason = "breakpoint";
2321 } else if (key.compare("library") == 0) {
2322 auto error = LoadModules();
2323 if (error) {
2325 LLDB_LOG_ERROR(log, std::move(error), "Failed to load modules: {0}");
2326 }
2327 } else if (key.compare("fork") == 0 || key.compare("vfork") == 0) {
2328 // fork includes child pid/tid in thread-id format
2329 StringExtractorGDBRemote thread_id{value};
2330 auto pid_tid = thread_id.GetPidTid(LLDB_INVALID_PROCESS_ID);
2331 if (!pid_tid) {
2333 LLDB_LOG(log, "Invalid PID/TID to fork: {0}", value);
2335 }
2336
2337 reason = key.str();
2338 StreamString ostr;
2339 ostr.Printf("%" PRIu64 " %" PRIu64, pid_tid->first, pid_tid->second);
2340 description = std::string(ostr.GetString());
2341 } else if (key.compare("addressing_bits") == 0) {
2342 uint64_t addressing_bits;
2343 if (!value.getAsInteger(0, addressing_bits)) {
2344 addressable_bits.SetAddressableBits(addressing_bits);
2345 }
2346 } else if (key.compare("low_mem_addressing_bits") == 0) {
2347 uint64_t addressing_bits;
2348 if (!value.getAsInteger(0, addressing_bits)) {
2349 addressable_bits.SetLowmemAddressableBits(addressing_bits);
2350 }
2351 } else if (key.compare("high_mem_addressing_bits") == 0) {
2352 uint64_t addressing_bits;
2353 if (!value.getAsInteger(0, addressing_bits)) {
2354 addressable_bits.SetHighmemAddressableBits(addressing_bits);
2355 }
2356 } else if (key.size() == 2 && ::isxdigit(key[0]) && ::isxdigit(key[1])) {
2357 uint32_t reg = UINT32_MAX;
2358 if (!key.getAsInteger(16, reg))
2359 expedited_register_map[reg] = std::string(std::move(value));
2360 }
2361 // swbreak and hwbreak are also expected keys, but we don't need to
2362 // change our behaviour for them because lldb always expects the remote
2363 // to adjust the program counter (if relevant, e.g., for x86 targets)
2364 }
2365
2366 if (stop_pid != LLDB_INVALID_PROCESS_ID && stop_pid != pid) {
2367 Log *log = GetLog(GDBRLog::Process);
2368 LLDB_LOG(log,
2369 "Received stop for incorrect PID = {0} (inferior PID = {1})",
2370 stop_pid, pid);
2371 return eStateInvalid;
2372 }
2373
2374 if (tid == LLDB_INVALID_THREAD_ID) {
2375 // A thread id may be invalid if the response is old style 'S' packet
2376 // which does not provide the
2377 // thread information. So update the thread list and choose the first
2378 // one.
2380
2381 if (!m_thread_ids.empty()) {
2382 tid = m_thread_ids.front();
2383 }
2384 }
2385
2386 SetAddressableBitMasks(addressable_bits);
2387
2388 ThreadSP thread_sp = SetThreadStopInfo(
2389 tid, expedited_register_map, signo, thread_name, reason, description,
2390 exc_type, exc_data, thread_dispatch_qaddr, queue_vars_valid,
2391 associated_with_dispatch_queue, dispatch_queue_t, queue_name,
2392 queue_kind, queue_serial_number);
2393
2394 return eStateStopped;
2395 } break;
2396
2397 case 'W':
2398 case 'X':
2399 // process exited
2400 return eStateExited;
2401
2402 default:
2403 break;
2404 }
2405 return eStateInvalid;
2406}
2407
2409 std::lock_guard<std::recursive_mutex> guard(m_thread_list_real.GetMutex());
2410
2411 m_thread_ids.clear();
2412 m_thread_pcs.clear();
2413
2414 // Set the thread stop info. It might have a "threads" key whose value is a
2415 // list of all thread IDs in the current process, so m_thread_ids might get
2416 // set.
2417 // Check to see if SetThreadStopInfo() filled in m_thread_ids?
2418 if (m_thread_ids.empty()) {
2419 // No, we need to fetch the thread list manually
2421 }
2422
2423 // We might set some stop info's so make sure the thread list is up to
2424 // date before we do that or we might overwrite what was computed here.
2426
2429 m_last_stop_packet.reset();
2430
2431 // If we have queried for a default thread id
2435 }
2436
2437 // Let all threads recover from stopping and do any clean up based on the
2438 // previous thread state (if any).
2440}
2441
2443 Status error;
2444
2446 // We are being asked to halt during an attach. We used to just close our
2447 // file handle and debugserver will go away, but with remote proxies, it
2448 // is better to send a positive signal, so let's send the interrupt first...
2449 caused_stop = m_gdb_comm.Interrupt(GetInterruptTimeout());
2451 } else
2452 caused_stop = m_gdb_comm.Interrupt(GetInterruptTimeout());
2453 return error;
2454}
2455
2457 Status error;
2458 Log *log = GetLog(GDBRLog::Process);
2459 LLDB_LOGF(log, "ProcessGDBRemote::DoDetach(keep_stopped: %i)", keep_stopped);
2460
2461 error = m_gdb_comm.Detach(keep_stopped);
2462 if (log) {
2463 if (error.Success())
2464 log->PutCString(
2465 "ProcessGDBRemote::DoDetach() detach packet sent successfully");
2466 else
2467 LLDB_LOGF(log,
2468 "ProcessGDBRemote::DoDetach() detach packet send failed: %s",
2469 error.AsCString() ? error.AsCString() : "<unknown error>");
2470 }
2471
2472 if (!error.Success())
2473 return error;
2474
2475 // Sleep for one second to let the process get all detached...
2477
2480
2481 // KillDebugserverProcess ();
2482 return error;
2483}
2484
2486 Log *log = GetLog(GDBRLog::Process);
2487 LLDB_LOGF(log, "ProcessGDBRemote::DoDestroy()");
2488
2489 // Interrupt if our inferior is running...
2490 int exit_status = SIGABRT;
2491 std::string exit_string;
2492
2493 if (m_gdb_comm.IsConnected()) {
2495 llvm::Expected<int> kill_res = m_gdb_comm.KillProcess(GetID());
2496
2497 if (kill_res) {
2498 exit_status = kill_res.get();
2499#if defined(__APPLE__)
2500 // For Native processes on Mac OS X, we launch through the Host
2501 // Platform, then hand the process off to debugserver, which becomes
2502 // the parent process through "PT_ATTACH". Then when we go to kill
2503 // the process on Mac OS X we call ptrace(PT_KILL) to kill it, then
2504 // we call waitpid which returns with no error and the correct
2505 // status. But amusingly enough that doesn't seem to actually reap
2506 // the process, but instead it is left around as a Zombie. Probably
2507 // the kernel is in the process of switching ownership back to lldb
2508 // which was the original parent, and gets confused in the handoff.
2509 // Anyway, so call waitpid here to finally reap it.
2510 PlatformSP platform_sp(GetTarget().GetPlatform());
2511 if (platform_sp && platform_sp->IsHost()) {
2512 int status;
2513 ::pid_t reap_pid;
2514 reap_pid = waitpid(GetID(), &status, WNOHANG);
2515 LLDB_LOGF(log, "Reaped pid: %d, status: %d.\n", reap_pid, status);
2516 }
2517#endif
2519 exit_string.assign("killed");
2520 } else {
2521 exit_string.assign(llvm::toString(kill_res.takeError()));
2522 }
2523 } else {
2524 exit_string.assign("killed or interrupted while attaching.");
2525 }
2526 } else {
2527 // If we missed setting the exit status on the way out, do it here.
2528 // NB set exit status can be called multiple times, the first one sets the
2529 // status.
2530 exit_string.assign("destroying when not connected to debugserver");
2531 }
2532
2533 SetExitStatus(exit_status, exit_string.c_str());
2534
2537 return Status();
2538}
2539
2541 const StringExtractorGDBRemote &response) {
2542 const bool did_exec =
2543 response.GetStringRef().find(";reason:exec;") != std::string::npos;
2544 if (did_exec) {
2545 Log *log = GetLog(GDBRLog::Process);
2546 LLDB_LOGF(log, "ProcessGDBRemote::SetLastStopPacket () - detected exec");
2547
2552 }
2553
2554 m_last_stop_packet = response;
2555}
2556
2558 Process::SetUnixSignals(std::make_shared<GDBRemoteSignals>(signals_sp));
2559}
2560
2561// Process Queries
2562
2565}
2566
2568 // request the link map address via the $qShlibInfoAddr packet
2570
2571 // the loaded module list can also provides a link map address
2572 if (addr == LLDB_INVALID_ADDRESS) {
2573 llvm::Expected<LoadedModuleInfoList> list = GetLoadedModuleList();
2574 if (!list) {
2575 Log *log = GetLog(GDBRLog::Process);
2576 LLDB_LOG_ERROR(log, list.takeError(), "Failed to read module list: {0}.");
2577 } else {
2578 addr = list->m_link_map;
2579 }
2580 }
2581
2582 return addr;
2583}
2584
2586 // See if the GDB remote client supports the JSON threads info. If so, we
2587 // gather stop info for all threads, expedited registers, expedited memory,
2588 // runtime queue information (iOS and MacOSX only), and more. Expediting
2589 // memory will help stack backtracing be much faster. Expediting registers
2590 // will make sure we don't have to read the thread registers for GPRs.
2592
2593 if (m_jthreadsinfo_sp) {
2594 // Now set the stop info for each thread and also expedite any registers
2595 // and memory that was in the jThreadsInfo response.
2596 StructuredData::Array *thread_infos = m_jthreadsinfo_sp->GetAsArray();
2597 if (thread_infos) {
2598 const size_t n = thread_infos->GetSize();
2599 for (size_t i = 0; i < n; ++i) {
2600 StructuredData::Dictionary *thread_dict =
2601 thread_infos->GetItemAtIndex(i)->GetAsDictionary();
2602 if (thread_dict)
2603 SetThreadStopInfo(thread_dict);
2604 }
2605 }
2606 }
2607}
2608
2609// Process Memory
2610size_t ProcessGDBRemote::DoReadMemory(addr_t addr, void *buf, size_t size,
2611 Status &error) {
2613 bool binary_memory_read = m_gdb_comm.GetxPacketSupported();
2614 // M and m packets take 2 bytes for 1 byte of memory
2615 size_t max_memory_size =
2616 binary_memory_read ? m_max_memory_size : m_max_memory_size / 2;
2617 if (size > max_memory_size) {
2618 // Keep memory read sizes down to a sane limit. This function will be
2619 // called multiple times in order to complete the task by
2620 // lldb_private::Process so it is ok to do this.
2621 size = max_memory_size;
2622 }
2623
2624 char packet[64];
2625 int packet_len;
2626 packet_len = ::snprintf(packet, sizeof(packet), "%c%" PRIx64 ",%" PRIx64,
2627 binary_memory_read ? 'x' : 'm', (uint64_t)addr,
2628 (uint64_t)size);
2629 assert(packet_len + 1 < (int)sizeof(packet));
2630 UNUSED_IF_ASSERT_DISABLED(packet_len);
2631 StringExtractorGDBRemote response;
2632 if (m_gdb_comm.SendPacketAndWaitForResponse(packet, response,
2635 if (response.IsNormalResponse()) {
2636 error.Clear();
2637 if (binary_memory_read) {
2638 // The lower level GDBRemoteCommunication packet receive layer has
2639 // already de-quoted any 0x7d character escaping that was present in
2640 // the packet
2641
2642 size_t data_received_size = response.GetBytesLeft();
2643 if (data_received_size > size) {
2644 // Don't write past the end of BUF if the remote debug server gave us
2645 // too much data for some reason.
2646 data_received_size = size;
2647 }
2648 memcpy(buf, response.GetStringRef().data(), data_received_size);
2649 return data_received_size;
2650 } else {
2651 return response.GetHexBytes(
2652 llvm::MutableArrayRef<uint8_t>((uint8_t *)buf, size), '\xdd');
2653 }
2654 } else if (response.IsErrorResponse())
2656 "memory read failed for 0x%" PRIx64, addr);
2657 else if (response.IsUnsupportedResponse())
2659 "GDB server does not support reading memory");
2660 else
2662 "unexpected response to GDB server memory read packet '%s': '%s'",
2663 packet, response.GetStringRef().data());
2664 } else {
2665 error = Status::FromErrorStringWithFormat("failed to send packet: '%s'",
2666 packet);
2667 }
2668 return 0;
2669}
2670
2673}
2674
2675llvm::Expected<std::vector<uint8_t>>
2677 int32_t type) {
2678 // By this point ReadMemoryTags has validated that tagging is enabled
2679 // for this target/process/address.
2680 DataBufferSP buffer_sp = m_gdb_comm.ReadMemoryTags(addr, len, type);
2681 if (!buffer_sp) {
2682 return llvm::createStringError(llvm::inconvertibleErrorCode(),
2683 "Error reading memory tags from remote");
2684 }
2685
2686 // Return the raw tag data
2687 llvm::ArrayRef<uint8_t> tag_data = buffer_sp->GetData();
2688 std::vector<uint8_t> got;
2689 got.reserve(tag_data.size());
2690 std::copy(tag_data.begin(), tag_data.end(), std::back_inserter(got));
2691 return got;
2692}
2693
2695 int32_t type,
2696 const std::vector<uint8_t> &tags) {
2697 // By now WriteMemoryTags should have validated that tagging is enabled
2698 // for this target/process.
2699 return m_gdb_comm.WriteMemoryTags(addr, len, type, tags);
2700}
2701
2703 std::vector<ObjectFile::LoadableData> entries) {
2704 Status error;
2705 // Sort the entries by address because some writes, like those to flash
2706 // memory, must happen in order of increasing address.
2707 std::stable_sort(
2708 std::begin(entries), std::end(entries),
2710 return a.Dest < b.Dest;
2711 });
2712 m_allow_flash_writes = true;
2714 if (error.Success())
2715 error = FlashDone();
2716 else
2717 // Even though some of the writing failed, try to send a flash done if some
2718 // of the writing succeeded so the flash state is reset to normal, but
2719 // don't stomp on the error status that was set in the write failure since
2720 // that's the one we want to report back.
2721 FlashDone();
2722 m_allow_flash_writes = false;
2723 return error;
2724}
2725
2727 auto size = m_erased_flash_ranges.GetSize();
2728 for (size_t i = 0; i < size; ++i)
2730 return true;
2731 return false;
2732}
2733
2735 Status status;
2736
2737 MemoryRegionInfo region;
2738 status = GetMemoryRegionInfo(addr, region);
2739 if (!status.Success())
2740 return status;
2741
2742 // The gdb spec doesn't say if erasures are allowed across multiple regions,
2743 // but we'll disallow it to be safe and to keep the logic simple by worring
2744 // about only one region's block size. DoMemoryWrite is this function's
2745 // primary user, and it can easily keep writes within a single memory region
2746 if (addr + size > region.GetRange().GetRangeEnd()) {
2747 status =
2748 Status::FromErrorString("Unable to erase flash in multiple regions");
2749 return status;
2750 }
2751
2752 uint64_t blocksize = region.GetBlocksize();
2753 if (blocksize == 0) {
2754 status =
2755 Status::FromErrorString("Unable to erase flash because blocksize is 0");
2756 return status;
2757 }
2758
2759 // Erasures can only be done on block boundary adresses, so round down addr
2760 // and round up size
2761 lldb::addr_t block_start_addr = addr - (addr % blocksize);
2762 size += (addr - block_start_addr);
2763 if ((size % blocksize) != 0)
2764 size += (blocksize - size % blocksize);
2765
2766 FlashRange range(block_start_addr, size);
2767
2768 if (HasErased(range))
2769 return status;
2770
2771 // We haven't erased the entire range, but we may have erased part of it.
2772 // (e.g., block A is already erased and range starts in A and ends in B). So,
2773 // adjust range if necessary to exclude already erased blocks.
2775 // Assuming that writes and erasures are done in increasing addr order,
2776 // because that is a requirement of the vFlashWrite command. Therefore, we
2777 // only need to look at the last range in the list for overlap.
2778 const auto &last_range = *m_erased_flash_ranges.Back();
2779 if (range.GetRangeBase() < last_range.GetRangeEnd()) {
2780 auto overlap = last_range.GetRangeEnd() - range.GetRangeBase();
2781 // overlap will be less than range.GetByteSize() or else HasErased()
2782 // would have been true
2783 range.SetByteSize(range.GetByteSize() - overlap);
2784 range.SetRangeBase(range.GetRangeBase() + overlap);
2785 }
2786 }
2787
2788 StreamString packet;
2789 packet.Printf("vFlashErase:%" PRIx64 ",%" PRIx64, range.GetRangeBase(),
2790 (uint64_t)range.GetByteSize());
2791
2792 StringExtractorGDBRemote response;
2793 if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response,
2796 if (response.IsOKResponse()) {
2797 m_erased_flash_ranges.Insert(range, true);
2798 } else {
2799 if (response.IsErrorResponse())
2801 "flash erase failed for 0x%" PRIx64, addr);
2802 else if (response.IsUnsupportedResponse())
2804 "GDB server does not support flashing");
2805 else
2807 "unexpected response to GDB server flash erase packet '%s': '%s'",
2808 packet.GetData(), response.GetStringRef().data());
2809 }
2810 } else {
2811 status = Status::FromErrorStringWithFormat("failed to send packet: '%s'",
2812 packet.GetData());
2813 }
2814 return status;
2815}
2816
2818 Status status;
2819 // If we haven't erased any blocks, then we must not have written anything
2820 // either, so there is no need to actually send a vFlashDone command
2822 return status;
2823 StringExtractorGDBRemote response;
2824 if (m_gdb_comm.SendPacketAndWaitForResponse("vFlashDone", response,
2827 if (response.IsOKResponse()) {
2829 } else {
2830 if (response.IsErrorResponse())
2831 status = Status::FromErrorStringWithFormat("flash done failed");
2832 else if (response.IsUnsupportedResponse())
2834 "GDB server does not support flashing");
2835 else
2837 "unexpected response to GDB server flash done packet: '%s'",
2838 response.GetStringRef().data());
2839 }
2840 } else {
2841 status =
2842 Status::FromErrorStringWithFormat("failed to send flash done packet");
2843 }
2844 return status;
2845}
2846
2847size_t ProcessGDBRemote::DoWriteMemory(addr_t addr, const void *buf,
2848 size_t size, Status &error) {
2850 // M and m packets take 2 bytes for 1 byte of memory
2851 size_t max_memory_size = m_max_memory_size / 2;
2852 if (size > max_memory_size) {
2853 // Keep memory read sizes down to a sane limit. This function will be
2854 // called multiple times in order to complete the task by
2855 // lldb_private::Process so it is ok to do this.
2856 size = max_memory_size;
2857 }
2858
2859 StreamGDBRemote packet;
2860
2861 MemoryRegionInfo region;
2862 Status region_status = GetMemoryRegionInfo(addr, region);
2863
2864 bool is_flash =
2865 region_status.Success() && region.GetFlash() == MemoryRegionInfo::eYes;
2866
2867 if (is_flash) {
2868 if (!m_allow_flash_writes) {
2869 error = Status::FromErrorString("Writing to flash memory is not allowed");
2870 return 0;
2871 }
2872 // Keep the write within a flash memory region
2873 if (addr + size > region.GetRange().GetRangeEnd())
2874 size = region.GetRange().GetRangeEnd() - addr;
2875 // Flash memory must be erased before it can be written
2876 error = FlashErase(addr, size);
2877 if (!error.Success())
2878 return 0;
2879 packet.Printf("vFlashWrite:%" PRIx64 ":", addr);
2880 packet.PutEscapedBytes(buf, size);
2881 } else {
2882 packet.Printf("M%" PRIx64 ",%" PRIx64 ":", addr, (uint64_t)size);
2883 packet.PutBytesAsRawHex8(buf, size, endian::InlHostByteOrder(),
2885 }
2886 StringExtractorGDBRemote response;
2887 if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response,
2890 if (response.IsOKResponse()) {
2891 error.Clear();
2892 return size;
2893 } else if (response.IsErrorResponse())
2895 "memory write failed for 0x%" PRIx64, addr);
2896 else if (response.IsUnsupportedResponse())
2898 "GDB server does not support writing memory");
2899 else
2901 "unexpected response to GDB server memory write packet '%s': '%s'",
2902 packet.GetData(), response.GetStringRef().data());
2903 } else {
2904 error = Status::FromErrorStringWithFormat("failed to send packet: '%s'",
2905 packet.GetData());
2906 }
2907 return 0;
2908}
2909
2911 uint32_t permissions,
2912 Status &error) {
2914 addr_t allocated_addr = LLDB_INVALID_ADDRESS;
2915
2917 allocated_addr = m_gdb_comm.AllocateMemory(size, permissions);
2918 if (allocated_addr != LLDB_INVALID_ADDRESS ||
2920 return allocated_addr;
2921 }
2922
2924 // Call mmap() to create memory in the inferior..
2925 unsigned prot = 0;
2926 if (permissions & lldb::ePermissionsReadable)
2927 prot |= eMmapProtRead;
2928 if (permissions & lldb::ePermissionsWritable)
2929 prot |= eMmapProtWrite;
2930 if (permissions & lldb::ePermissionsExecutable)
2931 prot |= eMmapProtExec;
2932
2933 if (InferiorCallMmap(this, allocated_addr, 0, size, prot,
2935 m_addr_to_mmap_size[allocated_addr] = size;
2936 else {
2937 allocated_addr = LLDB_INVALID_ADDRESS;
2938 LLDB_LOGF(log,
2939 "ProcessGDBRemote::%s no direct stub support for memory "
2940 "allocation, and InferiorCallMmap also failed - is stub "
2941 "missing register context save/restore capability?",
2942 __FUNCTION__);
2943 }
2944 }
2945
2946 if (allocated_addr == LLDB_INVALID_ADDRESS)
2948 "unable to allocate %" PRIu64 " bytes of memory with permissions %s",
2949 (uint64_t)size, GetPermissionsAsCString(permissions));
2950 else
2951 error.Clear();
2952 return allocated_addr;
2953}
2954
2956 MemoryRegionInfo &region_info) {
2957
2958 Status error(m_gdb_comm.GetMemoryRegionInfo(load_addr, region_info));
2959 return error;
2960}
2961
2964}
2965
2968}
2969
2971 Status error;
2973
2974 switch (supported) {
2975 case eLazyBoolCalculate:
2976 // We should never be deallocating memory without allocating memory first
2977 // so we should never get eLazyBoolCalculate
2979 "tried to deallocate memory without ever allocating memory");
2980 break;
2981
2982 case eLazyBoolYes:
2983 if (!m_gdb_comm.DeallocateMemory(addr))
2985 "unable to deallocate memory at 0x%" PRIx64, addr);
2986 break;
2987
2988 case eLazyBoolNo:
2989 // Call munmap() to deallocate memory in the inferior..
2990 {
2991 MMapMap::iterator pos = m_addr_to_mmap_size.find(addr);
2992 if (pos != m_addr_to_mmap_size.end() &&
2993 InferiorCallMunmap(this, addr, pos->second))
2994 m_addr_to_mmap_size.erase(pos);
2995 else
2997 "unable to deallocate memory at 0x%" PRIx64, addr);
2998 }
2999 break;
3000 }
3001
3002 return error;
3003}
3004
3005// Process STDIO
3006size_t ProcessGDBRemote::PutSTDIN(const char *src, size_t src_len,
3007 Status &error) {
3009 ConnectionStatus status;
3010 m_stdio_communication.WriteAll(src, src_len, status, nullptr);
3011 } else if (m_stdin_forward) {
3012 m_gdb_comm.SendStdinNotification(src, src_len);
3013 }
3014 return 0;
3015}
3016
3018 Status error;
3019 assert(bp_site != nullptr);
3020
3021 // Get logging info
3023 user_id_t site_id = bp_site->GetID();
3024
3025 // Get the breakpoint address
3026 const addr_t addr = bp_site->GetLoadAddress();
3027
3028 // Log that a breakpoint was requested
3029 LLDB_LOGF(log,
3030 "ProcessGDBRemote::EnableBreakpointSite (size_id = %" PRIu64
3031 ") address = 0x%" PRIx64,
3032 site_id, (uint64_t)addr);
3033
3034 // Breakpoint already exists and is enabled
3035 if (bp_site->IsEnabled()) {
3036 LLDB_LOGF(log,
3037 "ProcessGDBRemote::EnableBreakpointSite (size_id = %" PRIu64
3038 ") address = 0x%" PRIx64 " -- SUCCESS (already enabled)",
3039 site_id, (uint64_t)addr);
3040 return error;
3041 }
3042
3043 // Get the software breakpoint trap opcode size
3044 const size_t bp_op_size = GetSoftwareBreakpointTrapOpcode(bp_site);
3045
3046 // SupportsGDBStoppointPacket() simply checks a boolean, indicating if this
3047 // breakpoint type is supported by the remote stub. These are set to true by
3048 // default, and later set to false only after we receive an unimplemented
3049 // response when sending a breakpoint packet. This means initially that
3050 // unless we were specifically instructed to use a hardware breakpoint, LLDB
3051 // will attempt to set a software breakpoint. HardwareRequired() also queries
3052 // a boolean variable which indicates if the user specifically asked for
3053 // hardware breakpoints. If true then we will skip over software
3054 // breakpoints.
3056 (!bp_site->HardwareRequired())) {
3057 // Try to send off a software breakpoint packet ($Z0)
3058 uint8_t error_no = m_gdb_comm.SendGDBStoppointTypePacket(
3059 eBreakpointSoftware, true, addr, bp_op_size, GetInterruptTimeout());
3060 if (error_no == 0) {
3061 // The breakpoint was placed successfully
3062 bp_site->SetEnabled(true);
3064 return error;
3065 }
3066
3067 // SendGDBStoppointTypePacket() will return an error if it was unable to
3068 // set this breakpoint. We need to differentiate between a error specific
3069 // to placing this breakpoint or if we have learned that this breakpoint
3070 // type is unsupported. To do this, we must test the support boolean for
3071 // this breakpoint type to see if it now indicates that this breakpoint
3072 // type is unsupported. If they are still supported then we should return
3073 // with the error code. If they are now unsupported, then we would like to
3074 // fall through and try another form of breakpoint.
3076 if (error_no != UINT8_MAX)
3078 "error: %d sending the breakpoint request", error_no);
3079 else
3080 error = Status::FromErrorString("error sending the breakpoint request");
3081 return error;
3082 }
3083
3084 // We reach here when software breakpoints have been found to be
3085 // unsupported. For future calls to set a breakpoint, we will not attempt
3086 // to set a breakpoint with a type that is known not to be supported.
3087 LLDB_LOGF(log, "Software breakpoints are unsupported");
3088
3089 // So we will fall through and try a hardware breakpoint
3090 }
3091
3092 // The process of setting a hardware breakpoint is much the same as above.
3093 // We check the supported boolean for this breakpoint type, and if it is
3094 // thought to be supported then we will try to set this breakpoint with a
3095 // hardware breakpoint.
3097 // Try to send off a hardware breakpoint packet ($Z1)
3098 uint8_t error_no = m_gdb_comm.SendGDBStoppointTypePacket(
3099 eBreakpointHardware, true, addr, bp_op_size, GetInterruptTimeout());
3100 if (error_no == 0) {
3101 // The breakpoint was placed successfully
3102 bp_site->SetEnabled(true);
3104 return error;
3105 }
3106
3107 // Check if the error was something other then an unsupported breakpoint
3108 // type
3110 // Unable to set this hardware breakpoint
3111 if (error_no != UINT8_MAX)
3113 "error: %d sending the hardware breakpoint request "
3114 "(hardware breakpoint resources might be exhausted or unavailable)",
3115 error_no);
3116 else
3118 "error sending the hardware breakpoint request "
3119 "(hardware breakpoint resources "
3120 "might be exhausted or unavailable)");
3121 return error;
3122 }
3123
3124 // We will reach here when the stub gives an unsupported response to a
3125 // hardware breakpoint
3126 LLDB_LOGF(log, "Hardware breakpoints are unsupported");
3127
3128 // Finally we will falling through to a #trap style breakpoint
3129 }
3130
3131 // Don't fall through when hardware breakpoints were specifically requested
3132 if (bp_site->HardwareRequired()) {
3133 error = Status::FromErrorString("hardware breakpoints are not supported");
3134 return error;
3135 }
3136
3137 // As a last resort we want to place a manual breakpoint. An instruction is
3138 // placed into the process memory using memory write packets.
3139 return EnableSoftwareBreakpoint(bp_site);
3140}
3141
3143 Status error;
3144 assert(bp_site != nullptr);
3145 addr_t addr = bp_site->GetLoadAddress();
3146 user_id_t site_id = bp_site->GetID();
3148 LLDB_LOGF(log,
3149 "ProcessGDBRemote::DisableBreakpointSite (site_id = %" PRIu64
3150 ") addr = 0x%8.8" PRIx64,
3151 site_id, (uint64_t)addr);
3152
3153 if (bp_site->IsEnabled()) {
3154 const size_t bp_op_size = GetSoftwareBreakpointTrapOpcode(bp_site);
3155
3156 BreakpointSite::Type bp_type = bp_site->GetType();
3157 switch (bp_type) {
3160 break;
3161
3164 addr, bp_op_size,
3166 error = Status::FromErrorString("unknown error");
3167 break;
3168
3171 addr, bp_op_size,
3173 error = Status::FromErrorString("unknown error");
3174 } break;
3175 }
3176 if (error.Success())
3177 bp_site->SetEnabled(false);
3178 } else {
3179 LLDB_LOGF(log,
3180 "ProcessGDBRemote::DisableBreakpointSite (site_id = %" PRIu64
3181 ") addr = 0x%8.8" PRIx64 " -- SUCCESS (already disabled)",
3182 site_id, (uint64_t)addr);
3183 return error;
3184 }
3185
3186 if (error.Success())
3187 error = Status::FromErrorString("unknown error");
3188 return error;
3189}
3190
3191// Pre-requisite: wp != NULL.
3192static GDBStoppointType
3194 assert(wp_res_sp);
3195 bool read = wp_res_sp->WatchpointResourceRead();
3196 bool write = wp_res_sp->WatchpointResourceWrite();
3197
3198 assert((read || write) &&
3199 "WatchpointResource type is neither read nor write");
3200 if (read && write)
3201 return eWatchpointReadWrite;
3202 else if (read)
3203 return eWatchpointRead;
3204 else
3205 return eWatchpointWrite;
3206}
3207
3209 Status error;
3210 if (!wp_sp) {
3211 error = Status::FromErrorString("No watchpoint specified");
3212 return error;
3213 }
3214 user_id_t watchID = wp_sp->GetID();
3215 addr_t addr = wp_sp->GetLoadAddress();
3217 LLDB_LOGF(log, "ProcessGDBRemote::EnableWatchpoint(watchID = %" PRIu64 ")",
3218 watchID);
3219 if (wp_sp->IsEnabled()) {
3220 LLDB_LOGF(log,
3221 "ProcessGDBRemote::EnableWatchpoint(watchID = %" PRIu64
3222 ") addr = 0x%8.8" PRIx64 ": watchpoint already enabled.",
3223 watchID, (uint64_t)addr);
3224 return error;
3225 }
3226
3227 bool read = wp_sp->WatchpointRead();
3228 bool write = wp_sp->WatchpointWrite() || wp_sp->WatchpointModify();
3229 size_t size = wp_sp->GetByteSize();
3230
3231 ArchSpec target_arch = GetTarget().GetArchitecture();
3232 WatchpointHardwareFeature supported_features =
3234
3235 std::vector<WatchpointResourceSP> resources =
3237 addr, size, read, write, supported_features, target_arch);
3238
3239 // LWP_TODO: Now that we know the WP Resources needed to implement this
3240 // Watchpoint, we need to look at currently allocated Resources in the
3241 // Process and if they match, or are within the same memory granule, or
3242 // overlapping memory ranges, then we need to combine them. e.g. one
3243 // Watchpoint watching 1 byte at 0x1002 and a second watchpoint watching 1
3244 // byte at 0x1003, they must use the same hardware watchpoint register
3245 // (Resource) to watch them.
3246
3247 // This may mean that an existing resource changes its type (read to
3248 // read+write) or address range it is watching, in which case the old
3249 // watchpoint needs to be disabled and the new Resource addr/size/type
3250 // watchpoint enabled.
3251
3252 // If we modify a shared Resource to accomodate this newly added Watchpoint,
3253 // and we are unable to set all of the Resources for it in the inferior, we
3254 // will return an error for this Watchpoint and the shared Resource should
3255 // be restored. e.g. this Watchpoint requires three Resources, one which
3256 // is shared with another Watchpoint. We extend the shared Resouce to
3257 // handle both Watchpoints and we try to set two new ones. But if we don't
3258 // have sufficient watchpoint register for all 3, we need to show an error
3259 // for creating this Watchpoint and we should reset the shared Resource to
3260 // its original configuration because it is no longer shared.
3261
3262 bool set_all_resources = true;
3263 std::vector<WatchpointResourceSP> succesfully_set_resources;
3264 for (const auto &wp_res_sp : resources) {
3265 addr_t addr = wp_res_sp->GetLoadAddress();
3266 size_t size = wp_res_sp->GetByteSize();
3267 GDBStoppointType type = GetGDBStoppointType(wp_res_sp);
3269 m_gdb_comm.SendGDBStoppointTypePacket(type, true, addr, size,
3271 set_all_resources = false;
3272 break;
3273 } else {
3274 succesfully_set_resources.push_back(wp_res_sp);
3275 }
3276 }
3277 if (set_all_resources) {
3278 wp_sp->SetEnabled(true, notify);
3279 for (const auto &wp_res_sp : resources) {
3280 // LWP_TODO: If we expanded/reused an existing Resource,
3281 // it's already in the WatchpointResourceList.
3282 wp_res_sp->AddConstituent(wp_sp);
3284 }
3285 return error;
3286 } else {
3287 // We failed to allocate one of the resources. Unset all
3288 // of the new resources we did successfully set in the
3289 // process.
3290 for (const auto &wp_res_sp : succesfully_set_resources) {
3291 addr_t addr = wp_res_sp->GetLoadAddress();
3292 size_t size = wp_res_sp->GetByteSize();
3293 GDBStoppointType type = GetGDBStoppointType(wp_res_sp);
3294 m_gdb_comm.SendGDBStoppointTypePacket(type, false, addr, size,
3296 }
3298 "Setting one of the watchpoint resources failed");
3299 }
3300 return error;
3301}
3302
3304 Status error;
3305 if (!wp_sp) {
3306 error = Status::FromErrorString("Watchpoint argument was NULL.");
3307 return error;
3308 }
3309
3310 user_id_t watchID = wp_sp->GetID();
3311
3313
3314 addr_t addr = wp_sp->GetLoadAddress();
3315
3316 LLDB_LOGF(log,
3317 "ProcessGDBRemote::DisableWatchpoint (watchID = %" PRIu64
3318 ") addr = 0x%8.8" PRIx64,
3319 watchID, (uint64_t)addr);
3320
3321 if (!wp_sp->IsEnabled()) {
3322 LLDB_LOGF(log,
3323 "ProcessGDBRemote::DisableWatchpoint (watchID = %" PRIu64
3324 ") addr = 0x%8.8" PRIx64 " -- SUCCESS (already disabled)",
3325 watchID, (uint64_t)addr);
3326 // See also 'class WatchpointSentry' within StopInfo.cpp. This disabling
3327 // attempt might come from the user-supplied actions, we'll route it in
3328 // order for the watchpoint object to intelligently process this action.
3329 wp_sp->SetEnabled(false, notify);
3330 return error;
3331 }
3332
3333 if (wp_sp->IsHardware()) {
3334 bool disabled_all = true;
3335
3336 std::vector<WatchpointResourceSP> unused_resources;
3337 for (const auto &wp_res_sp : m_watchpoint_resource_list.Sites()) {
3338 if (wp_res_sp->ConstituentsContains(wp_sp)) {
3339 GDBStoppointType type = GetGDBStoppointType(wp_res_sp);
3340 addr_t addr = wp_res_sp->GetLoadAddress();
3341 size_t size = wp_res_sp->GetByteSize();
3342 if (m_gdb_comm.SendGDBStoppointTypePacket(type, false, addr, size,
3344 disabled_all = false;
3345 } else {
3346 wp_res_sp->RemoveConstituent(wp_sp);
3347 if (wp_res_sp->GetNumberOfConstituents() == 0)
3348 unused_resources.push_back(wp_res_sp);
3349 }
3350 }
3351 }
3352 for (auto &wp_res_sp : unused_resources)
3353 m_watchpoint_resource_list.Remove(wp_res_sp->GetID());
3354
3355 wp_sp->SetEnabled(false, notify);
3356 if (!disabled_all)
3358 "Failure disabling one of the watchpoint locations");
3359 }
3360 return error;
3361}
3362
3366}
3367
3369 Status error;
3370 Log *log = GetLog(GDBRLog::Process);
3371 LLDB_LOGF(log, "ProcessGDBRemote::DoSignal (signal = %d)", signo);
3372
3374 error =
3375 Status::FromErrorStringWithFormat("failed to send signal %i", signo);
3376 return error;
3377}
3378
3379Status
3381 // Make sure we aren't already connected?
3382 if (m_gdb_comm.IsConnected())
3383 return Status();
3384
3385 PlatformSP platform_sp(GetTarget().GetPlatform());
3386 if (platform_sp && !platform_sp->IsHost())
3387 return Status::FromErrorString("Lost debug server connection");
3388
3389 auto error = LaunchAndConnectToDebugserver(process_info);
3390 if (error.Fail()) {
3391 const char *error_string = error.AsCString();
3392 if (error_string == nullptr)
3393 error_string = "unable to launch " DEBUGSERVER_BASENAME;
3394 }
3395 return error;
3396}
3397#if !defined(_WIN32)
3398#define USE_SOCKETPAIR_FOR_LOCAL_CONNECTION 1
3399#endif
3400
3401#ifdef USE_SOCKETPAIR_FOR_LOCAL_CONNECTION
3402static bool SetCloexecFlag(int fd) {
3403#if defined(FD_CLOEXEC)
3404 int flags = ::fcntl(fd, F_GETFD);
3405 if (flags == -1)
3406 return false;
3407 return (::fcntl(fd, F_SETFD, flags | FD_CLOEXEC) == 0);
3408#else
3409 return false;
3410#endif
3411}
3412#endif
3413
3415 const ProcessInfo &process_info) {
3416 using namespace std::placeholders; // For _1, _2, etc.
3417
3418 Status error;
3420 // If we locate debugserver, keep that located version around
3421 static FileSpec g_debugserver_file_spec;
3422
3423 ProcessLaunchInfo debugserver_launch_info;
3424 // Make debugserver run in its own session so signals generated by special
3425 // terminal key sequences (^C) don't affect debugserver.
3426 debugserver_launch_info.SetLaunchInSeparateProcessGroup(true);
3427
3428 const std::weak_ptr<ProcessGDBRemote> this_wp =
3429 std::static_pointer_cast<ProcessGDBRemote>(shared_from_this());
3430 debugserver_launch_info.SetMonitorProcessCallback(
3431 std::bind(MonitorDebugserverProcess, this_wp, _1, _2, _3));
3432 debugserver_launch_info.SetUserID(process_info.GetUserID());
3433
3434#if defined(__APPLE__)
3435 // On macOS 11, we need to support x86_64 applications translated to
3436 // arm64. We check whether a binary is translated and spawn the correct
3437 // debugserver accordingly.
3438 int mib[] = { CTL_KERN, KERN_PROC, KERN_PROC_PID,
3439 static_cast<int>(process_info.GetProcessID()) };
3440 struct kinfo_proc processInfo;
3441 size_t bufsize = sizeof(processInfo);
3442 if (sysctl(mib, (unsigned)(sizeof(mib)/sizeof(int)), &processInfo,
3443 &bufsize, NULL, 0) == 0 && bufsize > 0) {
3444 if (processInfo.kp_proc.p_flag & P_TRANSLATED) {
3445 FileSpec rosetta_debugserver("/Library/Apple/usr/libexec/oah/debugserver");
3446 debugserver_launch_info.SetExecutableFile(rosetta_debugserver, false);
3447 }
3448 }
3449#endif
3450
3451 shared_fd_t communication_fd = SharedSocket::kInvalidFD;
3452#ifdef USE_SOCKETPAIR_FOR_LOCAL_CONNECTION
3453 // Use a socketpair on non-Windows systems for security and performance
3454 // reasons.
3455 int sockets[2]; /* the pair of socket descriptors */
3456 if (socketpair(AF_UNIX, SOCK_STREAM, 0, sockets) == -1) {
3458 return error;
3459 }
3460
3461 int our_socket = sockets[0];
3462 int gdb_socket = sockets[1];
3463 auto cleanup_our = llvm::make_scope_exit([&]() { close(our_socket); });
3464 auto cleanup_gdb = llvm::make_scope_exit([&]() { close(gdb_socket); });
3465
3466 // Don't let any child processes inherit our communication socket
3467 SetCloexecFlag(our_socket);
3468 communication_fd = gdb_socket;
3469#endif
3470
3472 nullptr, GetTarget().GetPlatform().get(), debugserver_launch_info,
3473 nullptr, nullptr, communication_fd);
3474
3475 if (error.Success())
3476 m_debugserver_pid = debugserver_launch_info.GetProcessID();
3477 else
3479
3481#ifdef USE_SOCKETPAIR_FOR_LOCAL_CONNECTION
3482 // Our process spawned correctly, we can now set our connection to use
3483 // our end of the socket pair
3484 cleanup_our.release();
3486 std::make_unique<ConnectionFileDescriptor>(our_socket, true));
3487#endif
3489 }
3490
3491 if (error.Fail()) {
3492 Log *log = GetLog(GDBRLog::Process);
3493
3494 LLDB_LOGF(log, "failed to start debugserver process: %s",
3495 error.AsCString());
3496 return error;
3497 }
3498
3499 if (m_gdb_comm.IsConnected()) {
3500 // Finish the connection process by doing the handshake without
3501 // connecting (send NULL URL)
3503 } else {
3504 error = Status::FromErrorString("connection failed");
3505 }
3506 }
3507 return error;
3508}
3509
3511 std::weak_ptr<ProcessGDBRemote> process_wp, lldb::pid_t debugserver_pid,
3512 int signo, // Zero for no signal
3513 int exit_status // Exit value of process if signal is zero
3514) {
3515 // "debugserver_pid" argument passed in is the process ID for debugserver
3516 // that we are tracking...
3517 Log *log = GetLog(GDBRLog::Process);
3518
3519 LLDB_LOGF(log,
3520 "ProcessGDBRemote::%s(process_wp, pid=%" PRIu64
3521 ", signo=%i (0x%x), exit_status=%i)",
3522 __FUNCTION__, debugserver_pid, signo, signo, exit_status);
3523
3524 std::shared_ptr<ProcessGDBRemote> process_sp = process_wp.lock();
3525 LLDB_LOGF(log, "ProcessGDBRemote::%s(process = %p)", __FUNCTION__,
3526 static_cast<void *>(process_sp.get()));
3527 if (!process_sp || process_sp->m_debugserver_pid != debugserver_pid)
3528 return;
3529
3530 // Sleep for a half a second to make sure our inferior process has time to
3531 // set its exit status before we set it incorrectly when both the debugserver
3532 // and the inferior process shut down.
3533 std::this_thread::sleep_for(std::chrono::milliseconds(500));
3534
3535 // If our process hasn't yet exited, debugserver might have died. If the
3536 // process did exit, then we are reaping it.
3537 const StateType state = process_sp->GetState();
3538
3539 if (state != eStateInvalid && state != eStateUnloaded &&
3540 state != eStateExited && state != eStateDetached) {
3541 StreamString stream;
3542 if (signo == 0)
3543 stream.Format(DEBUGSERVER_BASENAME " died with an exit status of {0:x8}",
3544 exit_status);
3545 else {
3546 llvm::StringRef signal_name =
3547 process_sp->GetUnixSignals()->GetSignalAsStringRef(signo);
3548 const char *format_str = DEBUGSERVER_BASENAME " died with signal {0}";
3549 if (!signal_name.empty())
3550 stream.Format(format_str, signal_name);
3551 else
3552 stream.Format(format_str, signo);
3553 }
3554 process_sp->SetExitStatus(-1, stream.GetString());
3555 }
3556 // Debugserver has exited we need to let our ProcessGDBRemote know that it no
3557 // longer has a debugserver instance
3558 process_sp->m_debugserver_pid = LLDB_INVALID_PROCESS_ID;
3559}
3560
3566 }
3567}
3568
3570 static llvm::once_flag g_once_flag;
3571
3572 llvm::call_once(g_once_flag, []() {
3576 });
3577}
3578
3581 debugger, PluginProperties::GetSettingName())) {
3582 const bool is_global_setting = true;
3585 "Properties for the gdb-remote process plug-in.", is_global_setting);
3586 }
3587}
3588
3590 Log *log = GetLog(GDBRLog::Process);
3591
3592 LLDB_LOGF(log, "ProcessGDBRemote::%s ()", __FUNCTION__);
3593
3594 std::lock_guard<std::recursive_mutex> guard(m_async_thread_state_mutex);
3595 if (!m_async_thread.IsJoinable()) {
3596 // Create a thread that watches our internal state and controls which
3597 // events make it to clients (into the DCProcess event queue).
3598
3599 llvm::Expected<HostThread> async_thread =
3600 ThreadLauncher::LaunchThread("<lldb.process.gdb-remote.async>", [this] {
3602 });
3603 if (!async_thread) {
3604 LLDB_LOG_ERROR(GetLog(LLDBLog::Host), async_thread.takeError(),
3605 "failed to launch host thread: {0}");
3606 return false;
3607 }
3608 m_async_thread = *async_thread;
3609 } else
3610 LLDB_LOGF(log,
3611 "ProcessGDBRemote::%s () - Called when Async thread was "
3612 "already running.",
3613 __FUNCTION__);
3614
3615 return m_async_thread.IsJoinable();
3616}
3617
3619 Log *log = GetLog(GDBRLog::Process);
3620
3621 LLDB_LOGF(log, "ProcessGDBRemote::%s ()", __FUNCTION__);
3622
3623 std::lock_guard<std::recursive_mutex> guard(m_async_thread_state_mutex);
3624 if (m_async_thread.IsJoinable()) {
3626
3627 // This will shut down the async thread.
3628 m_gdb_comm.Disconnect(); // Disconnect from the debug server.
3629
3630 // Stop the stdio thread
3631 m_async_thread.Join(nullptr);
3633 } else
3634 LLDB_LOGF(
3635 log,
3636 "ProcessGDBRemote::%s () - Called when Async thread was not running.",
3637 __FUNCTION__);
3638}
3639
3641 Log *log = GetLog(GDBRLog::Process);
3642 LLDB_LOGF(log, "ProcessGDBRemote::%s(pid = %" PRIu64 ") thread starting...",
3643 __FUNCTION__, GetID());
3644
3645 EventSP event_sp;
3646
3647 // We need to ignore any packets that come in after we have
3648 // have decided the process has exited. There are some
3649 // situations, for instance when we try to interrupt a running
3650 // process and the interrupt fails, where another packet might
3651 // get delivered after we've decided to give up on the process.
3652 // But once we've decided we are done with the process we will
3653 // not be in a state to do anything useful with new packets.
3654 // So it is safer to simply ignore any remaining packets by
3655 // explicitly checking for eStateExited before reentering the
3656 // fetch loop.
3657
3658 bool done = false;
3659 while (!done && GetPrivateState() != eStateExited) {
3660 LLDB_LOGF(log,
3661 "ProcessGDBRemote::%s(pid = %" PRIu64
3662 ") listener.WaitForEvent (NULL, event_sp)...",
3663 __FUNCTION__, GetID());
3664
3665 if (m_async_listener_sp->GetEvent(event_sp, std::nullopt)) {
3666 const uint32_t event_type = event_sp->GetType();
3667 if (event_sp->BroadcasterIs(&m_async_broadcaster)) {
3668 LLDB_LOGF(log,
3669 "ProcessGDBRemote::%s(pid = %" PRIu64
3670 ") Got an event of type: %d...",
3671 __FUNCTION__, GetID(), event_type);
3672
3673 switch (event_type) {
3675 const EventDataBytes *continue_packet =
3677
3678 if (continue_packet) {
3679 const char *continue_cstr =
3680 (const char *)continue_packet->GetBytes();
3681 const size_t continue_cstr_len = continue_packet->GetByteSize();
3682 LLDB_LOGF(log,
3683 "ProcessGDBRemote::%s(pid = %" PRIu64
3684 ") got eBroadcastBitAsyncContinue: %s",
3685 __FUNCTION__, GetID(), continue_cstr);
3686
3687 if (::strstr(continue_cstr, "vAttach") == nullptr)
3689 StringExtractorGDBRemote response;
3690
3691 StateType stop_state =
3693 *this, *GetUnixSignals(),
3694 llvm::StringRef(continue_cstr, continue_cstr_len),
3695 GetInterruptTimeout(), response);
3696
3697 // We need to immediately clear the thread ID list so we are sure
3698 // to get a valid list of threads. The thread ID list might be
3699 // contained within the "response", or the stop reply packet that
3700 // caused the stop. So clear it now before we give the stop reply
3701 // packet to the process using the
3702 // SetLastStopPacket()...
3704
3705 switch (stop_state) {
3706 case eStateStopped:
3707 case eStateCrashed:
3708 case eStateSuspended:
3709 SetLastStopPacket(response);
3710 SetPrivateState(stop_state);
3711 break;
3712
3713 case eStateExited: {
3714 SetLastStopPacket(response);
3716 response.SetFilePos(1);
3717
3718 int exit_status = response.GetHexU8();
3719 std::string desc_string;
3720 if (response.GetBytesLeft() > 0 && response.GetChar('-') == ';') {
3721 llvm::StringRef desc_str;
3722 llvm::StringRef desc_token;
3723 while (response.GetNameColonValue(desc_token, desc_str)) {
3724 if (desc_token != "description")
3725 continue;
3726 StringExtractor extractor(desc_str);
3727 extractor.GetHexByteString(desc_string);
3728 }
3729 }
3730 SetExitStatus(exit_status, desc_string.c_str());
3731 done = true;
3732 break;
3733 }
3734 case eStateInvalid: {
3735 // Check to see if we were trying to attach and if we got back
3736 // the "E87" error code from debugserver -- this indicates that
3737 // the process is not debuggable. Return a slightly more
3738 // helpful error message about why the attach failed.
3739 if (::strstr(continue_cstr, "vAttach") != nullptr &&
3740 response.GetError() == 0x87) {
3741 SetExitStatus(-1, "cannot attach to process due to "
3742 "System Integrity Protection");
3743 } else if (::strstr(continue_cstr, "vAttach") != nullptr &&
3744 response.GetStatus().Fail()) {
3745 SetExitStatus(-1, response.GetStatus().AsCString());
3746 } else {
3747 SetExitStatus(-1, "lost connection");
3748 }
3749 done = true;
3750 break;
3751 }
3752
3753 default:
3754 SetPrivateState(stop_state);
3755 break;
3756 } // switch(stop_state)
3757 } // if (continue_packet)
3758 } // case eBroadcastBitAsyncContinue
3759 break;
3760
3762 LLDB_LOGF(log,
3763 "ProcessGDBRemote::%s(pid = %" PRIu64
3764 ") got eBroadcastBitAsyncThreadShouldExit...",
3765 __FUNCTION__, GetID());
3766 done = true;
3767 break;
3768
3769 default:
3770 LLDB_LOGF(log,
3771 "ProcessGDBRemote::%s(pid = %" PRIu64
3772 ") got unknown event 0x%8.8x",
3773 __FUNCTION__, GetID(), event_type);
3774 done = true;
3775 break;
3776 }
3777 }
3778 } else {
3779 LLDB_LOGF(log,
3780 "ProcessGDBRemote::%s(pid = %" PRIu64
3781 ") listener.WaitForEvent (NULL, event_sp) => false",
3782 __FUNCTION__, GetID());
3783 done = true;
3784 }
3785 }
3786
3787 LLDB_LOGF(log, "ProcessGDBRemote::%s(pid = %" PRIu64 ") thread exiting...",
3788 __FUNCTION__, GetID());
3789
3790 return {};
3791}
3792
3793// uint32_t
3794// ProcessGDBRemote::ListProcessesMatchingName (const char *name, StringList
3795// &matches, std::vector<lldb::pid_t> &pids)
3796//{
3797// // If we are planning to launch the debugserver remotely, then we need to
3798// fire up a debugserver
3799// // process and ask it for the list of processes. But if we are local, we
3800// can let the Host do it.
3801// if (m_local_debugserver)
3802// {
3803// return Host::ListProcessesMatchingName (name, matches, pids);
3804// }
3805// else
3806// {
3807// // FIXME: Implement talking to the remote debugserver.
3808// return 0;
3809// }
3810//
3811//}
3812//
3814 void *baton, StoppointCallbackContext *context, lldb::user_id_t break_id,
3815 lldb::user_id_t break_loc_id) {
3816 // I don't think I have to do anything here, just make sure I notice the new
3817 // thread when it starts to
3818 // run so I can stop it if that's what I want to do.
3819 Log *log = GetLog(LLDBLog::Step);
3820 LLDB_LOGF(log, "Hit New Thread Notification breakpoint.");
3821 return false;
3822}
3823
3825 Log *log = GetLog(GDBRLog::Process);
3826 LLDB_LOG(log, "Check if need to update ignored signals");
3827
3828 // QPassSignals package is not supported by the server, there is no way we
3829 // can ignore any signals on server side.
3831 return Status();
3832
3833 // No signals, nothing to send.
3834 if (m_unix_signals_sp == nullptr)
3835 return Status();
3836
3837 // Signals' version hasn't changed, no need to send anything.
3838 uint64_t new_signals_version = m_unix_signals_sp->GetVersion();
3839 if (new_signals_version == m_last_signals_version) {
3840 LLDB_LOG(log, "Signals' version hasn't changed. version={0}",
3842 return Status();
3843 }
3844
3845 auto signals_to_ignore =
3846 m_unix_signals_sp->GetFilteredSignals(false, false, false);
3847 Status error = m_gdb_comm.SendSignalsToIgnore(signals_to_ignore);
3848
3849 LLDB_LOG(log,
3850 "Signals' version changed. old version={0}, new version={1}, "
3851 "signals ignored={2}, update result={3}",
3852 m_last_signals_version, new_signals_version,
3853 signals_to_ignore.size(), error);
3854
3855 if (error.Success())
3856 m_last_signals_version = new_signals_version;
3857
3858 return error;
3859}
3860
3862 Log *log = GetLog(LLDBLog::Step);
3864 if (log && log->GetVerbose())
3865 LLDB_LOGF(log, "Enabled noticing new thread breakpoint.");
3866 m_thread_create_bp_sp->SetEnabled(true);
3867 } else {
3868 PlatformSP platform_sp(GetTarget().GetPlatform());
3869 if (platform_sp) {
3871 platform_sp->SetThreadCreationBreakpoint(GetTarget());
3873 if (log && log->GetVerbose())
3874 LLDB_LOGF(
3875 log, "Successfully created new thread notification breakpoint %i",
3876 m_thread_create_bp_sp->GetID());
3877 m_thread_create_bp_sp->SetCallback(
3879 } else {
3880 LLDB_LOGF(log, "Failed to create new thread notification breakpoint.");
3881 }
3882 }
3883 }
3884 return m_thread_create_bp_sp.get() != nullptr;
3885}
3886
3888 Log *log = GetLog(LLDBLog::Step);
3889 if (log && log->GetVerbose())
3890 LLDB_LOGF(log, "Disabling new thread notification breakpoint.");
3891
3893 m_thread_create_bp_sp->SetEnabled(false);
3894
3895 return true;
3896}
3897
3899 if (m_dyld_up.get() == nullptr)
3900 m_dyld_up.reset(DynamicLoader::FindPlugin(this, ""));
3901 return m_dyld_up.get();
3902}
3903
3905 int return_value;
3906 bool was_supported;
3907
3908 Status error;
3909
3910 return_value = m_gdb_comm.SendLaunchEventDataPacket(data, &was_supported);
3911 if (return_value != 0) {
3912 if (!was_supported)
3914 "Sending events is not supported for this process.");
3915 else
3916 error = Status::FromErrorStringWithFormat("Error sending event data: %d.",
3917 return_value);
3918 }
3919 return error;
3920}
3921
3923 DataBufferSP buf;
3925 llvm::Expected<std::string> response = m_gdb_comm.ReadExtFeature("auxv", "");
3926 if (response)
3927 buf = std::make_shared<DataBufferHeap>(response->c_str(),
3928 response->length());
3929 else
3930 LLDB_LOG_ERROR(GetLog(GDBRLog::Process), response.takeError(), "{0}");
3931 }
3933}
3934
3937 StructuredData::ObjectSP object_sp;
3938
3941 SystemRuntime *runtime = GetSystemRuntime();
3942 if (runtime) {
3943 runtime->AddThreadExtendedInfoPacketHints(args_dict);
3944 }
3945 args_dict->GetAsDictionary()->AddIntegerItem("thread", tid);
3946
3947 StreamString packet;
3948 packet << "jThreadExtendedInfo:";
3949 args_dict->Dump(packet, false);
3950
3951 // FIXME the final character of a JSON dictionary, '}', is the escape
3952 // character in gdb-remote binary mode. lldb currently doesn't escape
3953 // these characters in its packet output -- so we add the quoted version of
3954 // the } character here manually in case we talk to a debugserver which un-
3955 // escapes the characters at packet read time.
3956 packet << (char)(0x7d ^ 0x20);
3957
3958 StringExtractorGDBRemote response;
3959 response.SetResponseValidatorToJSON();
3960 if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response) ==
3963 response.GetResponseType();
3964 if (response_type == StringExtractorGDBRemote::eResponse) {
3965 if (!response.Empty()) {
3966 object_sp = StructuredData::ParseJSON(response.GetStringRef());
3967 }
3968 }
3969 }
3970 }
3971 return object_sp;
3972}
3973
3975 lldb::addr_t image_list_address, lldb::addr_t image_count) {
3976
3978 args_dict->GetAsDictionary()->AddIntegerItem("image_list_address",
3979 image_list_address);
3980 args_dict->GetAsDictionary()->AddIntegerItem("image_count", image_count);
3981
3982 return GetLoadedDynamicLibrariesInfos_sender(args_dict);
3983}
3984
3987
3988 args_dict->GetAsDictionary()->AddBooleanItem("fetch_all_solibs", true);
3989
3990 return GetLoadedDynamicLibrariesInfos_sender(args_dict);
3991}
3992
3994 const std::vector<lldb::addr_t> &load_addresses) {
3997
3998 for (auto addr : load_addresses)
3999 addresses->AddIntegerItem(addr);
4000
4001 args_dict->GetAsDictionary()->AddItem("solib_addresses", addresses);
4002
4003 return GetLoadedDynamicLibrariesInfos_sender(args_dict);
4004}
4005
4008 StructuredData::ObjectSP args_dict) {
4009 StructuredData::ObjectSP object_sp;
4010
4012 // Scope for the scoped timeout object
4014 std::chrono::seconds(10));
4015
4016 StreamString packet;
4017 packet << "jGetLoadedDynamicLibrariesInfos:";
4018 args_dict->Dump(packet, false);
4019
4020 // FIXME the final character of a JSON dictionary, '}', is the escape
4021 // character in gdb-remote binary mode. lldb currently doesn't escape
4022 // these characters in its packet output -- so we add the quoted version of
4023 // the } character here manually in case we talk to a debugserver which un-
4024 // escapes the characters at packet read time.
4025 packet << (char)(0x7d ^ 0x20);
4026
4027 StringExtractorGDBRemote response;
4028 response.SetResponseValidatorToJSON();
4029 if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response) ==
4032 response.GetResponseType();
4033 if (response_type == StringExtractorGDBRemote::eResponse) {
4034 if (!response.Empty()) {
4035 object_sp = StructuredData::ParseJSON(response.GetStringRef());
4036 }
4037 }
4038 }
4039 }
4040 return object_sp;
4041}
4042
4044 StructuredData::ObjectSP object_sp;
4046
4048 StringExtractorGDBRemote response;
4049 response.SetResponseValidatorToJSON();
4050 if (m_gdb_comm.SendPacketAndWaitForResponse("jGetDyldProcessState",
4051 response) ==
4054 response.GetResponseType();
4055 if (response_type == StringExtractorGDBRemote::eResponse) {
4056 if (!response.Empty()) {
4057 object_sp = StructuredData::ParseJSON(response.GetStringRef());
4058 }
4059 }
4060 }
4061 }
4062 return object_sp;
4063}
4064
4066 StructuredData::ObjectSP object_sp;
4068
4070 StreamString packet;
4071 packet << "jGetSharedCacheInfo:";
4072 args_dict->Dump(packet, false);
4073
4074 // FIXME the final character of a JSON dictionary, '}', is the escape
4075 // character in gdb-remote binary mode. lldb currently doesn't escape
4076 // these characters in its packet output -- so we add the quoted version of
4077 // the } character here manually in case we talk to a debugserver which un-
4078 // escapes the characters at packet read time.
4079 packet << (char)(0x7d ^ 0x20);
4080
4081 StringExtractorGDBRemote response;
4082 response.SetResponseValidatorToJSON();
4083 if (m_gdb_comm.SendPacketAndWaitForResponse(packet.GetString(), response) ==
4086 response.GetResponseType();
4087 if (response_type == StringExtractorGDBRemote::eResponse) {
4088 if (!response.Empty()) {
4089 object_sp = StructuredData::ParseJSON(response.GetStringRef());
4090 }
4091 }
4092 }
4093 }
4094 return object_sp;
4095}
4096
4098 llvm::StringRef type_name, const StructuredData::ObjectSP &config_sp) {
4099 return m_gdb_comm.ConfigureRemoteStructuredData(type_name, config_sp);
4100}
4101
4102// Establish the largest memory read/write payloads we should use. If the
4103// remote stub has a max packet size, stay under that size.
4104//
4105// If the remote stub's max packet size is crazy large, use a reasonable
4106// largeish default.
4107//
4108// If the remote stub doesn't advertise a max packet size, use a conservative
4109// default.
4110
4112 const uint64_t reasonable_largeish_default = 128 * 1024;
4113 const uint64_t conservative_default = 512;
4114
4115 if (m_max_memory_size == 0) {
4116 uint64_t stub_max_size = m_gdb_comm.GetRemoteMaxPacketSize();
4117 if (stub_max_size != UINT64_MAX && stub_max_size != 0) {
4118 // Save the stub's claimed maximum packet size
4119 m_remote_stub_max_memory_size = stub_max_size;
4120
4121 // Even if the stub says it can support ginormous packets, don't exceed
4122 // our reasonable largeish default packet size.
4123 if (stub_max_size > reasonable_largeish_default) {
4124 stub_max_size = reasonable_largeish_default;
4125 }
4126
4127 // Memory packet have other overheads too like Maddr,size:#NN Instead of
4128 // calculating the bytes taken by size and addr every time, we take a
4129 // maximum guess here.
4130 if (stub_max_size > 70)
4131 stub_max_size -= 32 + 32 + 6;
4132 else {
4133 // In unlikely scenario that max packet size is less then 70, we will
4134 // hope that data being written is small enough to fit.
4136 if (log)
4137 log->Warning("Packet size is too small. "
4138 "LLDB may face problems while writing memory");
4139 }
4140
4141 m_max_memory_size = stub_max_size;
4142 } else {
4143 m_max_memory_size = conservative_default;
4144 }
4145 }
4146}
4147
4149 uint64_t user_specified_max) {
4150 if (user_specified_max != 0) {
4152
4154 if (m_remote_stub_max_memory_size < user_specified_max) {
4156 // packet size too
4157 // big, go as big
4158 // as the remote stub says we can go.
4159 } else {
4160 m_max_memory_size = user_specified_max; // user's packet size is good
4161 }
4162 } else {
4164 user_specified_max; // user's packet size is probably fine
4165 }
4166 }
4167}
4168
4169bool ProcessGDBRemote::GetModuleSpec(const FileSpec &module_file_spec,
4170 const ArchSpec &arch,
4171 ModuleSpec &module_spec) {
4173
4174 const ModuleCacheKey key(module_file_spec.GetPath(),
4175 arch.GetTriple().getTriple());
4176 auto cached = m_cached_module_specs.find(key);
4177 if (cached != m_cached_module_specs.end()) {
4178 module_spec = cached->second;
4179 return bool(module_spec);
4180 }
4181
4182 if (!m_gdb_comm.GetModuleInfo(module_file_spec, arch, module_spec)) {
4183 LLDB_LOGF(log, "ProcessGDBRemote::%s - failed to get module info for %s:%s",
4184 __FUNCTION__, module_file_spec.GetPath().c_str(),
4185 arch.GetTriple().getTriple().c_str());
4186 return false;
4187 }
4188
4189 if (log) {
4190 StreamString stream;
4191 module_spec.Dump(stream);
4192 LLDB_LOGF(log, "ProcessGDBRemote::%s - got module info for (%s:%s) : %s",
4193 __FUNCTION__, module_file_spec.GetPath().c_str(),
4194 arch.GetTriple().getTriple().c_str(), stream.GetData());
4195 }
4196
4197 m_cached_module_specs[key] = module_spec;
4198 return true;
4199}
4200
4202 llvm::ArrayRef<FileSpec> module_file_specs, const llvm::Triple &triple) {
4203 auto module_specs = m_gdb_comm.GetModulesInfo(module_file_specs, triple);
4204 if (module_specs) {
4205 for (const FileSpec &spec : module_file_specs)
4207 triple.getTriple())] = ModuleSpec();
4208 for (const ModuleSpec &spec : *module_specs)
4209 m_cached_module_specs[ModuleCacheKey(spec.GetFileSpec().GetPath(),
4210 triple.getTriple())] = spec;
4211 }
4212}
4213
4215 return m_gdb_comm.GetOSVersion();
4216}
4217
4220}
4221
4222namespace {
4223
4224typedef std::vector<std::string> stringVec;
4225
4226typedef std::vector<struct GdbServerRegisterInfo> GDBServerRegisterVec;
4227struct RegisterSetInfo {
4228 ConstString name;
4229};
4230
4231typedef std::map<uint32_t, RegisterSetInfo> RegisterSetMap;
4232
4233struct GdbServerTargetInfo {
4234 std::string arch;
4235 std::string osabi;
4236 stringVec includes;
4237 RegisterSetMap reg_set_map;
4238};
4239
4240static FieldEnum::Enumerators ParseEnumEvalues(const XMLNode &enum_node) {
4241 Log *log(GetLog(GDBRLog::Process));
4242 // We will use the last instance of each value. Also we preserve the order
4243 // of declaration in the XML, as it may not be numerical.
4244 // For example, hardware may intially release with two states that softwware
4245 // can read from a register field:
4246 // 0 = startup, 1 = running
4247 // If in a future hardware release, the designers added a pre-startup state:
4248 // 0 = startup, 1 = running, 2 = pre-startup
4249 // Now it makes more sense to list them in this logical order as opposed to
4250 // numerical order:
4251 // 2 = pre-startup, 1 = startup, 0 = startup
4252 // This only matters for "register info" but let's trust what the server
4253 // chose regardless.
4254 std::map<uint64_t, FieldEnum::Enumerator> enumerators;
4255
4257 "evalue", [&enumerators, &log](const XMLNode &enumerator_node) {
4258 std::optional<llvm::StringRef> name;
4259 std::optional<uint64_t> value;
4260
4261 enumerator_node.ForEachAttribute(
4262 [&name, &value, &log](const llvm::StringRef &attr_name,
4263 const llvm::StringRef &attr_value) {
4264 if (attr_name == "name") {
4265 if (attr_value.size())
4266 name = attr_value;
4267 else
4268 LLDB_LOG(log, "ProcessGDBRemote::ParseEnumEvalues "
4269 "Ignoring empty name in evalue");
4270 } else if (attr_name == "value") {
4271 uint64_t parsed_value = 0;
4272 if (llvm::to_integer(attr_value, parsed_value))
4273 value = parsed_value;
4274 else
4275 LLDB_LOG(log,
4276 "ProcessGDBRemote::ParseEnumEvalues "
4277 "Invalid value \"{0}\" in "
4278 "evalue",
4279 attr_value.data());
4280 } else
4281 LLDB_LOG(log,
4282 "ProcessGDBRemote::ParseEnumEvalues Ignoring "
4283 "unknown attribute "
4284 "\"{0}\" in evalue",
4285 attr_name.data());
4286
4287 // Keep walking attributes.
4288 return true;
4289 });
4290
4291 if (value && name)
4292 enumerators.insert_or_assign(
4293 *value, FieldEnum::Enumerator(*value, name->str()));
4294
4295 // Find all evalue elements.
4296 return true;
4297 });
4298
4299 FieldEnum::Enumerators final_enumerators;
4300 for (auto [_, enumerator] : enumerators)
4301 final_enumerators.push_back(enumerator);
4302
4303 return final_enumerators;
4304}
4305
4306static void
4307ParseEnums(XMLNode feature_node,
4308 llvm::StringMap<std::unique_ptr<FieldEnum>> &registers_enum_types) {
4309 Log *log(GetLog(GDBRLog::Process));
4310
4311 // The top level element is "<enum...".
4312 feature_node.ForEachChildElementWithName(
4313 "enum", [log, &registers_enum_types](const XMLNode &enum_node) {
4314 std::string id;
4315
4316 enum_node.ForEachAttribute([&id](const llvm::StringRef &attr_name,
4317 const llvm::StringRef &attr_value) {
4318 if (attr_name == "id")
4319 id = attr_value;
4320
4321 // There is also a "size" attribute that is supposed to be the size in
4322 // bytes of the register this applies to. However:
4323 // * LLDB doesn't need this information.
4324 // * It is difficult to verify because you have to wait until the
4325 // enum is applied to a field.
4326 //
4327 // So we will emit this attribute in XML for GDB's sake, but will not
4328 // bother ingesting it.
4329
4330 // Walk all attributes.
4331 return true;
4332 });
4333
4334 if (!id.empty()) {
4335 FieldEnum::Enumerators enumerators = ParseEnumEvalues(enum_node);
4336 if (!enumerators.empty()) {
4337 LLDB_LOG(log,
4338 "ProcessGDBRemote::ParseEnums Found enum type \"{0}\"",
4339 id);
4340 registers_enum_types.insert_or_assign(
4341 id, std::make_unique<FieldEnum>(id, enumerators));
4342 }
4343 }
4344
4345 // Find all <enum> elements.
4346 return true;
4347 });
4348}
4349
4350static std::vector<RegisterFlags::Field> ParseFlagsFields(
4351 XMLNode flags_node, unsigned size,
4352 const llvm::StringMap<std::unique_ptr<FieldEnum>> &registers_enum_types) {
4353 Log *log(GetLog(GDBRLog::Process));
4354 const unsigned max_start_bit = size * 8 - 1;
4355
4356 // Process the fields of this set of flags.
4357 std::vector<RegisterFlags::Field> fields;
4358 flags_node.ForEachChildElementWithName("field", [&fields, max_start_bit, &log,
4359 &registers_enum_types](
4360 const XMLNode
4361 &field_node) {
4362 std::optional<llvm::StringRef> name;
4363 std::optional<unsigned> start;
4364 std::optional<unsigned> end;
4365 std::optional<llvm::StringRef> type;
4366
4367 field_node.ForEachAttribute([&name, &start, &end, &type, max_start_bit,
4368 &log](const llvm::StringRef &attr_name,
4369 const llvm::StringRef &attr_value) {
4370 // Note that XML in general requires that each of these attributes only
4371 // appears once, so we don't have to handle that here.
4372 if (attr_name == "name") {
4373 LLDB_LOG(
4374 log,
4375 "ProcessGDBRemote::ParseFlagsFields Found field node name \"{0}\"",
4376 attr_value.data());
4377 name = attr_value;
4378 } else if (attr_name == "start") {
4379 unsigned parsed_start = 0;
4380 if (llvm::to_integer(attr_value, parsed_start)) {
4381 if (parsed_start > max_start_bit) {
4382 LLDB_LOG(log,
4383 "ProcessGDBRemote::ParseFlagsFields Invalid start {0} in "
4384 "field node, "
4385 "cannot be > {1}",
4386 parsed_start, max_start_bit);
4387 } else
4388 start = parsed_start;
4389 } else {
4390 LLDB_LOG(
4391 log,
4392 "ProcessGDBRemote::ParseFlagsFields Invalid start \"{0}\" in "
4393 "field node",
4394 attr_value.data());
4395 }
4396 } else if (attr_name == "end") {
4397 unsigned parsed_end = 0;
4398 if (llvm::to_integer(attr_value, parsed_end))
4399 if (parsed_end > max_start_bit) {
4400 LLDB_LOG(log,
4401 "ProcessGDBRemote::ParseFlagsFields Invalid end {0} in "
4402 "field node, "
4403 "cannot be > {1}",
4404 parsed_end, max_start_bit);
4405 } else
4406 end = parsed_end;
4407 else {
4408 LLDB_LOG(log,
4409 "ProcessGDBRemote::ParseFlagsFields Invalid end \"{0}\" in "
4410 "field node",
4411 attr_value.data());
4412 }
4413 } else if (attr_name == "type") {
4414 type = attr_value;
4415 } else {
4416 LLDB_LOG(
4417 log,
4418 "ProcessGDBRemote::ParseFlagsFields Ignoring unknown attribute "
4419 "\"{0}\" in field node",
4420 attr_name.data());
4421 }
4422
4423 return true; // Walk all attributes of the field.
4424 });
4425
4426 if (name && start && end) {
4427 if (*start > *end)
4428 LLDB_LOG(
4429 log,
4430 "ProcessGDBRemote::ParseFlagsFields Start {0} > end {1} in field "
4431 "\"{2}\", ignoring",
4432 *start, *end, name->data());
4433 else {
4434 if (RegisterFlags::Field::GetSizeInBits(*start, *end) > 64)
4435 LLDB_LOG(log,
4436 "ProcessGDBRemote::ParseFlagsFields Ignoring field \"{2}\" "
4437 "that has "
4438 "size > 64 bits, this is not supported",
4439 name->data());
4440 else {
4441 // A field's type may be set to the name of an enum type.
4442 const FieldEnum *enum_type = nullptr;
4443 if (type && !type->empty()) {
4444 auto found = registers_enum_types.find(*type);
4445 if (found != registers_enum_types.end()) {
4446 enum_type = found->second.get();
4447
4448 // No enumerator can exceed the range of the field itself.
4449 uint64_t max_value =
4451 for (const auto &enumerator : enum_type->GetEnumerators()) {
4452 if (enumerator.m_value > max_value) {
4453 enum_type = nullptr;
4454 LLDB_LOG(
4455 log,
4456 "ProcessGDBRemote::ParseFlagsFields In enum \"{0}\" "
4457 "evalue \"{1}\" with value {2} exceeds the maximum value "
4458 "of field \"{3}\" ({4}), ignoring enum",
4459 type->data(), enumerator.m_name, enumerator.m_value,
4460 name->data(), max_value);
4461 break;
4462 }
4463 }
4464 } else {
4465 LLDB_LOG(log,
4466 "ProcessGDBRemote::ParseFlagsFields Could not find type "
4467 "\"{0}\" "
4468 "for field \"{1}\", ignoring",
4469 type->data(), name->data());
4470 }
4471 }
4472
4473 fields.push_back(
4474 RegisterFlags::Field(name->str(), *start, *end, enum_type));
4475 }
4476 }
4477 }
4478
4479 return true; // Iterate all "field" nodes.
4480 });
4481 return fields;
4482}
4483
4484void ParseFlags(
4485 XMLNode feature_node,
4486 llvm::StringMap<std::unique_ptr<RegisterFlags>> &registers_flags_types,
4487 const llvm::StringMap<std::unique_ptr<FieldEnum>> &registers_enum_types) {
4488 Log *log(GetLog(GDBRLog::Process));
4489
4490 feature_node.ForEachChildElementWithName(
4491 "flags",
4492 [&log, &registers_flags_types,
4493 &registers_enum_types](const XMLNode &flags_node) -> bool {
4494 LLDB_LOG(log, "ProcessGDBRemote::ParseFlags Found flags node \"{0}\"",
4495 flags_node.GetAttributeValue("id").c_str());
4496
4497 std::optional<llvm::StringRef> id;
4498 std::optional<unsigned> size;
4499 flags_node.ForEachAttribute(
4500 [&id, &size, &log](const llvm::StringRef &name,
4501 const llvm::StringRef &value) {
4502 if (name == "id") {
4503 id = value;
4504 } else if (name == "size") {
4505 unsigned parsed_size = 0;
4506 if (llvm::to_integer(value, parsed_size))
4507 size = parsed_size;
4508 else {
4509 LLDB_LOG(log,
4510 "ProcessGDBRemote::ParseFlags Invalid size \"{0}\" "
4511 "in flags node",
4512 value.data());
4513 }
4514 } else {
4515 LLDB_LOG(log,
4516 "ProcessGDBRemote::ParseFlags Ignoring unknown "
4517 "attribute \"{0}\" in flags node",
4518 name.data());
4519 }
4520 return true; // Walk all attributes.
4521 });
4522
4523 if (id && size) {
4524 // Process the fields of this set of flags.
4525 std::vector<RegisterFlags::Field> fields =
4526 ParseFlagsFields(flags_node, *size, registers_enum_types);
4527 if (fields.size()) {
4528 // Sort so that the fields with the MSBs are first.
4529 std::sort(fields.rbegin(), fields.rend());
4530 std::vector<RegisterFlags::Field>::const_iterator overlap =
4531 std::adjacent_find(fields.begin(), fields.end(),
4532 [](const RegisterFlags::Field &lhs,
4533 const RegisterFlags::Field &rhs) {
4534 return lhs.Overlaps(rhs);
4535 });
4536
4537 // If no fields overlap, use them.
4538 if (overlap == fields.end()) {
4539 if (registers_flags_types.contains(*id)) {
4540 // In theory you could define some flag set, use it with a
4541 // register then redefine it. We do not know if anyone does
4542 // that, or what they would expect to happen in that case.
4543 //
4544 // LLDB chooses to take the first definition and ignore the rest
4545 // as waiting until everything has been processed is more
4546 // expensive and difficult. This means that pointers to flag
4547 // sets in the register info remain valid if later the flag set
4548 // is redefined. If we allowed redefinitions, LLDB would crash
4549 // when you tried to print a register that used the original
4550 // definition.
4551 LLDB_LOG(
4552 log,
4553 "ProcessGDBRemote::ParseFlags Definition of flags "
4554 "\"{0}\" shadows "
4555 "previous definition, using original definition instead.",
4556 id->data());
4557 } else {
4558 registers_flags_types.insert_or_assign(
4559 *id, std::make_unique<RegisterFlags>(id->str(), *size,
4560 std::move(fields)));
4561 }
4562 } else {
4563 // If any fields overlap, ignore the whole set of flags.
4564 std::vector<RegisterFlags::Field>::const_iterator next =
4565 std::next(overlap);
4566 LLDB_LOG(
4567 log,
4568 "ProcessGDBRemote::ParseFlags Ignoring flags because fields "
4569 "{0} (start: {1} end: {2}) and {3} (start: {4} end: {5}) "
4570 "overlap.",
4571 overlap->GetName().c_str(), overlap->GetStart(),
4572 overlap->GetEnd(), next->GetName().c_str(), next->GetStart(),
4573 next->GetEnd());
4574 }
4575 } else {
4576 LLDB_LOG(
4577 log,
4578 "ProcessGDBRemote::ParseFlags Ignoring definition of flags "
4579 "\"{0}\" because it contains no fields.",
4580 id->data());
4581 }
4582 }
4583
4584 return true; // Keep iterating through all "flags" elements.
4585 });
4586}
4587
4588bool ParseRegisters(
4589 XMLNode feature_node, GdbServerTargetInfo &target_info,
4590 std::vector<DynamicRegisterInfo::Register> &registers,
4591 llvm::StringMap<std::unique_ptr<RegisterFlags>> &registers_flags_types,
4592 llvm::StringMap<std::unique_ptr<FieldEnum>> &registers_enum_types) {
4593 if (!feature_node)
4594 return false;
4595
4596 Log *log(GetLog(GDBRLog::Process));
4597
4598 // Enums first because they are referenced by fields in the flags.
4599 ParseEnums(feature_node, registers_enum_types);
4600 for (const auto &enum_type : registers_enum_types)
4601 enum_type.second->DumpToLog(log);
4602
4603 ParseFlags(feature_node, registers_flags_types, registers_enum_types);
4604 for (const auto &flags : registers_flags_types)
4605 flags.second->DumpToLog(log);
4606
4607 feature_node.ForEachChildElementWithName(
4608 "reg",
4609 [&target_info, &registers, &registers_flags_types,
4610 log](const XMLNode &reg_node) -> bool {
4611 std::string gdb_group;
4612 std::string gdb_type;
4614 bool encoding_set = false;
4615 bool format_set = false;
4616
4617 // FIXME: we're silently ignoring invalid data here
4618 reg_node.ForEachAttribute([&target_info, &gdb_group, &gdb_type,
4619 &encoding_set, &format_set, &reg_info,
4620 log](const llvm::StringRef &name,
4621 const llvm::StringRef &value) -> bool {
4622 if (name == "name") {
4623 reg_info.name.SetString(value);
4624 } else if (name == "bitsize") {
4625 if (llvm::to_integer(value, reg_info.byte_size))
4626 reg_info.byte_size =
4627 llvm::divideCeil(reg_info.byte_size, CHAR_BIT);
4628 } else if (name == "type") {
4629 gdb_type = value.str();
4630 } else if (name == "group") {
4631 gdb_group = value.str();
4632 } else if (name == "regnum") {
4633 llvm::to_integer(value, reg_info.regnum_remote);
4634 } else if (name == "offset") {
4635 llvm::to_integer(value, reg_info.byte_offset);
4636 } else if (name == "altname") {
4637 reg_info.alt_name.SetString(value);
4638 } else if (name == "encoding") {
4639 encoding_set = true;
4641 } else if (name == "format") {
4642 format_set = true;
4643 if (!OptionArgParser::ToFormat(value.data(), reg_info.format,
4644 nullptr)
4645 .Success())
4646 reg_info.format =
4647 llvm::StringSwitch<lldb::Format>(value)
4648 .Case("vector-sint8", eFormatVectorOfSInt8)
4649 .Case("vector-uint8", eFormatVectorOfUInt8)
4650 .Case("vector-sint16", eFormatVectorOfSInt16)
4651 .Case("vector-uint16", eFormatVectorOfUInt16)
4652 .Case("vector-sint32", eFormatVectorOfSInt32)
4653 .Case("vector-uint32", eFormatVectorOfUInt32)
4654 .Case("vector-float32", eFormatVectorOfFloat32)
4655 .Case("vector-uint64", eFormatVectorOfUInt64)
4656 .Case("vector-uint128", eFormatVectorOfUInt128)
4657 .Default(eFormatInvalid);
4658 } else if (name == "group_id") {
4659 uint32_t set_id = UINT32_MAX;
4660 llvm::to_integer(value, set_id);
4661 RegisterSetMap::const_iterator pos =
4662 target_info.reg_set_map.find(set_id);
4663 if (pos != target_info.reg_set_map.end())
4664 reg_info.set_name = pos->second.name;
4665 } else if (name == "gcc_regnum" || name == "ehframe_regnum") {
4666 llvm::to_integer(value, reg_info.regnum_ehframe);
4667 } else if (name == "dwarf_regnum") {
4668 llvm::to_integer(value, reg_info.regnum_dwarf);
4669 } else if (name == "generic") {
4671 } else if (name == "value_regnums") {
4673 0);
4674 } else if (name == "invalidate_regnums") {
4676 value, reg_info.invalidate_regs, 0);
4677 } else {
4678 LLDB_LOGF(log,
4679 "ProcessGDBRemote::ParseRegisters unhandled reg "
4680 "attribute %s = %s",
4681 name.data(), value.data());
4682 }
4683 return true; // Keep iterating through all attributes
4684 });
4685
4686 if (!gdb_type.empty()) {
4687 // gdb_type could reference some flags type defined in XML.
4688 llvm::StringMap<std::unique_ptr<RegisterFlags>>::iterator it =
4689 registers_flags_types.find(gdb_type);
4690 if (it != registers_flags_types.end()) {
4691 auto flags_type = it->second.get();
4692 if (reg_info.byte_size == flags_type->GetSize())
4693 reg_info.flags_type = flags_type;
4694 else
4695 LLDB_LOGF(log,
4696 "ProcessGDBRemote::ParseRegisters Size of register "
4697 "flags %s (%d bytes) for "
4698 "register %s does not match the register size (%d "
4699 "bytes). Ignoring this set of flags.",
4700 flags_type->GetID().c_str(), flags_type->GetSize(),
4701 reg_info.name.AsCString(), reg_info.byte_size);
4702 }
4703
4704 // There's a slim chance that the gdb_type name is both a flags type
4705 // and a simple type. Just in case, look for that too (setting both
4706 // does no harm).
4707 if (!gdb_type.empty() && !(encoding_set || format_set)) {
4708 if (llvm::StringRef(gdb_type).starts_with("int")) {
4709 reg_info.format = eFormatHex;
4710 reg_info.encoding = eEncodingUint;
4711 } else if (gdb_type == "data_ptr" || gdb_type == "code_ptr") {
4712 reg_info.format = eFormatAddressInfo;
4713 reg_info.encoding = eEncodingUint;
4714 } else if (gdb_type == "float") {
4715 reg_info.format = eFormatFloat;
4716 reg_info.encoding = eEncodingIEEE754;
4717 } else if (gdb_type == "aarch64v" ||
4718 llvm::StringRef(gdb_type).starts_with("vec") ||
4719 gdb_type == "i387_ext" || gdb_type == "uint128" ||
4720 reg_info.byte_size > 16) {
4721 // lldb doesn't handle 128-bit uints correctly (for ymm*h), so
4722 // treat them as vector (similarly to xmm/ymm).
4723 // We can fall back to handling anything else <= 128 bit as an
4724 // unsigned integer, more than that, call it a vector of bytes.
4725 // This can happen if we don't recognise the type for AArc64 SVE
4726 // registers.
4727 reg_info.format = eFormatVectorOfUInt8;
4728 reg_info.encoding = eEncodingVector;
4729 } else {
4730 LLDB_LOGF(
4731 log,
4732 "ProcessGDBRemote::ParseRegisters Could not determine lldb"
4733 "format and encoding for gdb type %s",
4734 gdb_type.c_str());
4735 }
4736 }
4737 }
4738
4739 // Only update the register set name if we didn't get a "reg_set"
4740 // attribute. "set_name" will be empty if we didn't have a "reg_set"
4741 // attribute.
4742 if (!reg_info.set_name) {
4743 if (!gdb_group.empty()) {
4744 reg_info.set_name.SetCString(gdb_group.c_str());
4745 } else {
4746 // If no register group name provided anywhere,
4747 // we'll create a 'general' register set
4748 reg_info.set_name.SetCString("general");
4749 }
4750 }
4751
4752 if (reg_info.byte_size == 0) {
4753 LLDB_LOGF(log,
4754 "ProcessGDBRemote::%s Skipping zero bitsize register %s",
4755 __FUNCTION__, reg_info.name.AsCString());
4756 } else
4757 registers.push_back(reg_info);
4758
4759 return true; // Keep iterating through all "reg" elements
4760 });
4761 return true;
4762}
4763
4764} // namespace
4765
4766// This method fetches a register description feature xml file from
4767// the remote stub and adds registers/register groupsets/architecture
4768// information to the current process. It will call itself recursively
4769// for nested register definition files. It returns true if it was able
4770// to fetch and parse an xml file.
4772 ArchSpec &arch_to_use, std::string xml_filename,
4773 std::vector<DynamicRegisterInfo::Register> &registers) {
4774 // request the target xml file
4775 llvm::Expected<std::string> raw = m_gdb_comm.ReadExtFeature("features", xml_filename);
4776 if (errorToBool(raw.takeError()))
4777 return false;
4778
4779 XMLDocument xml_document;
4780
4781 if (xml_document.ParseMemory(raw->c_str(), raw->size(),
4782 xml_filename.c_str())) {
4783 GdbServerTargetInfo target_info;
4784 std::vector<XMLNode> feature_nodes;
4785
4786 // The top level feature XML file will start with a <target> tag.
4787 XMLNode target_node = xml_document.GetRootElement("target");
4788 if (target_node) {
4789 target_node.ForEachChildElement([&target_info, &feature_nodes](
4790 const XMLNode &node) -> bool {
4791 llvm::StringRef name = node.GetName();
4792 if (name == "architecture") {
4793 node.GetElementText(target_info.arch);
4794 } else if (name == "osabi") {
4795 node.GetElementText(target_info.osabi);
4796 } else if (name == "xi:include" || name == "include") {
4797 std::string href = node.GetAttributeValue("href");
4798 if (!href.empty())
4799 target_info.includes.push_back(href);
4800 } else if (name == "feature") {
4801 feature_nodes.push_back(node);
4802 } else if (name == "groups") {
4804 "group", [&target_info](const XMLNode &node) -> bool {
4805 uint32_t set_id = UINT32_MAX;
4806 RegisterSetInfo set_info;
4807
4808 node.ForEachAttribute(
4809 [&set_id, &set_info](const llvm::StringRef &name,
4810 const llvm::StringRef &value) -> bool {
4811 // FIXME: we're silently ignoring invalid data here
4812 if (name == "id")
4813 llvm::to_integer(value, set_id);
4814 if (name == "name")
4815 set_info.name = ConstString(value);
4816 return true; // Keep iterating through all attributes
4817 });
4818
4819 if (set_id != UINT32_MAX)
4820 target_info.reg_set_map[set_id] = set_info;
4821 return true; // Keep iterating through all "group" elements
4822 });
4823 }
4824 return true; // Keep iterating through all children of the target_node
4825 });
4826 } else {
4827 // In an included XML feature file, we're already "inside" the <target>
4828 // tag of the initial XML file; this included file will likely only have
4829 // a <feature> tag. Need to check for any more included files in this
4830 // <feature> element.
4831 XMLNode feature_node = xml_document.GetRootElement("feature");
4832 if (feature_node) {
4833 feature_nodes.push_back(feature_node);
4834 feature_node.ForEachChildElement([&target_info](
4835 const XMLNode &node) -> bool {
4836 llvm::StringRef name = node.GetName();
4837 if (name == "xi:include" || name == "include") {
4838 std::string href = node.GetAttributeValue("href");
4839 if (!href.empty())
4840 target_info.includes.push_back(href);
4841 }
4842 return true;
4843 });
4844 }
4845 }
4846
4847 // gdbserver does not implement the LLDB packets used to determine host
4848 // or process architecture. If that is the case, attempt to use
4849 // the <architecture/> field from target.xml, e.g.:
4850 //
4851 // <architecture>i386:x86-64</architecture> (seen from VMWare ESXi)
4852 // <architecture>arm</architecture> (seen from Segger JLink on unspecified
4853 // arm board)
4854 if (!arch_to_use.IsValid() && !target_info.arch.empty()) {
4855 // We don't have any information about vendor or OS.
4856 arch_to_use.SetTriple(llvm::StringSwitch<std::string>(target_info.arch)
4857 .Case("i386:x86-64", "x86_64")
4858 .Case("riscv:rv64", "riscv64")
4859 .Case("riscv:rv32", "riscv32")
4860 .Default(target_info.arch) +
4861 "--");
4862
4863 if (arch_to_use.IsValid())
4864 GetTarget().MergeArchitecture(arch_to_use);
4865 }
4866
4867 if (arch_to_use.IsValid()) {
4868 for (auto &feature_node : feature_nodes) {
4869 ParseRegisters(feature_node, target_info, registers,
4871 }
4872
4873 for (const auto &include : target_info.includes) {
4874 GetGDBServerRegisterInfoXMLAndProcess(arch_to_use, include,
4875 registers);
4876 }
4877 }
4878 } else {
4879 return false;
4880 }
4881 return true;
4882}
4883
4885 std::vector<DynamicRegisterInfo::Register> &registers,
4886 const ArchSpec &arch_to_use) {
4887 std::map<uint32_t, uint32_t> remote_to_local_map;
4888 uint32_t remote_regnum = 0;
4889 for (auto it : llvm::enumerate(registers)) {
4890 DynamicRegisterInfo::Register &remote_reg_info = it.value();
4891
4892 // Assign successive remote regnums if missing.
4893 if (remote_reg_info.regnum_remote == LLDB_INVALID_REGNUM)
4894 remote_reg_info.regnum_remote = remote_regnum;
4895
4896 // Create a mapping from remote to local regnos.
4897 remote_to_local_map[remote_reg_info.regnum_remote] = it.index();
4898
4899 remote_regnum = remote_reg_info.regnum_remote + 1;
4900 }
4901
4902 for (DynamicRegisterInfo::Register &remote_reg_info : registers) {
4903 auto proc_to_lldb = [&remote_to_local_map](uint32_t process_regnum) {
4904 auto lldb_regit = remote_to_local_map.find(process_regnum);
4905 return lldb_regit != remote_to_local_map.end() ? lldb_regit->second